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Reasonable quantification of uncertainty is a major issue of cognitive
infocommunications, and logic is a backbone for successful communication.
Here, an axiomatic approach to quantum logic, which highlights similarity to and
differences to classical logic, is presented. The axiomatic method ensures that
applications are not restricted to quantum physics. Based on this, algorithms are
developed that assign to an incoming signal a similarity measure to a pattern
generated by a set of training signals.
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1 INTRODUCTION

Reasonable quantification of uncertainty is a major issue of cognitive infocommunications, and logic
is a backbone for successful communication. The motivation for writing this article came from some
experience with fuzzy logic in industrial context, and from the observation that quantum logic
appears to be superior to other “fuzzy” approaches; see, for instance, Schmitt and Nurnberger (2007).

This paper describes a mathematically rigorous pathway from classical logic to mathematical
models that enable a quantification of uncertainty. Such models had been developed and studied
especially in the context of quantum physics, where a link to probability is given by Born’s postulate.
Hence, both classical logic with and, or, and negation, and the mathematics of quantum mechanics
are in the focus of this article.

An axiomatic approach to quantum logic has two advantages: It highlights the relation between
classical logic and quantum logic, and it shows that application of quantum logic is not restricted to
quantum physics. The result is that a classical system of propositions can be represented as Boolean
lattice, and a quantum system of propositions is represented by an atomistic orthomodular lattice.
Quantum logic contains several variants of classical logic, as an atomistic orthomodular lattice has
several Boolean sublattices.

In a human–machine communication process, the communicative acts often can be described by
real functions defined on an interval [a, b]. Morover, a proposition often can be represented by a
finitely generated subspace of L2 ([a, b]). The final section of this article describes how to use Gram-
Schmidt processes for representing logical operations by dealing with generating families and
constructing orthonormal families which span linear subspaces corresponding to logical expressions.

2 QUANTUM LOGIC: AN AXIOMATIC APPROACH

In a historic perspective, quantum logic originated in an article by Birkhoff and von Neumann (1936)
entitled The Logic of Quantum Mechanics, which appeared in the Annals of Mathematics. The
authors discover logical structures in quantum mechanics and come to the conclusion that
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“one can reasonably expect to find a calculus of
propositions which is formally indistinguishable from
the calculus of linear subspaces with respect to set
products, linear sums, and orthogonal
complements—and resembles the usual calculus of
propositions with respect to and, or, and not.”

It was known at that time that the “usual calculus of
propositions” means that the set of propositions carries the
algebraic structure Boolean lattice with two binary operations
called conjunction (logical and, ∧) and adjunction (logical or, ∨),
and a unary operation called negation (logical not, ¬). Let us now
go to the next major step towards the mathematics of
quantum logic.

2.1 Piron’s Axiomatique Quantique
According to Piron (1964), the system L of propositions fulfills
the following axioms.

Axiom O: Implication is a partial order on L, denoted by #.
A requirement of this axiom is that implication is transitive,

which reflects the classical Barbara syllogism.
The next axiom uses the notion indexed family of propositions,

which is a map J → L from an arbitrarily given index set J to the
system L. This map associates to each j ∈ J a proposition aj ∈ L.

Axiom T: For any family of propositions {aj: j ∈ J}, there is an
infimum w.r.t. the partial order #, i.e., a proposition u ∈ L that
fulfills for any x ∈ L the equivalence.

x#aj for any j ∈ J 5 x#u.

This proposition is denoted by u � inf{aj: j ∈ J} (Piron uses the
notation ∩Jaj).

This axiom requires that the logical conjunction of an
arbitrary set of propositions is again a proposition.

The following lattice theoretic notation is used here: ϕdinfL
is the bottom of the lattice, and for a, b ∈ L, define their meet by
a l bd inf{a, b} (Piron uses the curved symbol a ∩ b). The
following axioms are given in Piron (1964) formally weaker than
the formulations given here, but it is possible to derive the
formulae given here from Piron’s statements.

