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In this study, we review the role of wearable devices in tracking our daily locomotion.
We discuss types of wearable devices that can be used, methods for gait analyses, and
multiple healthcare-related applications aided by artificial intelligence. Impaired walking
and locomotion are common resulting from injuries, degenerative pathologies,
musculoskeletal disorders, and various neurological damages. Daily tracking and gait
analysis are convenient and efficient approaches for monitoring human walking, where
concreate and rich data can be obtained for examining our posture control mechanism
during body movement and providing enhanced clinical pieces of evidence for diagnoses
and treatments. Many sensors in wearable devices can help to record data of walking and
running; spatiotemporal and kinematic variables can be further calculated in gait analysis.
We report our previous works in gait analysis, discussing applications of wearable devices
for detecting foot and ankle lesions, supporting surgeons in early diagnosis, and helping
physicians with rehabilitation.
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INTRODUCTION

Walking is one of the most common activities we perform on daily basis. Normal human walking
requires high a level of movement coordination between our extremities and the trunk. Constantly
monitoring our walking pattern is a way to examine our health because the central nervous system is
involved intensively to control the limb movements and the function of posture control while our
body is moving. We believe wearable devices can play an important role in daily surveillance on our
walking.

Impaired walking and locomotion are commonly seen worldwide resulting from injuries,
degenerative pathologies, musculoskeletal disorders, and neurological damages. In traditional
practice, physicians make diagnoses of these injuries base on physical and medical examinations.
Complete gait analysis can only be performed in some tertiary hospitals on a small number of
patients. Many scientists argued that gait analysis should be applied to all patients with degenerative
diseases and those in need of long-term rehabilitation.

Gait analysis is systematic research involving sensor technology, anthropometry, and artificial
intelligence. Wearable sensors and devices are widely applied to intelligent healthcare as the fast
development in wireless communication, network technology, and micro-electronic technique.
Unlike laboratory-based motion trackers, wearable devices are plausible for gait analysis.
Technologies such as smartphones, sensors, and sensing fabric et al., are small, low-cost, and
available for monitoring individuals’ activities.
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Nowadays, wearable devices are increasingly used in
biomechanical studies and sports medicine. As the
development of the sensor technology, gait analysis is
gradually employed in healthcare management including daily
health monitoring, clinical diagnosis and rehabilitation
assessment in surgery, elder’s fall risk detection et al. Several
studies reported that gait analysis facilitated the whole process
management of individuals and the decision-making of
physicians in diagnosis and treatment.

The main purpose of this study is to review wearable devices
for motion-tracking, gait analysis methods, and multiple
healthcare-related applications in intelligent healthcare. To
achieve the goal, we introduce common wearable motion-
tracking devices including smartphones, wearable sensors, and
sensing fabric; report our previous works in spatiotemporal
gait analysis; discuss the application of gait analysis in daily
health monitoring, sickness prevention, early diagnosis, and
rehabilitation.

WEARABLE DEVICES IN GAIT ANALYSIS

Wearable devices, such as smartphones, wearable sensors,
and sensing fabrics, are widely applied to gait monitoring.
The gait measures for different wearable devices are crucial
for their application. We showed the pros and cons of
different types of wearable devices (Table 1).

Using Smartphone
Each smartphone has various built-in sensors, such as GPS
sensors, accelerometers, and gyroscopes. Therefore, variables
for describing gaits, such as walking distance, frequency, and
speed, etc. can be recorded by these sensors. We understand that
the sensors can be secondarily developed by the application
programming interfaces. Often the question for us is how to
extract data from these sensors and how to develop a trusted
methodology for reading these data and monitoring the
abnormality in gait.

Yodpijit et al. used a smartphone as a wireless accelerometer
to extract the gait parameters (stride time, stance time, swing
time, and cadence). This study created a smartphone application
for abnormal gait detection (Yodpijit et al., 2017). Reginya et al.
applied a smartphone with accelerometers and gyroscopes to
detect individuals with Parkinson’s disease (PD). They analyzed
the amplitude and spectrum parameters from acceleration
signal and rotation speed during a conventional neurologic
walking test to find the difference between individuals with
and without PD (Reginya et al., 2019). Kwon et al. proposed
unsupervised learning algorithms using a smartphone to
distinguish patient activities in the room. These approaches
were based on clustering algorithms recognizing human
activity, even when the number of activities was unknown
(Kwon et al., 2014). Ahmed et al. recorded gait samples from
63 different subjects to predict the body mass index and age
associated with high cholesterol, diabetes, cancer, and heart
attack. Fourteen statistical features were extracted from each
segment of the time-series including Jitter, mean crossing rate,

autocorrelation mean/SD, autocovariance mean/SD, skewness,
and kurtosis et al. (Ahmed et al., 2017).

