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The Sussex-Huawei Locomotion-Transportation (SHL) Recognition Challenges aim to
advance and capture the state-of-the-art in locomotion and transportation mode
recognition from smartphone motion (inertial) sensors. The goal of this series of
machine learning and data science challenges was to recognize eight locomotion and
transportation activities (Still, Walk, Run, Bus, Car, Train, Subway). The three challenges
focused on time-independent (SHL 2018), position-independent (SHL 2019) and user-
independent (SHL 2020) evaluations, respectively. Overall, we received 48 submissions
(out of 93 teams who registered interest) involving 201 scientists over the three years. The
survey captures the state-of-the-art through a meta-analysis of the contributions to the
three challenges, including approaches, recognition performance, computational
requirements, software tools and frameworks used. It was shown that state-of-the-art
methods can distinguish with relative ease most modes of transportation, although the
differentiating between subtly distinct activities, such as rail transport (Train and Subway)
and road transport (Bus and Car) still remains challenging. We summarize insightful
methods from participants that could be employed to address practical challenges of
transportation mode recognition, for instance, to tackle over-fitting, to employ robust
representations, to exploit data augmentation, and to exploit smart post-processing
techniques to improve performance. Finally, we present baseline results to compare
the three challenges with a unified recognition pipeline and decision window length.

Keywords: activity recognition, context-aware computing, deep learning, machine learning, mobile sensing,
transportation mode recognition

1 INTRODUCTION

The mode of transportation or locomotion of a user is an important contextual information and
includes things such as the knowledge of the user walking, running, riding a bicycle, taking a bus,
driving a car and others (Engelbrecht et al., 2015). This contextual information enables a variety of
applications, for instance, to monitor the daily activity and the health condition of the user; to
monitor the impact of an individual’s travel behaviour on the environment; to adapt the service
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provided to the user intelligently based on the context
information (Froehlich et al., 2009; Johnson and Trivedi, 2011;
Brazil and Caulfield, 2013; Cottrill et al., 2013; Castignani et al.,
2015; Mukhopadhyay, 2015; Anagnostopoulou et al., 2018).

To date, significant work has been devoted to the recognition
of locomotion and transportation modes from the Global
Positioning Systems (GPS) data available on smartphones.
GPS data has clear advantages, such as providing exact
location which can be correlated to road and rail maps in
addition to providing speed and heading. However they also
have drawbacks: they tend to be particularly power hungry, do
not work well indoors, and they often do not provide sufficiently
granular information to distinguish between some modes of
transportation1. This survey is not concerned with GPS-based
recognition and we refer the interested reader to the review (Gong
et al., 2014) and to recent work such as (Dabiri and Heaslip, 2018;
Guo et al., 2020) on this topic.

Today’s smartphones are equippedwith a variety types of sensors:
in addition to GPS, they includemotion sensors (i.e., inertial sensors)
comprising accelerometer, gyroscope, magnetometer from which
device orientation can be inferred, sound, vision and others, which
can be used to identify user activities and the context in which they
occur. In comparison to GPS, smartphone motion sensors are lower
power sensors2. They can provide rich information about the phone
movement and therefore the motion of the user which can be
analyzed to infer the user’s activities and the context in which
they occur. General surveys on mobile phone sensing and their
applications to activity recognition are available in (Vaizman et al.,
2017) and (Lane et al., 2010).

Numerous machine learning approaches have been proposed
to recognize the transportation mode of users from the
smartphone motion sensors (Biancat and Brighenti, 2014; Xia
et al., 2014; Yu et al., 2014). However, most research teams
evaluate the performance of their algorithms with self-
collected datasets and self-defined recognition tasks, which
differ in terms of sensor modalities and processing latencies.
This inconsistency makes it very difficult to compare the
performance of different methodologies systematically, and
thus hinders the progress in the field. To bridge the gap and
to encourage reproducible research, we organized three
successive academic challenges in the years 2018–2020 that
aim to recognize from smartphone motion sensor data eight
modes of locomotion and transportation (the activities include:
being still, walking, running, cycling, driving a car, being in a bus,
train or subway)3.

