
Multimodal Capture of Patient
Behaviour for Improved Detection of
Early Dementia: Clinical Feasibility and
Preliminary Results
Patrik Jonell 1†*, Birger Moëll 1†*, Krister Håkansson2,3†, Gustav Eje Henter1,
Taras Kucherenko4, OlgaMikheeva4, GöranHagman2,3, Jasper Holleman2,3, Miia Kivipelto2,3,
Hedvig Kjellström4, Joakim Gustafson1 and Jonas Beskow1

1Division of Speech, Music and Hearing, School of Electrical Engineering and Computer Science, KTH Royal Institute of
Technology, Stockholm, Sweden, 2Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm,
Sweden, 3Karolinska University Hospital, Stockholm, Sweden, 4Division of Robotics, Perception and Learning, School of
Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

Non-invasive automatic screening for Alzheimer’s disease has the potential to improve
diagnostic accuracy while lowering healthcare costs. Previous research has shown that
patterns in speech, language, gaze, and drawing can help detect early signs of cognitive
decline. In this paper, we describe a highly multimodal system for unobtrusively capturing
data during real clinical interviews conducted as part of cognitive assessments for
Alzheimer’s disease. The system uses nine different sensor devices (smartphones, a
tablet, an eye tracker, a microphone array, and a wristband) to record interaction data
during a specialist’s first clinical interview with a patient, and is currently in use at Karolinska
University Hospital in Stockholm, Sweden. Furthermore, complementary information in the
form of brain imaging, psychological tests, speech therapist assessment, and clinical
meta-data is also available for each patient. We detail our data-collection and analysis
procedure and present preliminary findings that relate measures extracted from the
multimodal recordings to clinical assessments and established biomarkers, based on
data from 25 patients gathered thus far. Our findings demonstrate feasibility for our
proposedmethodology and indicate that the collected data can be used to improve clinical
assessments of early dementia.
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INTRODUCTION

Alzheimer’s disease and other neurocognitive disorders with a neuropathological origin develop
gradually over many years before existing criteria of a clinical diagnosis are fulfilled (Blennow et al.,
2006; Jack et al., 2018). The irreversible nature of these diseases and the long preclinical phase could
make effective preventive non-pharmacological approaches especially appropriate, e.g., life-style
changes that promote brain health and that have no negative side-effects (Kivipelto et al., 2017).
Making a correct diagnosis is a challenging task, especially in early stages of these diseases
(Håkansson et al., 2018); it has been estimated that more than 50% of cases of dementia are
undetected (Lang et al., 2017), and that the diagnostic accuracy is only between 70 and 90%,
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compared to what is revealed in post-mortem neuropathology
(Villemagne et al., 2018; Gauthreaux et al., 2020).

The diagnostic uncertainty in neurocognitive disorders
incurs great human and monetary costs to patients and
society. For the patient, a false diagnosis inflicts unnecessary
trauma with devastating consequences on quality of life, in
addition to medication with likely negative side-effects. For
society, large cost savings are possible if only persons with a
high probability of neuropathology are referred to more
detailed examinations. In addition, if an underlying
pathology can be correctly identified at an earlier stage, this
will probably improve the efficacy of pharmacological as well as
non-pharmacological counteractive measures. It is therefore of
high priority to develop diagnostic tools for these diseases that
are more sensitive, less invasive, more cost-effective, and easier
to administer. Approaches based on machine learning have
proved successful for processing complex information and
assisting in medical decisions in several diseases (Hamet and
Tremblay, 2017). In recent years, such methods have been
developed also for neurocognitive disorders (Bruun et al., 2019;
Koikkalainen et al., 2019; Lee et al., 2019a). Typically, clinical
information collected through established diagnostic routines
is automatically analysed, e.g., via automatic analysis of brain
images. But machine learning has also been used to combine
many types of clinical data to further aid in the diagnosis of
neurocognitive disorders (Bruun et al., 2019; Koikkalainen
et al., 2019; Lee et al., 2019a). Another potential application
of machine learning for neurocognitive disorders could be the
automatic capture and analysis of behavioural signals of
potential clinical relevance, both for reducing the risk that
such signals are missed by the clinician and for adding new and
complementary information beyond what normally is collected
in the medical examination. Such applications have been tested
and evaluated for single digital biomarkers, such as speech or
gaze, and the results have been promising in several cases, as
further described in Related Work.

In this study we describe the first comprehensive and highly
multimodal approach where signals from numerous behavioural
and physiological channels are captured and analysed in parallel
in real patients, as an integrated part of the regular clinical
examinations at a major regional hospital. To offer a rationale
for this multimodal approach, we first (in Medical Background)
give a short medical background to neurocognitive disorders and
diagnostic challenges, including neuropathological characteristics
and behavioural manifestations. In Related Work we then
describe recent developments in digital biomarkers of special
relevance for this project, including speech patterns, gaze, non-
verbal behaviours, and physiological signals. Data Collection then
details our comprehensive, multimodal approach for gathering
patient behaviour data during clinical interviews. This is followed
byData Analysis, which describes how the data can be analysed to
extract digital biomarkers, and Preliminary Findings, which
illustrates how the diagnostic relevance of the extracted
biomarkers can be analysed. The implications of our
preliminary findings and of our data gathering in general are
discussed in Discussion, while Conclusion concludes.

MEDICAL BACKGROUND

Neurocognitive Disorders
Due to continued global increase in life expectancy, the number
of persons with chronic diseases is expected to grow dramatically.
As for many of these chronic diseases, age is the most important
risk factor for getting a neurocognitive disorder (NCD) with a
doubled risk for every 5 years of life. At the age of 90, around 50%
of the population carries a dementia diagnosis, and the prevalence
is around 20% higher for women than for men (Cao et al., 2020).
In the case of major neurocognitive disorders (NCD), previously
named dementia, no pharmacological treatment exists that can
cure or halt the disease process. Approximately 50 million
persons today carry some form of NCD, a number that is
expected to grow to around 150 million in 2050 if no cure will
be been found (Prince, 2015). Due to high-intensive need of care
in later phases, these diseases put a high burden on limited care
resources and societal economies. Combating these disorders has
been declared a priority by the World Health Organization
(World Health Organization and Alzheimer’s Disease
International, 2012). Neurocognitive disorders exist in various
forms, where Alzheimers disease (AD) is the most common
globally, accounting for approximately 60% of all cases, but
limitations in vascular function to provide sufficient oxygen
and nutrients to nerve cells often contribute to cognitive
impairments, either alone (vascular dementia), or in parallel
with e.g. AD. Cognitive disorders in older age may also derive
from other neuropathological conditions such as Lewy-Body
Dementia (LDB), Fronto-temporal Dementia (FTD) and
Parkinson Dementia (PD), accounting in total for around 30%
of all NCD cases (Cao et al., 2020). These neuropathologies are all
progressive and ultimately lethal, and they typically develop
during a long pre-clinical phase that, in the case of AD, may
have been initiated at least a decade before diagnostic criteria are
fulfilled (Jack et al., 2018). With more refined measurement
techniques, including determination of various protein levels
in cerebrospinal fluid and high-resolution brain imaging, it is
often possible to determine which of these pathologies may lie
behind also a minor NCD, previously globally referred to as “mild
cognitive impairment” (MCI).

Neuropathological Characteristics and
Processes
There may be several reasons for the failure to find a cure against
these disorders, in spite of massive research investments across
the world. The dominating disease model, on which hundreds of
failed clinical trials have been based, states that AD develops
through a cascade of events that are triggered by formation of beta
amyloid (Aβ) protein plaques, as originally suggested by Hardy
and Higgins (Hardy and Higgins, 1992). More recently, the
upstream formation of neurotoxic Aβ oligomers have become
more in focus than the plaques, oligomers that may later
contribute to plaque formation (McGirr et al., 2020). Even if
pharmacological success has been made Alzheimer’s disease in
terms of targeting amyloid proteins with an assumed toxicity, and
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even dissolving amyloid plaques, patients in these trials have not
benefitted symptomatically in any of these trials (Kepp, 2017).
One reason for appointing special variants of betamyloid
proteins, especially the Aβ 1–42 peptide, as the culprit, is the
early appearance of level increases in the brain during early
phases of the neuropathological development (Long and
Holtzman, 2019). But association does not prove causation,
and one troubling fact for adherents of this hypothesis, besides
the failures of all amyloid-based drug trials until now, is that
many elderly persons have amyloid plaques, but without any
clinical signs of Alzheimer’s disease (Lane et al., 2018). The fact
that betaamyloid accumulation does not continue to increase
after the initial phase of disease development, seems to suggest
that it is not directly related to the disease itself, but possibly a
trigger—or even an early protective reaction against the disease
(Castellani et al., 2009; Kumar et al., 2016; Li et al., 2018). As a
result, doubts have been voiced against the dominating Aβ
paradigm (Kepp, 2017) and other disease-related events in the
brain have received increasing attention. A major alternative
mechanism is related to changes in the tau protein, a building
block for microtubuli, the tiny pipelines that transport substances
between the soma and the synapses inside the nerve cell, but that
also serve as a skeleton to maintain the structure of the cell.
Degradation of the tau protein during the progression of the
disease, through dysregulated phosphorylation and
transformation into hyperphosphorylated proteins, makes
microtubuli axonal transport progressively less efficient, leads
to synapse loss, to formation of neurofibrillary tangles (NFT) and
ultimately cell death. Some findings indicate that these changes
start in very early stages of disease development, even before
changes in Ab (Insel et al., 2020). In contrast to Aβ changes,
degradation of tau progresses further in parallel with the disease
(Long and Holtzman, 2019) and may therefore be a better
indicator of disease stage, compared to measures of Aβ (Lane
et al., 2018). Changes in Ab and tau proteins are often seen as
related, and, according to advocates of the betaamyloid cascade
hypothesis, changes in extracellular Aβ precede and trigger tau
hyperphosphorylation inside the neuron (Phillips et al., 2020); a
detailed diagnostic evaluation typically involves measurement of
both these proteins in cerebrospinal fluid, especially levels of the
Aβ 1–42 molecule and levels of total tau and phosphorylated tau
(p-tau). The coexistence of extracellular accumulation of beta-
amyloid and the development of neurofibrillary tangles (NFT) are
still considered as the main pathological markers of AD, but no
drug trials based on either of these targets have so far been
successful (Long and Holtzman, 2019). Other suggested
mechanisms include cholinergic deficits, evidenced by the
relative efficacy of cholinesterase inhibitors to hamper
cognitive decline in AD (Sharma, 2019), and inflammation,
indicated by microglia and astrocyte activation in AD.