Axiom C: There is on L an orthocomplementation a1a′,
which is involutive, a″ � a, subject to the law of noncontradiction
a l a′ � ϕ, and it admits the modus tollens a#b 5 b′#a′.

AxiomCmeans that orthocomplementation is a mathematical
model for logical negation.

Based on orthocomplement, the join of two propositions
a, b ∈ L is defined by de Morgan’s law a k bd(a′ l b′)′
(again, Piron prefers the curved symbol a ∪ b—which is
misleading here, as it turns out that a k b is not to be
confused with a set-theoretic union).

The three axioms O, T and C ensure that the system of
propositions L with meet and join and orthocomplementation
as above carries the algebraic structure orthocomplemented lattice.
This is the algebraic structure that is common to both classical
logic and quantum logic. Based on investigations in Boole (1847),
classical mathematical logic focused its attention to Boolean
lattices. From an axiomatic point of view, a Boolean lattice is

an orthocomplemented lattice that fulfills a law of distributivity.
In quantum logic, distributivity is replaced by more general
algebraic properties. It remains crucial that certain sublattices
of L are Boolean, e.g., see the following axiom.

Axiom P: If a#b, then the sublattice generated by a and b is
Boolean.

This axiom marks the difference between classical logic and
quantum logic. It formulates that physical measurements that
correspond to propositions satisfying the relation a#b are
compatible.

In lattice theory, an element a ∈ Lwith a ≠ ϕ is called an atom,
if ϕ#u#a implies u ∈ {ϕ, a}. Piron writes point instead of atom
and uses capital letters P, Q, . . . for denoting points.

Axiom A: 1) For any a ∈ L with a ≠ ϕ, there is a point P
with ϕ#P#a.

2) If Q is point and a#x#a k Q, then x ∈ {a, a k Q}.
Axiom A requires that the set L of propositions contains

sufficiently many atomic propositions.
Calling the join PkQ of two points P andQ a straight line, the

points and straight lines make up an incidence geometry; see, for
instance, Beutelspacher and Rosenbaum (2004). In addition,
Piron (1964) proves that, in this structure, the following
Veblen-Young-Axiom holds:

IfA, B, C are points not all on the same line, andD and E
(D ≠ E) are points such that B, C, D are on a line and C,
A, E are on a line, there is a point F such that A, B, F are
on a line and also D, E, F are on a line. (Veblen and
Young, 1918, p. 2).

This connects quantum logic to projective geometry—a fact
that will turn out to be crucial for our application.

2.2 Piron’s Theorem
The main result in Piron (1964) is that, provided the system L of
propositions is rich enough to include at least four propositions
with the property that none of them implies the join of the other
three, then Axioms O, T, C, P, and A imply that the propositions
in L are in one–one correspondence with the closed linear
subspaces of a Hermitian vector space.

More precisely, he proves that there is a division ring K and a
left K-vector space V with a non-degenerate Hermitian form 〈x,
y〉. This Hermitian form allows to define the orthocomplement of
any set S ⊆ V of vectors by S⊥d{v ∈ V: 〈v, s〉 � 0 for any s ∈ S}.
In this setting, a subspace S ⊆ L is said to be closed, if S � S⊥⊥.
Moreover, it is implied that the Hermitian form is orthomodular,
which means that any closed subspace S ⊆ V fulfills the
equation S + S⊥ � V.

In this setting, if a proposition a corresponds to closed linear
subspace ~a ⊆ V, then the negation a′ corresponds to the
orthocomplement ~a⊥. Similarly, if two propositions a1 and a2
correspond to closed linear subspaces ~a1 ⊆ V and ~a2 ⊆ V, their
meet al b corresponds to the intersection ~a1 ∩ ~a2, and their join
a1 k a2 corresponds to the closure of the vector sum
~a1 + ~a2 � {x + y: x ∈ ~a1, y ∈ ~a2} ⊆ V. Based on these
correspondences, the orthomodular law for the Hermitian
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form is equivalent to the classical law of excluded middle for the
corresponding propositions.