Using Wearable Sensors
In those people who do not carry a smartphone, wearable sensors,
such as accelerometers, force sensors, extensometers, gyroscopic
sensors, and goniometers et al., are available for collecting gait
data. The sensors can be attached to the limbs and the trunk by
wearing special apparel, socks, and shoes. Foot pressure is
generally regarded as a gold standard for gait detection. The
inertial measurement unit (IMU) is increasingly used for motion
tracking in recent years.

Samberg et al. designed a GaitShoe wearable system to detect
heel-strike and toe-off, as well as estimate foot orientation and
position. The GaitShoe could discriminate between healthy gait
pattern and PD from mean foot pitch extrema and stride time
(Bamberg et al., 2008). Calliess et al. used a mobile gait analysis
system with three IMUs to measure the outcomes after knee
arthroplasty. Their main parameters included knee flexion
profile, velocity, and knee stability (Calliess et al., 2014). Zexia
He et al. designed a wearable sensing and training system using a
motion sensor and six pressure-sensitive electric conductive
rubber sensors. This system helped the elder with knee
osteoarthritis to estimate their adduction moment for
rehabilitation assessment (He et al., 2019). Schlachetzki et al.
developed a wearable sensors-based gait analysis system with a
high biomechanical resolution for gait impairment in PD. The
measures were spatiotemporal parameters including stride
length/time, stance time, inter-stride variation et al. The
system is feasible for large-scale clinical studies and individual
patient care (Schlachetzki et al., 2017).

The wearable sensors support current applications for daily
motion tracking and also need to reduce the measurement errors
keeping up with the “gold-standard” optical motion capture
system. Dahl et al. validated an IMU system against an optical
motion capture system during common sports movements.
Compared to the optical motion capture system, the IMU
system reported a larger angle in the horizontal and forward
plane, smaller angle in the sagittal plane (Dahl et al., 2020).
Leandro Donisi et al. indicated that the Opal and G-Walk systems
(two wearable IMU systems for gait analysis) have good
repeatability, but their agreement is not perfect (Donisi et al.,
2019). Current wearable sensors are appropriate for daily health
monitoring not requiring very accurate and precise
measurements. In the future, wearable sensors will improve
their reliability to support clinical diagnosis (Chen et al., 2016).

If a person refuses to wear sensors, we can use the Microsoft
Kinect device to capture the movement of the limbs and create an
alternative but reliable gait analysis approach to them (Taborri
et al., 2016). Kinect was able to track skeletal joints in 3-
dimensional (3D) space and calculate spatiotemporal gait
variables and gait kinematics for the health assessment
(Springer and Seligmann, 2016). The 3D-skeleton-based gait
database established by the Kinect allows us to extract the
static and dynamic features during walking. The feature fusion
in 3D space improved the recognition rate on walking detection
(Wang et al., 2016).
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Using Sensing Fabrics
Sensing fabrics can also be used for measuring physical variables.
Early sensing fabrics are electronic components attached to the
surface of fabrics. With the development of smart fabrics, sensing
fabrics are woven fabrics consisting of polyester and electrically
conductive filaments now. The sensing fabrics are able to measure
various activities of human bodies by capacitive, resistive, or bio-
impedance mode and sense physical quantities (e.g., conductivity,
temperature, and elongation et al.).

Preliminary works demonstrated that sensing fabric-based
wearable devices can record gait abnormalities during daily
walking for posture reconstruction (Lorussi et al., 2004;
Amitrano et al., 2020). Shu et al. presented a fabric sensor-
based in-shoe plantar pressure measure and analysis system to
evaluate spatial and temporal plantar pressure distributions for
gait analysis and balance control. The performance of fabric-
based wearable devices was robust in both static and dynamic
measures (Shu et al., 2010). Changming Yang et al. provided a gait
analysis system using fabric sensors in pants and socks to monitor
the movement of walking forward and backward or going
upstairs and downstairs (Yang et al., 2015). Tirosh et al.
developed a pair of socks from sensing fabrics to measure foot
plantar pressure and gait temporal parameters (e.g., stride and
stance duration) during long-term outdoor walking. Data
collected from the socks were able to accurately predict gaits
patterns that were performed by patients with diabetes, stroke,
PD, and calculating the risk for falls (Tirosh et al., 2013).