Behavioural Manifestations
Whatever the mechanisms behind, established effects on
cognition (Henneges et al., 2016) and on behaviour seem
logical from what we know about the underlying pathology
and its progression. Usually these pathological changes in AD
start in the medial temporal part of the brain, from where it

propagates to neighbouring areas, and to areas with projections
from already affected areas. As this part of the brain, including the
hippocampus and entorhinal cortex, has a central role for
especially working memory and episodic memory, these
functions are typically affected in early phases, albeit subtly at
first. The olfactory bulbs are close neighbours, and impaired
olfaction is also a typical early sign (Phillips et al., 2020).

Both the ability to understand language and to speak have
important centres in the parieto-temporal and the temporal lobe,
and are also typically affected relatively early, and could lead to
slower and less articulated speech, difficulty in finding words, and
difficulties to understand language. These functions are normally
controlled from the left hemisphere, while the right parieto-
temporal hemisphere is relatively more important for spatial
functions and orientation. Difficulty in drawing figures and
navigation are common behavioural manifestations that most
probably are related to impaired function in this part of the brain,
in combination with impairments in especially the enthorhinal
cortex. Decreasing efficiency of neural functional (e.g. in axonal
transport, transmitter substance deficits, and an impoverished
synaptic network and neural interconnectivity) will also have a
number of more general effects that in a progressive manners will
affect associative ability, reaction time, balance and motor
coordination. When the neuropathology spreads further,
impulse control, attention, and the ability to focus are affected,
mainly regulated by the fronto-temporal lobes (Migliaccio et al.,
2020).

Long-termmemory, especially procedural memory, are spared
until late in the pathological development, indicating less
importance of parieto-temporal regions for these functions.
The different effects on short term vs. long term memory is
often illustrated by the ability to detail events that happened
decades ago, while the person may have no recollection of what
happened earlier the same day or week. For example, patient with
clinical AD may not remember that he or she can play the piano,
but positioned in front of one, could still start to play it. Recently
it has been suggested that the typical AD phenotype is not the
only one, and what we call Alzheimer’s disease should be
considered as a family of related diseases, but with important
differences in neuropathology, e.g., in terms of primarily affected
areas and thereby also in cognitive and behavioural
manifestations and the sequence of their appearance (Ferreira
et al., 2017). The progressive nature of AD and other
neuropathological diseases means that eventually the whole
brain will be severely affected and thereby all cognitive and
behavioural functions. As a result, dementia care in late stages
is resource demanding and, in combination with increasing
longevity and the high prevalence in old age, presents a large
and growing economic burden for societies worldwide (Wimo
et al., 2017).

Assumptions and Rationale for This Project
It seems plausible that odds would improve with earlier
intervention for any strategy against any disease, including
both pharmacological and non-pharmacological strategies, as
long as it is based on an adequate assumption of the
underlying disease mechanism. There are however special
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challenges with AD and other neuropathologies leading to NCD,
due to a very long progressive disease development with subtle
symptoms in the earliest stages. The limited therapeutic success
against AD and other neuropathological diseases indicates that
the underlying mechanisms are not yet fully understood, which
could justify a broad, open and non-biased approach. A
fundamental starting point for such a non-biased and
exploratory approach is the assumption of a link between
brain and behaviour; we know for sure that these diseases are
diseases of the brain, and this means that aspects of behaviour
related to affected brain areas also should be affected, albeit subtly
in early stages. To exemplify, episodic memory is typically
affected in AD, most probably due to early damages to
hippocampal and entorhinal regions. It could be assumed that
this cognitive domain is also subtly affected in very early stages,
but may not easily be captured by test scores in existing cognitive
tests. But even if actual test scores should appear non-indicative of
an existing neuropathology, the subtly affected person may still
feel more anxious and need to make more of an effort to perform
at this level, which should reflect in various ways in the behaviour
of the person, not easily detected by the naked eye. The same
principle should apply to any other cognitive domain that has
been subtly affected, whether it be reading ability, executive
functioning, word finding, or processing speed, depending on
the type of neuropathology and which brain areas are affected by
it. Another example is autonomic function that typically has a
lower range of variability, being “flatter”, if a person is carrying a
neuropathological disease (Algotsson et al., 1995). Autonomic
function should reflect in degrees of heart rate variability,
variability in emotional expressions, skin temperature
fluctuations, speech volume variation, and in pupil size
variations. Could any or several of these indicators be
identified in early stages and will they differ between different
types of NCD?

In this project we use a broad approach to automatically and
continuously capture a large number of potential digital
biomarkers with high precision, by using different sensors. We
then subject the collected data to machine learning to identify
signals and patterns of signals that could indicate an underlying
neuropathology. In the following we will in greater detail describe
the rationale behind each type of potential digital biomarker that
we capture.

RELATED WORK

This section explores how related sensor data, and digital
biomarkers extracted from such data, across different
modalities have previously been considered for clinical
assessment of Alzheimer’s disease.

Digital Biomarkers
The term digital biomarkers is used here to specify metrics
extracted from sensor data and differentiate them from
biological biomarkers extracted from biological measurements.
A digital biomarker reflects the underlying state of the biological
system (the human brain) and a good candidate for a digital

biomarker is one that shows promise in identifying both
diagnostic criteria of AD and correlates with established
biomarkers used in AD examination. This section outlines
what digital biomarkers have been used in previous research.
All digital biomarkers used throughout this article are written in
italics.

Speech and Language
Alzheimer’s disease leads to a decline in cognitive and
functional abilities, such as memory loss and language
impairments. There have been numerous review studies on
linguistic biomarkers that have been used for detecting the
progression of AD (Mueller et al., 2018; Slegers et al., 2018;
Voleti et al., 2019; de la Fuente Garcia et al., 2020; Calzà et al.,
2020). These include both acoustic features (prosodic, spectral,
vocal and fluency), and textual features (lexical, syntactic,
semantic, and pragmatic). Vocal features such as speaking
rate, fluency and voice quality could be useful as biomarkers
for early detection of AD, since they stem from atrophy in the
medial temporal lobe (König et al., 2015). In a longitudinal
study Ahmed et al. (2013) found that lexical, syntactic and
semantic complexity changed significantly as the the disease
progressed, but not voice quality or fluency. Speaking rate have
been found to be the earliest measurable linguistic feature for
AD detection (Szatloczki et al., 2015). MCI patients have been
found to have a more breathy (H1-A3) and weaker voice (CPP)
than NC (Themistocleous et al., 2020). Number of silent pauses
(especially those longer than 2 s) have proven to be useful for
AD detection (Yuan et al., 2020), as has the average length of
silent pauses (Roark et al., 2011; Tóth et al., 2018). The increase
in pause frequencies has been attributed to struggles with
lexical retrieval, but might also reflect other cognitive
impairments as pauses increases with cognitive load (Pistono
et al., 2016). In a study on language use in unstructured
interviews, AD subjects were found to use fewer Nouns,
while more Adjectives, Verbs and Pronouns than healthy
older participants. They also used a smaller vocabulary size
(Bucks et al., 2000). The lexico-semantic variables appear to be
the most useful for the diagnosis of later stages of AD (Boschi
et al., 2017). These results suggest that the occurrence of
dementia is associated to reduced syntactic complexity,
difficulty in connecting one event to the next, in
maintaining the theme, and in understanding the story.
Furthermore, grammatical errors have mainly been observed
in severe AD groups (Jarrold et al., 2014). Some semantic
features seem to be relevant for MCI though. Asgari et al.
(2017) tagged transcription of patient doctor interviews using
the Linguistic Inquiry and Word Count (LIWC). Using this,
they divided the words into five broad categories: Linguistic
processes; Personal concerns, Psychological processes;
Relativity and Spoken categories. The category that was
most significant for MCI was the relativity category that
included words dealing with time and space. Haider et al.
(2019) demonstrated the usefulness of purely acoustic
features, e.g. eGeMAPS (Eyben et al., 2015), openSmile
(Eyben et al., 2010), and ComParE (Eyben et al., 2013), that
has proven useful for other paralinguistic detection tasks.
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Facial Gestures
The effects of AD on facial gesture and expressiveness can be
significant, but it is a complex relationship. Overall facial
biomarkers are most related to the later stages of AD with
the MCI group having different facial expression in relation to
the AD group. On the one hand, apathy is one of the most
common behavioural symptoms of AD and is linked to deficits
in goal-directed behaviour, decreased goal-related thought
content and emotional indifference with flat affect (Cai et al.,
2020), which in turn leads to overall reduced facial expressivity
(Seidl et al., 2012). Asplund et al. (1991) found that patients in
the later stages of AD struggled to show facial emotional
reactions when experiencing emotional stimuli. Burton and
Kaszniak (2006) found reduced correlation between
emotional state (valence) and zygomatic activity (smiling) for
patients with AD. The AD patients experience the emotion
(happiness) but are less likely to do the linked zygomatic activity
(smile). On the other hand, dementia is also generally linked to
reduced control over facial expression, in many cases leading to
increased facial expressiveness. Smith (1995) found that people
with mild dementia exhibited reduced control of negative
expression during a picture stimuli experiment. The
relationship between stimuli and facial muscle expression of
emotion is complicated since deficit in emotional facial
expression can be caused by several factors. Seidl et al.
(2012) concluded that cognitive deficits are associated with
increased rate of total facial expression after controlling for
apathy. In addition, Matsushita et al. (2018) found that AD
patients had an increased tendency to use smile as a “save
appearance response” when they fail to provide the correct
answer to questions.