2.3 Solèr’s Condition and Hilbert Space
Given a division ring K and a left K-vector space V with a non-
degenerate orthomodular Hermitian form onV, a family {vj: j ∈ J}
is called orthonormal, if

〈vi, vj〉 � 1 if i � j,
0 if i ≠ j.

{
Solèr’s theorem is based on a classical theorem of Frobenius,

which states that there are exactly three different real division
algebras: the real numbers R, the complex numbers C, and the
Hamiltonian quaternions H. Now, the key result in Solèr (1994)
is: If there is an infinite orthonormal family in L, then K is a real
division algebra and V is a classical Hilbert space.

It is known from Piron’s theorem that any proposition
corresponds to a closed subspace of V. Physicists also call a
proposition an event, emphasizing the fact that measuring a
property projects the system onto a state belonging to the
result of measurement. In a Hilbert space model used in
quantum physics, a proposition, or an event, is given either by
a closed subspace, or by an orthogonal projector, which is a self-
adjoint idempotent linear operator. Moreover, if a quantum
system is described by a unit vector in V, then, according to
Born’s postulate, the probability that a measurement produces the
result that the system makes a proposition a true is given by the
square length of the orthogonal projection of the unit vector to
the closed linear subspace corresponding to a. The mathematics
starting at logic and leading to the computation of probabilities is
outlined in Figure 1.

3 QUANTIFICATION OF SIGNAL
SIMILARITY

3.1 Modeling With Hilbert Space
For modeling human–machine communicative situations, we
restrict attention to real Hilbert spaces. In this case, the non-
degenerate orthomodular Hermitian form reduces to a real scalar
product. Specifically, we consider a fixed real interval [a, b] and
the Hilbert space VdL2([a, b]) of square-integrable functions
x, y: [a, b] → R with their scalar product given by integration

〈x|y〉d∫b

a
x(t)y(t) dt. (1)

Here, we use the intuitive ket-bra-notation introduced by
Dirac (1939): An element of the Hilbert space is a ket vector
|y〉; for writing an element |x〉 at the first place of a scalar
product, it is necessary to take its adjoint, which is a bra vector
〈x| � |x〉†; combining a bra with a ket vector gives a braket
〈x|y〉, which is just the scalar product of the two elements. One
advantage of this notation is a nice formula for orthogonal
projectors: Given a closed subspace a spanned by an
orthonormal family {vj: j ∈ J}, the orthogonal projector
Pa: V → a is given by

Pa � ∑
j∈J

|vj〉〈vj|with Pa|x〉 � ∑
j∈J

|vj〉〈vj|x〉.

Note that in Dirac’s ket and bra notation, it appears more
natural to consider the Hilbert space as a right vector space,
i.e., the scalars come from the right-hand side. For calculating
the projection probability pa(x) of a ket vector |x〉 onto a, first
ensure that 〈x|x〉 � 1, and then use Born’s postulate to
compute

pa(x) � Pa|x〉( )†Pa|x〉 � 〈x|P†
aPa|x〉 � 〈x|Pa|x〉

� ∑
j∈J

〈x|vj〉〈vj|x〉.

In this calculation, it is used that an orthogonal projector is
self-adjoint and idempotent.

Note that in Eq. 1, a certain “modeling freedom” is used. Here,
it would be possible to introduce an appropriate weighting
function, but this would only be reasonable if a good
substantiation were provided.

3.2 Algorithms Used for Calculation
First assume for simplicity that all signals are sampled on an
interval [a, b] with the same sampling rate. This means that there
are time points t0 � a < t1 < . . . < tn � b such that, given a signal
x: [a, b] → R, the numbers x (tj) for j ∈ {0, . . . , n} are recorded.
In this setting, a scalar product is approximated using the
trapezoidal rule

∫b

a
x(t)y(t) dt ≈ 1

2
∑n−1
j�0

x(tj)y(tj) (tj+1 − tj)

+ 1
2
∑n
j�1

x(tj)y(tj) (tj − tj−1).