METHODS FOR GAIT ANALYSIS

Gait Kinetics
Gait kinetics studies the forces and moments resulting in
locomotion of lower extremities during the gait cycle including
plantar pressure distribution, ground reaction force (GRF), joint

torque, and muscle activity, et al. (Tahir et al., 2020). The
magnitude and distribution of plantar pressure directly reflect
the function and posture control in the lower extremity.
Foot scanning and in-shoe plantar pressure systems
measure how their feet are functioning from heel contact to
toe-off. Using plantar pressure analysis, we can measure multi-
plantar pressure profiles; monitor the improvements in
balance, strength, and weight-bearing; identify asymmetries
during the stance phase. Gait kinetics plays a major role in the
prevention, identification, and treatment of gait impaired.
Recently, GRF were used to recognize Parkinson’s patients
(Ren et al., 2017), identify the gender of participants (Soubra
et al., 2016), and distinguish the normal gait pattern in autism
spectrum disorder (ASD) (Hasan et al., 2018) and diabetes (Du
et al., 2015).

Biomechanical Model for Gait Kinematics
Gait kinematics helps clinicians to identify patients’ motion
conditions and postulate the possible impaired neuromuscular
control mechanism, which will facilitate early diagnosis and
prompt treatment. Gait data collected by various sensors are
the basis of gait kinematics. We need to build a trustable
biomechanical model for gait analysis and require the
application of artificial intelligence for data interpretation.

In recent years, several biomechanical models have been
developed to measure foot and ankle motions. For example,
the Oxford Foot Model (including the shank, hindfoot,
forefoot, and hallux) has been used routinely in clinical
practice to assess foot deformity and gait dysfunction, such as
idiopathic clubfoot, foot arthritis, cerebral palsy, hemiplegia
(Kostuj et al., 2018). The Milwaukee Foot Model, a four-
segment model (tibia, hindfoot, forefoot, and hallux), has been
applied to identify atypical segmental foot motion during
ambulation and measure the intervention effectiveness after
operations for the hallux valgus, hallux rigidus, posterior tibial

TABLE 1 | Gait measures for different wearable devices.

Devices Gait Measures Pros Cons

Smartphone C GPS C Simple data acquisition on
spatiotemporal gait characteristics

C Lower precision on data collection (i.e., not fit well in
the mechanically turbulent phases)C Walking days, distance, frequency, and

rotation, etc. C Widely used devices C Not enough types of data (i.e., not including
kinetics, range of motion, etc.)C Spatiotemporal measures C With user interface

C Telemedicine services

Wearable
Sensors

C Orientation, horizontal, position C Tiny size C Foreign-body sensation
C Biomechanical measures (i.e., mass,

barycenter, rotation inertia, and stability etc.)
C Low cost C Lower accurate and precise measurements than

gold-standard system
C Gait kinematics (i.e., range of motion,

spatiotemporal measures, etc.)

C Low power consumption
C Difficult in complex signal detection

C Gait kinetics (i.e., plantar pressure, GRF, joint
torque, etc.)

C Easy-to-perform

C EMG

C High sensitivity on data acquisition

Sensing
Fabrics

C Pressure C Soft, light, waterproof, stretchable C Not breathability
C Bioimpedance C High pressure sensitivity C High-cost
C Physical quantities (i.e., conductivity,

temperature, and elongation etc.)
C Long service C No mature product
C Stable data acquisition (both static and

dynamic measurements)
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FIGURE 1 | The gait kinematics variables (tibiotalar flexion, forefoot/ankle abduction, medial arch angle, lateral arch angle, subtalar rotation, forefoot/ankle
supination, MT I-V angle) from a patient with lateral collateral ligament injuries of the ankle. Left: unaffected side; Right: affected side.
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tendon dysfunction, systemic rheumatoid arthritis and forefoot
deformity (Canseco et al., 2012). The Istituti Ortopedici Rizzoli
Foot model and three-dimensional (3D) foot model were
developed to cover five-segment on the leg (shank, calcaneus,
midfoot, metatarsals, and hallux) (Leardini et al., 2007). The
Kinfoot model was a nine-segment model to cover the shank,
hindfoot, two midfoot segments, two forefoot segments, two toe
segments, and a hallux (MacWilliams et al., 2003).