Motor Signs (Hand and pen Motion)
Even though cognitive impairments are the most common signs
of dementia, motor functions are also affected by the disease.
Motor signs like speech/facial expression, rigidity, posture, gait
and bradykinesia have been found to increase in frequency and
severity over time in AD patients (Scarmeas et al., 2004). Chung
et al. (2012) has developed an inertial-sensor-based wearable and
a stride detection algorithm for analysis of Alzheimer patients’
gait behaviour. In a user study they were able to show difference
in gait profiles between the AD patients and the healthy controls.
The finger tapping test is used as a neuropsychological assessment
of fine motor skills (Reitan andWolfson, 1985). It has been found
useful for AD assessment, where AD patients produced a finger
tapping pattern that was lower in frequency with slower, more
variable inter-tap interval than the health control group (Roalf
et al., 2018). Previous studies show that MCI and AD patient have
a lower drawing speed when performing handwriting tasks with
lower pen pressure with the differences corresponding to the
groups with more deteriorated groups showing larger differences.
Only using these kinematic measures, a classification accuracy of
69–72% was achieved. (Werner et al., 2006). Gatouillat et al.
(2017) propose some novel measurements/features: pen-tip
normal force, total grip force, and an objective writing quality
assessment. They do not correlate with cognitive aspects per se,
but measure trade-offs between timing and accuracy in the

writing and such things. Garre-Olmo et al. (2017) used a
digital pen in a number of tasks (Clock test, copying two and-
three dimensions drawings, copying one sentence, writing
dictated sentence). Apart from speed and pressure, they found
that the time the pen was in the air was a discriminant feature
between AD, MCI and NC.

Gaze and Pupil Dilation
There has been research on understanding cognitive
deterioration and dementia from eye movements (Zhang
et al., 2016). For different tasks, the eye movements of people
with AD differs from control subjects (Beltrán et al., 2018). Gaze
patterns of patients with AD show greater variance in all
directions. This is linked to cognitive decline and deficits in
attention which leads to more frequent eye and facial movement
(Nam et al., 2020). AD patients have also been found to have
problems following a moving target (Molitor et al., 2015). These
variations in gaze in AD patients are likely due to damage to
frontal and parietal lobe regions related to attention (Garbutt
et al., 2008). When comparing facial muscles and eye
movement, less variability is seen for AD patients compared
to healthy controls (Nam et al., 2020). Pupil dilation is a robust
predictor of cognitive load, the working memory demands of
performing a certain task (Gavas et al., 2017). Pupillary response,
mainly in terms of changes in reaction to light, has been
proposed as a biomarker of early stages for Alzheimer’s
disease (Granholm et al., 2017), However, a longitudinal
study with AD biomarkers is needed to confirm whether
pupillary responses can provide a predictive biomarker of
risk specific to AD-related declines.

Autonomic Nervous System
Heart rate variability (HRV) has been used extensively to
predict dementia (Allan et al., 2005; Zulli et al., 2005;
Negami et al., 2013) as was recently reviewed in da Silva
et al. (2018). There is no consensus in the field, as some
studies found that HRV time and domain parameters were
lower in patients with AD than in patients with MCI and
controls (Zulli et al., 2005; de Vilhena Toledo and Junqueira,
2010), while others found no difference (Wang et al., 1994;
Allan et al., 2005). In general, there is no strong evidence to use
of the HRV alone as biomarkers to diagnose dementia (da Silva
et al., 2018). The sympathetic nervous system can also be
probed using a Galvanic Skin Response sensor, such as the
Empatica wrtistband, has been found to be useful in
determining stress during activities (Schlink et al., 2017).
Sympathetic skin response (SSR) and HRV together were
used to detect an abnormality of autonomic function in
patients with AD (Negami et al., 2013).

Thermal Emission
Experiments on using Thermal imaging for inferring stress
indicate a relationship between an increase of workload and
thermal emissions (Anzengruber and Riener, 2012). Zhou
et al. (2019) used a wearable thermal sensor and found that it
can be possible to use such a system for estimating mental
workload. Ruminski and Kwasniewska (2017) presents a
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review of thermal imaging in mobile conditions together with a
proposed prototype. Furthermore, sleep-disordered breathing is
associated with a higher risk of AD onset after matching and
adjusting for other risk factors (Lee et al., 2019b). Recent pilot
study, Tiele et al. (2020) confirms the potential utility of
analysing breath volatile organic compounds to distinguish
between MCI, AD and controls. Respiration rate has
successfully been extracted from thermal imaging by
automatically analysing the thermal fluctuations in the nostril
area (Lewis et al., 2011). Cho (2018) used a mobile thermal
imaging device in order to infer “stress” levels by extracting
respiration rate.

Automatic Capture and Analysis of
Cognitive Assessment Tests
Recently, there have been large efforts in automating the
screening of Alzheimer’s disease. Tóth et al. (2015) report a
completely automated speech-based screening pipeline that
yielded significant discrimination results. König et al. (2018)
has developed an iPad application that can perform a
semantic verbal fluency test and automatically perform a fine-
grained analysis of the spoken input. ICAT is an internet-based
cognitive assessment tool that uses speech recognition for a
delayed list learning task and drag and drop GUI input for a
number sorting task (Hafiz et al., 2019). In the Talk2Me project
anonymous people can contribute with both speech and text via a
web interface (Komeili et al., 2019). The speech tasks include
describing a picture and retelling a story that is displayed on the
screen for a short while. The text-input tasks include image
naming, word naming and providing word definitions. The
authors have also developed a linguistic analysis package called
COVFEFE that they have made available as open source.
Intelligent Virtual Agents have also been used to collect
spoken interactions, for example to automate parts of the
initial interview at a memory clinic Mirheidari et al. (2017). In
a series of studies the team has used a mix of automatically
generated acoustic and lexical features with manually acquired
conversational analysis inspired features to predict AD
(Mirheidari et al., 2019; Walker et al., 2020). Today’s smart
phones and wearables have a large number of sensors that
could be used in data collection for dementia detection. This
includes camera, microphone, accelerometer/gyryscope, touch,
geoposition, ECG and IR cameras (Kourtis et al., 2019). Using
wearable consumer products have been used for continuous
monitoring of symptoms related to cognitive impairment
(Chen et al., 2019). As an example, UbiCAT is a ubiquitous
cognitive assessment tool for smart watches, that includes three
cognitive tests: the Arrow two-choice reaction-time test, the
N-back letter test, and the Stroop color-word test (Hafiz and
Bardram, 2020).

In the current study we present a multimodal capture and
analysis framework that makes use of non-obtrusive and
affordable sensors in capturing the human behaviour during
memory tests. It has been integrated into the fast-track
cognitive assessment procedure that is used at the memory
clinic of a major regional hospital in Sweden.

DATA COLLECTION

We now describe the setup and procedures we used for gathering
our multimodal behavioural and phsyiological data. All
recordings were performed during clinical examinations at the
Memory Clinic at Karolinska Hospital in Stockholm, Sweden.
The examinations are part of an established fast-track analysis
where a multi-disciplinary team assess the patient within one
week. The complete examination includes brain scanning (MRI),
neuropsychological assessment, speech and language assessment,
assessment of motor skills, physical examination, and a 1-h
clinical interview. Our recordings took place during the
clinical-interview portion of the examinations, the procedure
of which was minimally modified and standardised to
accommodate the recordings, as described in Procedure.