Next, assume that training signals x1, . . . , xk are given, and
that the question is whether or not an incoming signal x
belongs to the pattern defined by the training signals. Or,
more precisely, what is the probability p(x) that x belongs to
the trained pattern? For answering this question, I propose the
following steps:

1) Employ a Gram-Schmidt process for constructing an
orthonormal base |v1〉, . . ., |vℓ〉 for the subspace generated

FIGURE 1 | The relations between logic, projective geometry, linear
algebra, orthogonal projections, and the computation of probabilities.
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by |x1〉, . . ., |xk〉—note that, as the generating set is finite, this
subspace is closed, and that its dimension is ℓ#k.

2) Normalize the incoming signal by setting |x̂〉d |x〉����
〈x|x〉

√ .
3) Evaluate the formula p(x) � ∑ℓ

j�1〈x̂|vj〉〈vj|x̂〉.

A noteworthy special case is when just one training signal x1 is
given. Then,

p(x) � 〈x1|x〉2
〈x1|x1〉〈x|x〉. (2)

3.3 Application to Logic
By Piron’s theorem, a logical proposition does not correspond to
training signals, but rather to the subspace generated by them. The
atoms of the lattice of propositions are the one-dimensional
subspaces given |x〉R, where x runs through the signals ≠ 0. We
learn from projective geometry that a signal alone does not have a
logical meaning, only the subspace |x〉R corresponds to a
proposition. It is hard to imagine how to derive Eq. 2 without
reference to quantum logic—that is what I mean with “quantum
inspired”.

What about representing logical operations and, or, and
negation? For a concise notation, assume that two propositions a
and b correspond to two sets of training signals spanning closed
subspaces ~a � span(|x1〉, . . . , |xk〉) and ~b � span(|y1〉, . . . , |yℓ〉).

1) Logical “or”: Running a Gram-Schmidt process on the
sequence

|x1〉, . . . , |xk〉, |y1〉, . . . , |yℓ〉 (3)

leads to an orthonormal family generating the closed linear
subspace ~a + ~b, which corresponds to the adjunction a k b in
propositional calculus.

2) Relative negation: Here, the aim is to construct an
orthonormal family generating the subspace

~a + ~b( ) ∩ ~a⊥

which corresponds to the proposition (ak b)l a′. To this end,
run Gram-Schmidt on the sequence 3, and remove the first part
that belongs to ~a.

3) Logical “and”: Apply de Morgan’s law to relative
orthocomplements in ~a + ~b,

~a ∩ ~b � ~a⊥ + ~b
⊥( )⊥

� ~a + ~b( ) ∩ ~a + ~b( ) ∩ ~a⊥( ) + ~a + ~b( ) ∩ ~b
⊥( )( )⊥

. (4)

This reduces the logical “and” to logical “or” and relative
negation. Along these lines, algorithms described above can be
combined to construct an orthonormal base for the intersection
of finitely generated subspaces.

4 APPLICATION TO SIGNAL COMPARISON

Quantum-inspired uncertainty quantification can be applied to
signal comparison tasks. The procedure is as follows.

1) Ensure that all training signals have equal length. This can be
done by cutting appropriately and/or by using linear
transformations. The result should be a set of training
signals x1, . . . , xk, which are defined on the same interval.

2) For handling the problem of possible different sampling rates,
collect all sampling points and fill the missing data by linear
interpolation. This is reasonable as we are only interested in
the calculation of scalar products.

3) For an incoming signal, use cutting and/or rescaling to ensure
that it is defined on the same interval as the training data.

4) Compute the projection probability p(x) of the incoming
signal x to these training patterns using the procedure
described in section 3.2.

Then, p(x) provides a measure of similarity between an
incoming signal and the set of training signals.
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