In our recent study, we analyzed the motion of lower
extremities in patients with lateral collateral ligament
injuries of the ankle and synthesizing foot and ankle
kinematic characteristics for adaptive injury detection (Liu
et al., 2020). The Heidelberg Foot Measurement Model
(HFMM) was used to examine foot and ankle kinematics in
the entire gait cycle (Simon et al., 2006). The HFMM requires
seventeen sensors to cover segments of the shank, the
hindfoot, the midfoot, and the forefoot (both medial and
lateral segments of the forefoot and hallux). The variables
included tibiotalar flexion, forefoot/ankle abduction, medial
arch angle, lateral arch angle, subtalar rotation, forefoot/ankle
supination, MT I-V angle (Figure 1). These kinematic data
enabled us quantitatively describe individuals’ behavior
surrounding foot and ankle during walking and built up a
foundation for us to run the deep learning-based algorithm to
detect the nature of foot injuries. As shown in Figure 1,
motion data recorded by these sensors were able
to distinguish gait characteristics between normal and feet
with lesions.

Spatiotemporal Gait Variables
Motion data can be further used for calculating variables
including gait speed, stride length, stride time, and force,
pressure, etc. to describe spatiotemporal features of gaits
accurately. Diliang Chen et al. calculated 26 gait parameters
referring to basic gait parameters, gait variability, gait
symmetry, and turning gait parameters for behavior
recognition (sitting, standing, walking, running, up/down-
stairs) to evaluate the performance of activities of daily living
(Chen et al., 2020).

Our recent findings demonstrated that patients with lateral
collateral ligament injuries of the ankle had shorter stride length,
slower stride in the gait cycle, and more complex micro-
adjustments in the 2nd rocker phase than in other rocker/
swing phases during natural walking (Xin et al., 2021). Here,
the five markers attached to TTU (tibia tuberosity), LML (lateral
malleolus), CCL (dorsal calcaneus), DMT2 (distal 2nd
metatarsal), and HLX (hallux) experience the change of
velocity (speed up or slow down) during walking. Acceleration
is the rate of change of the velocity for time. The moment when
the acceleration was zero was considered to occur as a micro-
adjustment.

These results revealed the motion compensatory mechanism
in humans during walking. Patients with ligament injuries need
more musculoskeletal adjustments to keeping body balance. Such
micro-adjustment and compensation are difficult to be detected
by physician’s eyes without using motion-tracking technology.
Therefore, recording motion from gaits and precise descriptions

of the kinematics is crucial for clinical assessment. Assessment
results can guide surgeons to select appropriate treatment plans
and examine operation outcomes after surgical management. Our
results together with all other previous research in the field of gait
analysis will provide a foundation for computer-aided diagnosis
in the future.

Injury Detection Using Artificial Intelligence
Wearable devices can capture large-scale data. It is friendly to
know the patient’s condition but unduly burden the clinicians.
Computer-aided injuring detection will help clinicians analyze
the complex relationships among the measures of gait kinetics,
kinematics, and spatiotemporal features for pre-diagnosis
(Saboor et al., 2020). Individuals can use their intelligent
devices (i.e., smartphones) for auto-diagnosis at any time and
anywhere. In recent studies, machine learning/deep learning has
been used to analyze gait characteristics and recognize the
impaired gait pattern. Mundt Marion et al. built a feedforward
neural network to estimate the gait mechanics from the 3D joint
angle and lower limb joint torque based on IMU data (Mundt
et al., 2020). Wen Si et al. developed wearable sensing shoes
to capture plantar pressure signals and used the support
vector machine and fractal analysis for gait identification
(standing, walking, and Jumping). Ravi Daniele et al.
presented a deep learning method that combined IMU data
with shallow features to enable real-time activity classification.
They demonstrated that the proposed method is appropriated
for smartphones and wearable sensor platforms (Ravi et al.,
2017). In our current work, the Deep Convolutional Generation
Adversarial Networks (DCGANs) were used to expand the
spatiotemporal features during the gait cycle for training the
detection model, and the Long Short-Term Memory (LSTM)
networks were applied to detect ankle ligament injury patients
(Liu et al., 2020). The artificial intelligent technique is promising
for large-scale analytics, it can be used to analyze the large-scale
wealthy information captured by wearable devices for
health care.