During most of the clinical assessments at the clinic the patient
and the clinician are sitting on opposite sides of a table. In some
cases, including some of our recordings, a partner or relative of
the patient may be present and sitting beside the patient. For our
study, these assessments took place in a particular room at the
clinic, where the room and the table had been instrumented for
multimodal data capture. Figure 1 shows the custom-built,
instrumented “recording table” used. The entire setup
encompasses sensors for recording, interfaces for controlling,
monitoring, and performing data gathering, along with
miscellaneous other equipment, e.g., for storing the data, and a
recording software infrastructure that coordinates the different
devices and ties everything together. The remainder of this
section describes the various components in more detail, along
with the procedures for conducting the clinical sessions and
exporting the data. For an overview of what modalities each
sensor captured, please see Table 1. Figure 1 shows the data
collection setup from the clinical environment. The clinical
assessments at the hospital conclude with a physical
examination in a different part of the room, but this part of
the assessment procedure was not recorded, since the potential
added benefits of such data was not considered commensurate to
the privacy intrusion it would entail.

Design Considerations
A key consideration when designing the data-collection
methodology was to create a setup with a minimal impact on
the clinical assessment, in order to maintain the ecological
validity of the collected corpus. For example, eye movements
and pupil dilation can be collected either using a display-mounted
eye tracker or by having the user wear eye-tracking glasses.
Although the glasses are much more effective, they are
cumbersome to wear, distractive, and also increase the sense
of being monitored. We therefore opted for a display-mounted
eye tracker instead. The case of audio recording is similar: a head-
mounted microphone provides better quality than microphones
fixed to the table generally do, but again, requires equipping the
patient with hardware. Considering these facts, we settled on
using a setup with mobile phones (Apple iPhones) mounted to
the table, which are less associated with looking like cameras than
other types of “normal” cameras, for capturing video and facial
data. We also use an array microphone integrated into the table
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which is able to capture speech from both the clinician and the
patient. For eye-tracking we opted to use a Tobii Nano which is
able to capture eye movement and pupil dilation at a distance,
attached to the bottom of the tablet. The only device which the
patient is carrying is a health wristband, which was considered to
not be as invasive, since it is not uncommon to wear a watch on
the wrist.

Sensors
Below we introduce the various sensors and equipment used for
the data collection procedure (Table 2).

Cameras
Similar to Malisz et al. (2019) a pair of Apple iPhones X (from
here on referred to as “Patient camera” and “Clinician camera”)
were used in order to record both the patient and the clinician. An
additional, third iPhone X was used for capturing thermal data
[“Patient camera (thermal)”] from the patient, and a fourth
capturing the whole interaction from a distance (“Overview

camera”). Please see Figure 2 to see how the iPhones were
connected with the system, and Figure 1 to see how the
cameras were placed and mounted. For the three iPhones
capturing close-ups of the patient and clinician (“Patient
iPhone”, “Patient camera (thermal)”, and “Clinician camera”),
a mount from JOBY was modified and attached to the table.
Furthermore a holder was 3D-printed in order to attach the
“Patient camera” with the “Patient camera (thermal)” (see
Figure 1). As can be seen in Figure 1 the “Patient camera
(thermal)” had a FLIR One thermal camera attached to it,
together with a charging cable. These iPhones used a software
developed specifically for these data recordings, and synchronised
their time with the FARMI server. When starting the application
all the recording options were presented, and which data streams
that should be captured could be selected. Those were; RGB video,
facial gestures (parametrised facial expressions and head
movement), depth data, 3D-mesh data, thermal video, RGB
reference video for the thermal video, and thermal data. As
can be seen in Figure 3, the various data streams can be

FIGURE 1 | The data collection setup. At the top an overview of the room is given, showing both the instrumented recording table and the position of the “overview
camera”. In the middle the various devices on the instrumented recording table are shown and at the bottom a close-up of the patient facing cameras.
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turned on or off. The iPhones were configured to send out an
image every 3 s which the status page could display, in order for
the technician to act in case there were issues with the video.

Health Wristband
Originally an Apple Watch was used in order to capture heart
rate and accelerometer data for the patients. The apple watch
was later replaced with an Empatica E4 wristband that
captures heart rate, accelerometer data, and electrodermal
activity.

Microphone Array
A microphone array (ReSpeaker Mic Array v2.0) was installed
into the table in an approximately 10 cm round hole in the center
of the table. The microphone array was covered with a mesh cloth
(see Figure 1). The microphone array was connected using a USB
cable to the central computer. The default LED lights indicating
the direction of speech were disabled, as they were deemed
distracting.

Eye Tracker
A Tobii Nano was used in order to capture eye movement and
pupil dilation of the patient while interacting with the Tablet.
Figure 1 shows how the eye tracker was placed. A custom
mount for the tablet was 3D-printed in order to place the eye
tracker at an appropriate height and angle with respect to how
the patient sits. A manual calibration procedure was required
before each session, where the patient was asked to focus their
gaze at circles displayed on the tablet. The calibration was
initiated from the status page and performed together with a
technician. The eye tracker was connected to the central
computer. The eye tracker collected data throughout the
whole assessment but was meant primarily for when the
patient interacted with the tabled.

Tablet
A tablet was used (Apple iPad) together with a touch enabled pen
(Apple Pencil) which hosted the clinician interface (described in
Clinician Interface). The tablet was placed in a stand with some
inclination (see Figure 1) such that it would be easily operated for
the patient without the need of moving the tablet.

Interfaces
There were three user interfaces, one for the patient, one for the
clinician, and a monitoring tool for monitoring the session. All of
the user interfaces were web applications which were hosted on
the central computer. Each of them are described below.

Patient Interface
A tablet interface was developed to replace certain parts of the
MOCA test. The tablet interface was a web interface controlled by
the clinicians interface (described below) and was black when
nothing was displayed in order to not to be distracting. The tablet
was used for six tasks:

• Cookie theft test, where the participant was presented an
image and asked to describe what they see.

• Cube drawing, where the participant is asked to draw a copy
of a three-dimensional cube which is presented to them.

• Three images, where the participant is presented with three
images, and asked to describe them

• Trail making test (TMT), where the participant is presented
with a number of letters and numbers, and asked to trace a
line between them in ascending order alternating between
letter and number each time (1, A, 2, B . . . ).

• Clock drawing, where the participant is asked to draw a
clock, with the time set to ten after eleven.

For the tasks were the patient had to input something (Cube
drawing, TMT, and Clock test) the interactions were performed
using an Apple Pencil, and all movements together with the
pressure applied when drawing was recorded.

Clinician Interface
The clinician interface (see Figure 4) was a web application
displayed through a touch-enabled laptop (Microsoft Surface).
The clinician was able to choose what was displayed on the tablet
interface for the patient, or just to make the patient screen go
blank. It was also possible for the clinician to end the recording
from this interface. The clinician also received the results from the
drawing tasks through this interface, as the tablet was positioned
toward the patient. These drawings could then be printed and
added to the patients medical journal.

TABLE 1 | A summary table of what modalities each sensor captures.

Sensor Modality Captures

Eye tracker (tobii nano) Gaze Patient
Pupil dilation Patient

Health wristband (empatica E4) Heart rate Patient
Galvanic skin response Patient
Accelorometer Patient

Cameras (4 apple iPhone +1 FLIR one) Video Patient, clinician, and overview
Facial gestures Patient, clinician
Thermal emission Patient
Voice Patient, clinician

Microphone Array (ReSpeaker mic array v2.0) Voice Patient, clinician
Language Patient, clinician

Tablet (Apple iPad) Pen movement Patient
Pen pressure Patient
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Monitoring Tool
A monitoring tool in the form of a web application was
created in order to be able to monitor the recordings (see
Figure 5). Each sensor except the wristband sent a
“heartbeat” signal with an interval of 5 s to the recording
server (described below). This heartbeat was used in order to
determine whether a device was connected to the recording
setup or not, and displayed as a red or green indicator on the
status page. Furthermore a still image captured by the
iPhones every 3 s was also shown on the status page in
order to see that data is being collected accordingly.
Statistics about memory and processing usages, and
battery information for the FLIR One camera was also
presented. The status page was used to start and stop the
recordings, and also initiated the eye-tracking calibration on
the patient interface.

Recording Software Infrastructure
Since the aim was to have a recording setup with a large number of
sensors, computers, mobile devices and wearables working
together, it was of central importance to have a communication
framework that would allow for a finely controlled synchronisation
of all data streams and remote access to start and stop recordings
across the various devices involved. To accomplish this, we used a
modified version of the open-source FARMI framework1 for
recording multimodal interactions (Jonell et al., 2018).

The different devices used for the recordings provide data
streams of different frame rates, and each device has its own
internal system time that is likely to differ between devices.
FARMI was designed to synchronise such streams in a robust

TABLE 2 | A summary table of what physiological and behavioural measures can be extracted from each modality, an indication of which ones are used in the correlation
analysis and an indication if the measure is task independent.

Modality Measure Part
of preliminary analysis

Task independent

Facial gestures Mean face velocity ✓ ✓
Mean smile ✓ ✓
Mean brow ✓ ✓
Mean jaw ✓ ✓
Head motion ✓ ✓
Facial gaze measurements ✓ ✓
Facial patterns 7 ✓
Emotion expression 7 ✓

Gaze Number of fixations ✓ 7

Mean fixation duration ✓ 7

Number of reading fixations ✓ 7

Number of reading backtrack ✓ 7

Percent backtrack ✓ 7

Hand motion Gait 7 ✓
Hand movement 7 7

Heart rate Heart rate variability ✓ ✓
Heart rate change over time 7 ✓

Language Average word length ✓ ✓
Unique words ✓ ✓
Part-of-speech-tagging ✓ ✓
Word complexity 7 ✓
TFIDF-vectors 7 ✓

Pen motion & pressure Drawing speed ✓ 7

Pen pressure ✓ 7

Pupil dilation Pupil change ✓ 7

Pupil diameter ✓ 7

Galvanic skin response Electro-dermal activity 7 ✓
Thermal emission Head temperature change ✓ ✓

Breathing 7 ✓
Video Skin color changes over time 7 ✓

Posture 7 ✓
Body movement 7 ✓

Voice h1h2 (voice quality) ✓ ✓
h1h3 (voice quality) ✓ ✓
h1a1 (voice quality) ✓ ✓
h1a2 (voice quality) ✓ ✓
h1a3 (voice quality) ✓ ✓
Average pause length ✓ ✓
Mean long pause length ✓ ✓
Pause count ✓ ✓

1https://github.com/kth-social-robotics/multisensoryprocessing
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manner. It acts like a publish–subscribe framework, meaning that
components in the system can either publish data at a certain topic or
subscribe to receive data from a certain topic, and ensures that each
device always has a known time offset relative to a central server, and
that each data packet which is stored or sent out is timestampedwith a
timestamp synchronised with that central server. The overall software
architecture is illustrated in Figure 2. It is a decentralised system
where each component works independently of the other. Three
publish-subscribe topics were used, one named “Start-Stop”, which
was used for sending out a signal to all devices to start recording, one
named “Status image/info”, which the cameras used to send a an
image every 3 s to the monitoring tool along with various usage
statistics, and lastly a heartbeat topic which was used by all devices to
signal to FARMI that the devices were still operational.

Besides being a framework, FARMI also provides a server.
Specifically, each sensor or interface would start a ZeroMQ2

server, and send their IP addresses together with a topic name

to the central FARMI server. This server would then be used as a
directory service by other parts of the network for knowing which IP
address a certain type of data was being published at. When a new
sensor connected to the framework, this information was sent to all
other connected devices so that they could connect to the new
device if needed and subscribe to its data stream(s). To verify that
they were still operating correctly, all sensors also published a so-
called “heartbeat” signal at 5 s intervals that the FARMI server
subscribed to. This was used to remove entries in the directory that
had not properly sent an explicit shutdown signal to the server.

The different interfaces used to control, monitor, and carry out
recording also leveraged FARMI. Specifically, each of the the
patient interface, clinician interface, and monitoring tool was a
web interfaces hosted on the central computer named “Web
server” in Figure 2. The clinician interface could control what was
shown on the patient interface, through communication via
websockets3. Both the clinician interface and the monitoring

FIGURE 2 | Diagram showing each sensor component and how they are linked together with the data capturing framework.

FIGURE 3 | The interface used to set up the iPhones before a data capturing session. Here one can set the IP address and an identifying name of the phone.
Furthermore one can select which data streams to capture.

2https://zeromq.org/ 3https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
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tool could send out a start or stop signal via the FARMI Start-Stop topic.
Furthermore, the monitoring tool could instantiate calibration of the eye
tracker, and would at the same send a signal via websockets to the patient
interface to show the eye-tracker calibration screen.

Most of the software connecting the sensors with the central
computer was written using Python and the FARMI framework,
however the code for the cameras, which were Apple iPhones, was
written in Swift, utilising the FLIR framework4 for thermal
images, the ARKit framework5 for capturing facial gestures
and video, and the FARMI framework for communication
with other devices. Sound was also recorded. This data was
then stored locally on the phone, but timestamped using
synchronised timestamps from the FARMI framework. Images
and phone health statistics were published using FARMI every
third second in order to be displayed on the monitoring interface.
All sensors subscribed to the Start-Stop topic in order to receive a
signal when to start and stop recordings. The gaze recorder used
the Tobii SDK6 to communicate with the Tobii Nano device,

while the audio recorder used a Python library from ReSpeaker7

to communicate with the microphone array.

Other Equipment
A printer was used for the clinicians to print out the results from
the MOCA test for purposes of medical record keeping. The
printer was connected via WiFi to the router, and could be
accessed from the clinician’s computer. A router (Asus RT-
AC66U) was used to connect all the devices. For data security,
this router was not connected to the Internet, meaning that the
entire data-collection setup was isolated from the Internet. A
Bluetooth-connected button was initially used for capturing
points of interests deemed by the clinician during the
recording sessions. This turned out to be difficult to maintain,
and is thus not part of the final dataset.

Procedure
In this section we describe the procedure of the data capture from
selection of patients to recordings during clinical assessments,
data export and collection of biomarkers.

FIGURE4 | The clinician interface (in Swedish). The patient has just performed the TMT test, and drawn the connecting lines. The clinician has thenmade the screen
blank. The interface is designed to be operated through a touch screen.

4https://developer.flir.com/mobile/flironesdk/
5https://developer.apple.com
6http://developer.tobiipro.com/python.html 7https://github.com/respeaker/respeaker_python_library

Frontiers in Computer Science | www.frontiersin.org April 2021 | Volume 3 | Article 64263311

Jonell et al. Multimodal Detection of Early Dementia

%20https://developer.flir.com/mobile/flironesdk/
%20https://developer.apple.com
%20http://developer.tobiipro.com/python.html
%20https://github.com/respeaker/respeaker_python_library
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Selection and Recruitment of Participants
The participants in this study are recruited among patients at
the Memory Clinic at Karolinska University Hospital in
Solna, Sweden. The clinic specialises in relatively young
patients with cognitive complaints, and many the patients
are referred from other clinics to receive a thorough and
advanced evaluation. The prevalence of dementia is below 1%
for persons between 60 and 65 in all parts of the world (Ferri
et al., 2005) and a dementia diagnosis below the age of 55 is
very rare. Persons below 55 years of age were therefore excluded
for reasons of clinical relevance and generalisability. To avoid
expectation effects on patient behaviour in the interview situation,
patients with an obvious or very probable neurocognitive disorder, as
revealed by referral medical documentation, were also excluded. To
reduce variability from interviewer behaviour, almost all interviews are
carried out by one of two physicians who were trained to perform the
examination to fit the requirements of the study (including use of
tablets instead of paper and pen in some tasks, positioning of chairs for
optimal video capture, and administration of additional tasks, as
described above).

At this point, we have recorded 25 patients before the outbreak
of the COVID-19 pandemic suspended the data gathering, with
our aim being to recruit and record 100 patients in total. Based on
previous data from the clinic, we expect that approximately 50%
of these will be diagnosed with a neurocognitive disorder, a
prognosis that seems adequate based on the diagnostic
outcomes so far.

In this project each patient has given consent to use their
medical record information for research purposes, information
that is used to evaluate the clinical relevance of recorded
behavioural signals in the interview situation, and that will be
used for development and refinement of algorithms to optimise
prognostic validity of our system. Ethical approval for the study
was obtained from the Stockholm Ethical Board in decision dnr.
2018/1962-31.

Recordings During the Clinical Assessment
Each patient who fulfils the criteria for participation receives
written information beforehand about the study, along with the
summons for the examination. A week later a nurse calls the
patient to ask if they want to participate in the study. After arrival
to the clinic, the patient is asked again if they are still willing to
participate and, if so, to sign the written consent form. The
wristband is mounted and calibrated and the patient then walks
with a physician to the examination room. Once the patient is
seated, the eye tracker on the lower part of the tablet is calibrated.
The researchers then leave the room and the multimodal
recording starts. One technician continually monitors the
recording a screen outside the room, as described in more
detail below. The recording is terminated when the physical
examination part starts, usually after 45–60 min of
interviewing and testing. The examination is performed
according to the normal clinical procedure at the clinic, but
with some adaptations and additions to fit the purpose of our
study: The first part of the interview is about the patient’s
background; living conditions, current and previous
occupations, family situation, interests, memory problems or
other cognitive problems, changes in personality, medication,
sleep, medical history, and orientation in time and space (date,
day of week, the location they are in). This part can be described
as a conversation between the physician and the patient, and was
carried out according to normal routine.