HEALTH CARE-RELATED APPLICATIONS

Daily Health Monitoring
Wearable sensors make it possible for motion tracking outside the
laboratory.We can capture more spontaneous sports information
using wearable devices for gait analysis in intelligent healthcare.
In previous studies, the motion data captured by the smartphone
were transformed to describe users’ daily exercise, to calculate the
risk of fall, and to predict sports injuries using intelligent
algorithms for improving individuals’ health management;
smart insole was applied to measure step frequency, plantar
pressure, and gait events for daily health monitoring; textile
sensor arrays recognized motion behaviors in real-time (Chen
et al., 2020).

Based on data collected from wearable devices, recent
studies pay more attention to the measure of health status
using intelligent mathematical models. For example, Joshua
et al. developed GaitTrack software to detect health status via
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free-living walking patterns. The software using a linear
regression algorithm evaluated the patients with chronic
obstructive pulmonary disease and asthma (Juen et al.,
2014). Raykov et al. proposed a structured probabilistic
model to detect the disordered behaviors of individuals with
Parkinson’s (Raykov et al., 2014). Several studies focused on
pulmonary and cardiopulmonary function using gait patterns
analysis (Cheng et al., 2016; Rasekaba et al., 2009). Moreover,
some researchers analyzed gait based on wearable sensors for
age and gender estimation (Ngo et al., 2019; Ahad et al., 2020).
Daily health monitoring from wearable sensor-based gait
analysis is becoming an indispensable way for healthcare in
the future.

Clinical Practice
In the frontline of healthcare service, intelligent motion-tracking
and analysis platforms are increasingly available, especially in
rehabilitation and sports medicine (Merriaux et al., 2017).
Multi-channels of 3D motion data captured by the Vicon
motion capture systems and the computer-assisted rehabilitation
environment (CAREN) system are analyzed by the biomechanical
model for describing the kinematical features of gaits, posture
control strategies, and energy expenditure. Clearly, Vicon and
CAREN are laboratory-based devices and can only install in
hospitals and rehabilitation centers, and applied to a small
number of subjects. In the past decades, an increasing number
of wearable devices is emerging (Flachenecker et al., 2020).
Frequently recording of gaits of a wide range of people by
wearable devices will open new opportunities for intelligent
analysis. The wearable accelerometers and inertial measurement
units can be attached to people in need outside healthcare institutes
(Wang et al., 2021). These wearable devices provide long-term
motion tracking during walking and allow for daily gaitmonitoring
under different conditions. At present, wearable devices have been
gradually used for physical rehabilitations on the treatment of
neurodegenerative disease (e.g., Alzheimer’s disease, Parkinson’s
disease), sports injury, bone malformation, and osteoarticular
diseases (Sweeney et al., 2019). With assistance from wearable
tracking devices on gaits, physical therapists can describe patients’
walking patterns, understand musculoskeletal disorders that
constrain patients’ locomotion, and postulate the possible
problems in the neural system that control patients’ movements
(Hori et al., 2020). Data collected by wearable devices will help
physical therapists to prescript the training protocol and make
appropriate adjustments to improve therapy outcomes.

CONCLUSIONS AND FUTURE
PERSPECTIVE

We review the application of wearable devices in motion-
tracking, gait analysis, and its potentials for enhancing
healthcare practices with the help of intelligent assisted data
analysis. Various wearable devices and their research progress
in motion tracking including smartphones, wearable sensors, and
sensing fabrics are described. We briefly report our previous
works on gait analysis using data collected from the foot and
ankle ligament injuries patients. Daily monitoring of basic health
data by wearable devices supports physicians to detect the health
problem, make it possible for early diagnosis, and give them
power for delivering appropriate treatment and rehabilitation to
individuals in need. However, most current wearable sensors are
not accurate enough for clinical evidence. We believe that
wearable device should achieve equal or better outcome than
motion-tracking platform (e.g., Vicon and CAREN) in the future.

Looking to the future, computer-assisted medicine based on
data collected by wearable devices will attract an increasing
amount of attention from researchers and clinicians.
Intelligent analysis built on data collected by wearable devices
will enhance clinical practice and biomechanical research.
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