The second part includes a number of tasks that the patient
performs to evaluate cognitive status, including the Montreal
Cognitive Assessment (MoCA) (Nasreddine et al., 2005). This
screening instrument includes various tasks to test performance
in different cognitive domains, including drawing a line between
letters and numbers (trail making), copying a figure, naming
animals, drawing a clock that shows a certain time, immediate
and delayed recall of words, generation of words, backwards
counting, finger tapping, and abstract thinking. The figure

FIGURE 5 | Interface of the monitoring tool used by the technician. The images from the cameras have been cropped out for privacy reasons.
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copying and clock tests in particular are made to measure
visuospatial constructional abilities and executive functioning
(Charernboon, 2017). MoCA is a standard part of the
examination protocol at the clinic, but for the patients who
participate in the study it is adapted to be performed on a
tablet, thereby allowing for detailed registration of pen
movements and eye movements while the tasks are being
performed, including trail making, the clock test, figure
copying, and presentation of animals that the patient should
name. For the tasks that involve drawing on the tablet, these
drawings are mirrored in real time on a separate screen that the
physician can see. The Boston Cookie Theft test (Giles et al.,
1996) was added to the protocol for the purpose of this study, but
is commonly used for screening. In this task the patient is asked to
describe what is happening in a picture, a kitchen scene with a
woman and two children. This picture is also shown on the tablet,
allowing to sync eye movements and pupil changes with audio
and video. When this part of the examination is over, the
recording stops, and the wrist band is removed.

Export of Data
An export tool chain was created to export all of the files collected
during the session in a standardised way, producing a set of CSV
files. This step was performed by the clinician. The data was then
stored on small hard drives in safety vaults. The data from the
computers and phones was removed.

Further Tests and Collection of Other Biomarkers
After this first interview and examination of the patient, further
data are collected to evaluate the cognitive status during the same
and consecutive days, including more advanced cognitive testing,
evaluation of mood and depressive symptoms, blood sample
analysis, brain imaging (MRI, sometimes with the addition of
PET if needed), and collection of CSF for analysis of biomarkers
(levels of β-amyloid (Ab 40 and 42), tau, p-tau, and
neurofilaments). The diagnostic decision is normally made
within a week from the first interview, supported by the
Combinosticsâ“¢ (Bruun et al., 2019) AI tool to combine
results from the different sources of clinical information.

DATA ANALYSIS

In order to verify the validity of the data collected to date and to
be able to compare against available measurements from each
of the recorded patients, we perform a series of analyses and
extract several descriptive physiological and behavioural
metrics based on our captured modalities with a potential to
serve as digital biomarkers. The extracted measures are
summarised in Table 3. In most cases these metrics are
calculated using basic statistics directly or indirectly over the
collected data streams. For each of the extracted markers, we
then calculate the correlation against a subset of clinical
assessment metrics and biomarkers available as part of the
regular memory clinic examination procedure. These are
indicated in Table 4. A high correlation between one of our
metrics and a clinical assessment variable indicates a potential

suitability for that metric as a digital biomarker for AD. Below
we describe how we extracted and analysed the various metrics
from the captured modalities. As there is a large number of
possible analysis that can be made, some have not been
analysed in the scope of this work, and are instead
suggestions for what can be analysed in the future. The
modalities that were not analysed in this work were heart
rate, skin conductivity, hand motion, and video. The others
are described below.

Facial Gestures
The blendshape face data, including information on head motion
and gaze, was captured from the “patient camera” sensor. From
this data the following low level statistics were extracted: smile
mean, smile stdev, eyebrow stdev, head yaw/pitch/roll stdev,
vertical/horizontal gaze shifts stdev and vertical/horizontal gaze
shifts absolute mean.

In addition we calculated the correlation between vertical gaze
shifts and vertical head movement as well as the correlation
between horizontal gaze shifts and horizontal head movement.

Gaze
From the gaze data we extracted the following digital biomarkers:
number of fixations, mean fixation duration, number of reading
fixations, number of reading backtracks (how many times during
reading a fixation occurs to the left and above the previous
fixation) and percentage of reading backtracks.

Language
The patient-clinician pairs of audio files were transcribed using
Google Cloud Speech To Text in Swedish. The transcribed text
was available as words with a start and end time and a confidence
score for the translations. The transcribed patient text was used
for language analysis. We extracted the following high-level
metrics from the transcriptions: Total number of words and
total number of utterances (during interview), Average turn
length (Average number of words in a passage of patient
speech with no in-between clinician speech) and Percentage
unique words (number of unique words divided by total
number of words). The ASR output was POS tagged with
Universal-Dependencies formalism using the Stanford-NLP
python package. These were used to develop 35 language
features related to word type, open or closeness of word
categories and average for all word categories. Examples of
features are Relative occurrence of adjectives, adverbials, verbs
and nouns.

Pen
The pen data from the parts of the clinical assessment where the
patient was expected to draw something on the tablet was used to
extract several different metrics, both independently for each part
of the three drawing exercises in the MOCA test (trail, cube and
clock) and for all of them taken together. The following metrics
were calculated: number of gaps (how many times pen was lifted),
gap length, mean and standard deviation (for how long was pen
lifted), drawing speed, mean and standard deviation (how fast was
the pen moving) and pen pressure, mean and standard deviation.
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Pupil Dilation
From the gaze sensor data, we extracted pupil dilation
measurements recorded together with the gaze tracking data,
in order to study at pupil diameter across the each sessions.
Measurements for left and right pupil were averaged, and rate-of-
change was calculated by taking the difference between each
consecutive reading. A median filter of length nine was applied to
the rate-of-change signal to remove outliers due to sensor noise.
We then extracted following metrics: pupil maximum positive
rate-of-change (how fast can the pupil expand) and pupil
maximum negative rate-of-change (how fast can the pupil
contract), pupil maximum rate-of-change (how fast can the
pupil change, regardless of direction), pupil mean absolute
rate-of-change (how fast does pupil change on average) as well
as pupil diameter standard deviation. All metrics were extracted
independently for each of the exercises on the patient interface.

Thermal Emission
The “Patient camera (thermal)” sensor produces a thermal video,
a thermal data file with temperatures given in Kelvin, and a RGB
reference video. The RGB reference video is aligned to match the
thermal video and thermal data file. Images from the RGB
reference video and thermal video were extracted at one frame
per second. Using the RGB reference frames it was then possible
to apply the openpose pose extraction framework, Cao et al.
(2021), to extract the pose of the patient. This was then used to
determine a bounding box around the head, and the 10 highest
values were then extracted from the corresponding region in the
thermal images. The values were then aggregated and averaged
for each minute of the interaction, and converted into
percentages. Given the sequences of temperature readings with
one value per minute, we extracted four metrics: temp mean, temp
stdev, temp rate-of-change mean and temp rate-of-change stdev.

TABLE 3 | A demographic table with age, gender and education level for participants based on diagnostic group.

Demographic variable Healthy MCI Alzheimer

Diagnostic group 14 (56%) 7 (28%) 4 (16%)
Age 60 (avg) 64.57 (avg) 64 (avg)

3.39 (std) 4.11 (std) 3.9 (std)
Gender 11 females (78.5%) 1 female (14%) 4 females (100%)

3 males (21.5%) 6 males (86%) 0 males (0%)
Education level 15.07 (avg) 14.14 (avg) 10.25 (avg)

3.25 (std) 3.57 (std) 1.5 (std)

TABLE 4 | Summary table of clinical assessment metrics available, and an indication of which ones are used in the correlation analysis. From the MRI we have relative volume
measurements for 248 brain regions; the table lists regions whose absolute Pearson correlation with diagnosis exceeds 0.7.

Modality Assessment Part
of preliminary analysis

Medical assessment Diagnosis ✓
Moca-mis ✓
MOCA 7

PHQ9 7

Background variables 7

Spinal tap Phosphorus tau ✓
Ab42 ✓
Tau 7

Ab42Ab40 7

Ab42Ptau 7

NFL 7

Neuropsychological tests MMSE 7

RAVLT delayed recall 7

Rey complex figure 7

WAIS digit Symbolâ€“Coding 7

MRI Hippocampus total volume ✓
Hippocampus (left, right) 7

Lateral ventricle (left, right) 7

Cerebellar vermal lobules (left, right) 7

Cerebrospinal fluid 7

Medial temporal lobe atrophy (left, right) 7

Cerebral cortex left GCA 7

Frontal lobe (left, right) GCA 7

Temporal lobe left GCA 7

Parietal lobe left GCA 7
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Voice
The recordings from the Microphone Array were split into
patient and clinician audio files based on the angle of the
sound source as reported by the microphone. The patient
audio was used for voice analysis. In this preliminary analysis,
minor irregularities were present in the voice splitting due to
inaccuracy of direction of arrival (DoA) estimation, resulting in
small segments of patient audio being labelled as clinician audio
and vice versa, in particular in sections where there are
overlapping speech (typically quite rate). More accurate
methods can be applied by combining the four raw mic
signals from the mic array.

Pauses and Speech Rate
All gaps in the patient’s speech of a duration longer than 200ms,
with no intermediate speech from the clinician, were regarded as
pauses. Start and end times for each word were retrieved from the
output of the automatic speech recognition. We extracted several
pause related metrics, such as pause count (total number of pauses),
average pause length as well as percentage pauses that are longer than
1, two or 3 s. Furthermore, we extracted speech rate in syllables/
second by counting number of syllables (approximated by number
of vowels in the transcription) and divided by the total speech time.

Voice Quality Measures
In order to quantify vocal strength and breathiness, we calculated
several acoustic measures of voice quality. All of the measures
below are based on the relative amplitudes of the harmonics of
the voice, where h1, h2 and h3 refers to the amplitude (in dB) of
the first three harmonics, respectively, and a1, a2 and a3 denote
the amplitude of the harmonic closest to the peak of the first,
second and third formant, respectively. We extracted five metrics:
h1h2 (h2−h1), h1h3, h1h3, h1a1, h1a2 and h1a3. We used
REAPER8 to extract fundamental frequency from all patient
speech and SNACK9 to extract formant trajectories. We
measured the amplitudes of the harmonics in corresponding
STFT spectrograms extracted using librosa10 in Python. All
measures were averaged over all voiced frames in the recording.

PRELIMINARY FINDINGS

In this section, we give some example analyses that illustrate how
the digital biomarkers in the previous section may be connected
to other diagnostic criteria. As our data gathering is far from
complete, it is not possible to draw reliable conclusions about the
diagnostic relevance from the material available thus far.
Consequently, the analysis and results presented here are
highly preliminary, and primarily serve to sketch the processes
by which the digital biomarkers may be validated against other
data available through the study. We deliberately omit p-values
from the analyses so that readers are not tempted to treat the

example analysis findings as statistically or scientifically
significant.

At the time of writing 25 of 100 patients have been recorded.
Our patients had a mean age of 61.92 years in the range 58–70
(standard deviation (4.16). 16 were females (64%) and 9 males
(36%). Average length of education in years was 14.5 (standard
deviation 3.55). From the 25 patients 4 patients were diagnosed
with Alzheimer’s disease, 7 with mild cognitive impairment and
14 received a diagnosis of subjective cognitive impairment,
meaning the clinical examination found no clinical signs of
impairment. Further demographic data is shown in Table 3.

Below we report how our extracted behavioural and
physiological measures correlate to the following five biological
biomarkers and clinical diagnostic measures:

These measures were chosen since they are relatively
independent variables within our dataset with a strong
correlation to AD diagnosis (Moca-MIS 0.70, p-tau 0,65, Ab42
-0.647, Hippocampus, -0.766).

Moca Memory Index Score (MoCA-MIS) is a sub-scoring of
MOCA that focus on memory tasks. The MoCA-MIS is calculated
by adding the number of words remembered in free delayed recall,
category-cued recall, andmultiple choice–cued recall multiplied by
3, 2 and 1, respectively, with a score ranging from 0 to
15 Julayanont et al. (2014). MOCA-MIS was chosen over full
scale MOCA since it has a stronger correlation to diagnostic then
the full MOCA test. Ab42 and p-tau are both linked to AD
pathology. The scientific debate regarding the relationship and
validity of Ab42 and p-tau as diagnostic criteria in AD is ongoing.
We chose to present Ab42 and p-tau independently although they
have good diagnostic validity as a single biomarker in our dataset
(Ab42/p-tau, −0.7179). Hippocampus was chosen since it is a well
studied brain region closely tied to AD pathology. In our
preliminary analysis of the data collected to date, we found
many correlations between our extracted metrics and the above
measures (please see 8). Below we report the most prominent ones
(Figure 6). We used Pearson correlations for all our correlation
measurements. We made a comparison between Pearson and
Spearman correlations but no major differences were found
(mean average difference −0.01 ± 0.17). In our current
situation, where the amount of data is very small, we believe
that making distributional assumptions (i.e., the Pearson
correlation) offers the most appropriate bias-variance trade-off,
especially since the analysis is only intended to be preliminary.

Facial Gestures
We found that the Moca-MIS score correlated negatively with
smile mean (-0.62) and smile standard deviation (-0.68). For the
gaze data captured by the iphone during the interview part, we
found a negative correlation of horizontal gaze (sideways gaze
movements) and diagnosis of -0.54 for horizontal gaze absolute
mean and -0.5 for horizontal gaze standard deviation. These
statistics also correlated positively with hippocampus total
volume (0.57 and 0.54 respectively).

Gaze
From the data captured by the gaze tracker during
interactions with the ipad, we found that the total number

8https://github.com/google/REAPER
9http://www.speech.kth.se/snack/
10https://librosa.org/doc/latest/index.html
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of fixations correlated with diagnosis (−0.32) and with
hippocampus total volume (0.67). Further, mean fixation
duration correlated with diagnosis (0.45) and hippocampus
total volume (−0.78).

Language
Total word count correlated with Moca-MIS (0.36), Ab42 (0.51)
hippocampus total volume (0.45), while Percentage unique
words correlated with Moca-MIS (0.37), Ab42 (0.54) and
hippocampus total volume (0.44). For the word type
metrics, relative occurance of Adjectives was the most
relevant feature with a correlation with Moca-MIS (0.44),
Ab42 (0.61) hippocampus total volume (0.54).

Pupil dilation
The metric pupil maximal absolute rate-of-change generally
correlated well with several of the biomarkers, but correlations
varied across the different sub tasks. Highest correlations was
achieved for tasks that involved drawing (path, cube and clock
tests): for clock drawing test and cube test, correlation with
diagnosis was −0.47 and −0.56 respectively, Moca-MIS (0.6
and 0.54), p-tau (0.8 and 0.75) and Ab42 (0.9 and 0.77).

Thermal Emissions
For face temperature measurements captured with the “Patient
camera (thermal)” sensor we found that temp mean correlated
with diagnosis (−0.41) and hippocampus total volume (0.65)
while temp rate-of-change mean correlated with diagnosis (0.37)
and hippocampus total volume (−0.63).

Pen Motion and Pressure
Figures 7 and 8 show typical output from two of the drawing tasks
for sample subjects of each of the diagnosis categories. Looking at
the statistics of pen motion and pen pressure, we found that two
features were particularly interesting: mean drawing gap length
correlated with diagnosis (0.62), Moca-MIS (−0.61) and
Hippocampus total volume (−0.58), and mean pen pressure
correlatedwith p-tau (−0.88) andHippocampus total volume (0.86).

Voice
Two classes of voice related features are included in this analysis:
voice source metrics and pause/speech rate features. Several of the
extracted voice quality metrics (breathiness/vocal strength)
showed correlation to diagnosis and biomarkers. The most
relevant were h1h3 that correlated with diagnosis (0.68) and

FIGURE 6 | Summary of correlations between selected digital biomarker candidate metrics and clinical assessment measures.

FIGURE 7 | Cube drawing based on category. From left to right: Healthy, MCI, Alzheimer.
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p-tau (0.62) and h1a3 that correlated with diagnosis (0,51) and
Moca-MIS (−0.64). Percentage pauses longer than 1 s correlated
with diagnosis (0.62) and p-tau (0.77) while speech rate correlated
with p-tau (−0.48) and hippocampus total volume (0.44).

DISCUSSION

Our study describes how to design and implement a multimodal
sensor recording system in a clinical setting. Furthermore we
report our preliminary findings from our sensor data capture.
Several of the digital biomarkers abstracted from sensor data were
highly correlated to both the diagnostic outcome and to
biomarkers of Alzheimer’s disease, suggesting that a multimodal
approach has the potential to complement and improve current
diagnostic processes. In the remainder of this section, we discuss
the results of the preliminary analysis of the digital biomarkers we
studied, and consider the implications of our data capture and its
findings for dementia detection and treatment.

Discussion of Analysis Findings
For the purposes of this article, a digital biomarker is useful if it is
sensitive to early signs of AD, or informative about the current
stage of the patient’s disorder, or both. At present, three
biomarkers are considered to be central for a state-of-the-art
evaluation of a possible neurocognitive disorder:

• levels of β-amyloid (levels of Ab 42, and/or the ratio between
Ab42/Ab40);

• levels of Tau (Both Total Tau and P-tau); and
• cerebral atrophy (including both in specific regions, such as

the entorhinal region and hippocampus, and general
atrophy (including enlarged ventricles).

A high-quality and detailed examination will include all
three biomarkers, and their coexistence, which was performed
for all patients included in our study (along with other in-
depth assessments, as described earlier). Due to costs, limited
resources, and the invasive nature of these measurements, it is
important to identify for which patients this extensive
examination is needed and for which patients it is not. It is
obviously advantageous if this can be done in a non-invasive
and non-intrusive way. With the assumption that the above
biomarkers in combination adequately reflect the underlying
neuropathology with a high level of sensitivity and specificity,
digital biomarkers of clinical utility will need to demonstrate
a high correlation with these existing biomarkers.

Our data analysis covered both established and novel digital
biomarkers. For the former, our findings were in line with
previous AD research. Pause length and vocal strength metrics
h1h3, specifically, correlated with AD diagnosis, β amyloid-42
protein, and p-tau. Overall, we also found that voice measures
correlated more strongly with clinical assessment metrics than
language measures did. Voice features may generally be more
useful than language measures for early dementia detection, since
the semantic features of language are more obviously disrupted in
the later stages of AD. As our dataset contains only 3 individuals
diagnosed with AD, our findings are likely more informative for
indicating utility in early diagnostics, than for the ability of
different biomarkers to distinguish AD patients from the two
less-affected patient groups we considered.

Another promising digital biomarker we studied that has been
previously proposed for AD assessment was pupil change. We
found that maximum change during cognitively taxing tasks
strongly correlated with both diagnosis, moca-mis, p-tau, Ab42,
and hippocampal volume. The fact that a difference was noticeable
between non-taxing (cookie test) and taxing (clock, cube, path
drawing) tasks shows that this might potentially be a useful
biomarker in combination with a cognitive test. Unlike voice and
language, this digital biomarker quantifies physiological responses
in the patient that clinicians cannot feasibly detect, which increases
its potential to complement existing diagnostic procedures.

We also identified several promising new digital biomarkers.
In particular, the mean head temperature rate of change
correlated strongly with diagnosis, p-tau, Ab42, and
hippocampal volume. The pen-drawing gap length correlated
strongly with diagnosis, moca-mis, Ab42 and hippocampus.
Furthermore it was highly correlated to vocal pause length
measurements (correlation coefficient 0.72). Both pause length
and pen-drawing gap length are likely related to sympathetic
nervous system responses, which differ for patients with AD or
MCI, compared to those with no objective impairment (Borson
et al., 1989). This potential utility in early detection can be
contrasted against assessments of the drawings themselves,
where only 53.3% of normal elderly can copy the cube
correctly, although most are able to correctly draw the clock
(Charernboon, 2017). Without pen data, drawing tests in general
are thus sensitive detectors of AD but not MCI.

Tasks and Sensors
When considering different digital biomarkers and their capture,
it is worth distinguishing between task-dependent and task-
independent digital biomarkers. A task-independent digital
biomarker is one that can be gathered at any (or all) point in

FIGURE 8 | Clock drawing based on category. From left to right: Healthy, MCI, Alzheimer.
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the interaction. As such, these are arguably more valuable since
they are much easier to capture, and do not put constraints on the
specifics of the clinical interview. Among the different measures
in our study, voice and language features can be seen as mostly
task-independent while quantities extracted from gaze, pupil, and
drawing depend on a task. Although task-dependent digital
biomarkers are more specific and targeted, which might increase
accuracy and specificity, that has to be weighted against the relative
increase in complexity of the associated data capture. A microphone
can simply record a person’s voice while gaze, pupil and drawing
sensors all depend on a well-designed task for gathering data that
enables accurate diagnosis.

All things considered,microphones are arguably themost useful
among those we considered for dementia detection and diagnostics.
The relative ease of unobtrusive audio capture and the ability to
extract powerful features (e.g., pause length, voice source h1a3)
makes it a cheap and useful diagnostic tool. Furthermore,
automatic transcripts of the gathered interview audio can also
be used to extract linguistic digital biomarkers via text processing,
although this may be less relevant for early diagnosis and the digital
tools and their maturity will differ across languages, whereas the
tools used to extract voice measures do not.

Because of the notable correlation of pupilary data with AD
diagnosis, p-tau, Ab42, and hippocampal volume, device-mounted
eye-trackers capable of accurately measuring pupil size also have
shown potential for augmenting and improving diagnostic
procedures, and there might be promise in building an
application that combines pupilary measurements with a
cognitive test to build more accurate automatic screening tests for
dementia. Measures based on drawing and pen pressure have the
drawback that they mainly appeared useful for diagnosing between
healthy control and AD, a result that should be interpreted with
caution since only three individuals with AD were included in the
preliminary analysis. That said, various associated digital biomarkers
such as gap length show potential and merit more study.

Broader Implications
The non-invasive and non-intrusive nature of our data-capture
setup brings several benefits. Non-invasive procedures generally
have lower cost and complexity than invasive ones, and also limit
the need for health-care personnel since the risk of adverse effects
and reactions is much lower. Our non-intrusive data capture does
not alter the diagnostic interview in a meaningful way. This is
helpful both for obtaining ecologically valid data and in building
trust for data-driven diagnostics among both clinicians and
patients. By basing the data gathering on affordable and
widely-available consumer electronics we hope to demonstrate
how to the access to sensor-based diagnostic tools for dementia
detection and monitoring can be democratised.

A key strength of using a multimodal approach as described in
this article is that the different measurements can reinforce each
others’ predictive power while limiting risks from data loss and
inaccuracies in the data pipeline. Our in-depth descriptions of our
technical setup, data capture procedure, and data processing should
enable independent replication of our findings using similar
sensors. To further simplify such replication, we will release the
the code used for the data capture and processing as open source.

An important consideration in the bigger picture is the temporal
and neuronal aspect of AD.Although the diagnostic criteria is limited
to healthy, MCI or AD, beneath the diagnosis lies a progressive
disorder with a unique pattern of brain functioning for each patient.
Assessment of AD is an assessment of the individual’s cognitive
functions and their deficits. Streamlined diagnostics offer the
potential of continuous assessment of cognitive functions for
individuals in the MCI/AD group. For patients with MCI, deficits
are specific to certain areas of functioning and continuous assessment
enables adaptive care with limited restrictions. This is likely to
improve the daily life of the patient, which in turn might help the
patient not progress to AD (through better quality of life and reduced
life stressors). Continuous screening as part of behavioural
interventions might help furthermore develop a virtuous cycle of
improved understanding of the disorder, through data capture that
leads to better targeted interventions.

If non-invasive measurements can accurately predict
underlying brain atrophy in different areas, that also opens the
door to a future where quick tests can quantify disease progress.
This could help in the quest to find a cure, since behavioural
interventions and targeted pharmaceutical drugs might be used to
target specific brain atrophies caused by the disorder.

CONCLUSION

We have described a non-invasive and non-intrusive system for
collecting synchronous behavioural and physiological data in order
to facilitate detection of early signs of Alzheimer’s disease, based on a
large and diverse set of modalities including speech, gaze,
pupillometry, facial motion capture, drawing, heart rate and
thermal data in existing clinical assessments of dementia, and
also used the initial data thus gathered for a preliminary analysis
of selected digital biomarkers available through our approach, and
their diagnostic value.

Themodalitieswe capture allowboth behavioural and physiological
measurements in an objective and quantitative manner, and thus
complementing the intuitive and qualitative observations made by the
assessing clinician. The studied modalities may not only quantify the
observations and “gut feeling” of the clinician, but can also measure
aspects of the patient and interaction that are inaccessible to human
perception. Our work demonstrates that the proposed approach is
feasible with commodity hardware and open-source software that we
are preparing for public release.

Our multimodal approach to digital biomarkers has the
potential to improve precision in patient selection for further
and more invasive examinations, thereby saving personnel-time
and financial resources for society, and avoiding unnecessary
delays, suffering, and discomfort for patients. While existing
full-fledged diagnostic procedures are advanced, they still result
in a troubling amount of misdiagnoses (Villemagne et al., 2018;
Gauthreaux et al., 2020). To the extent that systems and
measurements of the kind described in this article also can
contribute to diagnostic accuracy, that should benefit patients
and their families in several ways, including reducing exposure
to unnecessary medication with negative side-effects and avoiding
life-quality losses associated with a false positive diagnosis.
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Our analysis finds that single modalities can be used for AD
prediction in isolation. Some of these have not been reported
previously: Our preliminary results indicate that head temperature
change and drawing gap length are two new digital biomarkers that
correlated with AD diagnosis and biological biomarkers. Pupillary
response has been used for AD prediction but to our knowledge
not in the context of cognitively demanding tasks. Other
preliminary results confirm what is known from previous work,
such as the correlation of pause length, vocal strength and gaze
patterns with a dementia diagnosis. This demonstrates that a broad
and inclusive data-gathering approach has the potential to discover
new digital biomarkers of clinical utility, which in turn can serve as
further clues to understand underlying mechanisms of AD and
other neurocognitive disorders. The fact that isolated modalities
correlate well with established biomarkers and the clinical
diagnosis also suggests the potential of combining different
modalities and measures for further improved diagnostic
accuracy. It should be noted that all of the metrics explored in
the current study are manually crafted features. As is well known
from machine learning e.g. in speech and image processing,
automatically learned features generally outperform hand
crafted features when sufficient amounts of data are available.
Machine learning based feature extraction, prediction and
classification methods will be a central area of exploration as
these data collection efforts continue.

As it stands, a limitation of the results presented in this paper
is the relatively small number of patients, which does not allow
statistically rigorous conclusions nor discriminating between
different types of neurocognitive disorders. Our preliminary
results therefore mainly pertain to patients with AD, the most
common dementia diagnosis. Another limitations is that, also for
reasons of statistical power, we have only focused on measures
relevant to atrophy in brain regions known to be especially
affected by AD. In future studies with more patients, we
intend to explore measures and modalities that associate with
changes in a broader range of brain regions.
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