Transportation mode recognition mainly faces three types of
challenges: time-independent recognition, position-independent
recognition, and user-independent recognition (Wang et al.,
2019). Time-independent recognition means that a system
which has been trained to recognize these activities is expected
to keep working over a long period of time, despite slight
variations in the way a mobile phone is carried day after day
(see examples in Figure 6). Position-independent recognition
means that an activity recognition system should work when the
mobile device is placed at distinct on-body locations, such as
when it is placed in a trouser’s or shirt’s pocket, held in the hand,
or stored in a backpack or handbag (see examples in Figure 7).
Finally, user-independent recognition means that, in order to
realize a convenient product, the system should work equally well
on every user, without the need for user-specific training (see
examples in Figure 8). The three SHL events are designed based
on the Sussex-Huawei Locomotion-Transportation (SHL) dataset
(Gjoreski et al., 2018a;Wang et al., 2019), and focus on these three
evaluation scenarios, respectively. The challenges were open
during a 6–8 week period over the summer. In total, we
received 48 submissions involving 201 scientists over the
3 years. These submissions lead to 45 proceeding publications
in total4 (Wang et al., 2018; Wang et al., 2019; Wang et al., 2020).

This paper introduces the challenge protocols and summarizes
the contribution to the three challenges. It surveys the current
state of the art through a meta-analysis of the 48 contributions,
including approaches, recognition performance, computational
requirements, software tools and frameworks used. We observed
a growing number of submissions using deep learning over the
years compared to classical machine learning. While the best
results obtained with deep learning outperformed those obtained
with classical machine learning, a large proportion of submissions
using deep learning reached lower performance than classical
approaches. This reflects the difficulty in effectively employing
deep learning with multimodal data in a time-limited challenge. It
was shown that state-of-the-art methods can distinguish with
relative ease most modes of transportation, although the
differentiating between subtly distinct activities, such as rail
transport (Train and Subway) and road transport (Bus and
Car) still remains challenging. Another difficulty we observed
among participants was to accurately employ the training data to
predict performance on the test data, despite the use of cross-
validation strategies.

In this paper we summarize insightful methods from
participants that could be employed to address practical
challenges of transportation mode recognition, for instance, to
tackle over-fitting, to employ robust representations, to exploit
data augmentation, and to exploit smart post-processing
techniques to improve performance. Finally, we present
baseline results to compare the three challenges with a unified
recognition pipeline and decision window length. It was shown
that the difficulty levels of the three challenges can be ranked as:
SHL 2018 being the easiest, followed by SHL 2020, and SHL 2019
being the hardest.

1For instance, cycling, driving a car, or being in a bus may give similar GPS traces
and speed patterns in heavy urban traffic.
2The TDK/Invensense ICM-20948, which is a state of the art Inertial Measurement
Unit (IMU) comprising in a single chip accelerometer, magnetometer and
gyroscope uses 5.6 mW when continuously on and sampling data at 100 Hz. A
state of art low-power GPS such as the uBlox ZOE-M8B uses 72 mW when
continuously on and sampling position at 1Hz, or 15mW in a lower-power “super-
efficient”mode which trades off accuracy for power. While this includes the power
needed for the antenna amplification circuitry, this is still almost three times more
than an IMU.
3http://www.shl-dataset.org/challenges/ 4Three submissions withdrew their papers in the final stage.
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The paper is organized as follows. In Section 2 we give a
review of the dataset and protocols used in the three challenges. In
Section 3 we analyze the performance from the participants
contributing to the three challenges. In Section 4 we discuss
insightful methods contributed from the participants. In Section
5 we present baseline results from the organization committee.
Finally, we draw conclusions in Section 7.

2 DATASET AND PROTOCOL

2.1 SHL Dataset
The SHL dataset was collected over a period of about 7 months
(161 days in total) in the year 2017 by three participants (named
User1, User2 and User3) participating in eight locomotion and
transportation activities (i.e. being still, walking, running,
cycling, driving a car, being in a bus, train or subway)5 in
real life in the south-east of United Kingdom including London
(Gjoreski et al., 2018a). Each participant carried four Huawei
Mate 9 smartphones at four body positions simultaneously: in
the hand, at the torso (e.g., akin to a jacket pocket), in the hip
pocket, in a backpack or handbag, as shown in Figure 1. Table 1
lists the 16 sensor modalities recorded by the smartphone
system. The complete SHL dataset is comprised of annotated
data up to 2,812 h, which correspond to a travel distance of 16,732 km. The dataset is considered the largest and public-

available dataset in this research field. Figure 2 illustrates the
amount of data in each activity conducted by the three
participants in the complete SHL dataset. Table 2 lists the
basic information of the three users. A detailed description of

FIGURE 1 | A participant carrying four smartphones and a wearable
camera when collecting the dataset. The camera was used to ensure high
quality annotation of the modes of transportation and locomotion.

TABLE 1 | Sensor modalities (sampling rate) in the complete SHL dataset.

1. Accelerometer (100 Hz) 9. Google API for activity recognition (1 Hz)
2. Gyroscope (100 Hz) 10. Battery level and temperature (1 Hz)
3. Magnetometer (100 Hz) 11. Mobilephone cell reception (1 Hz)
4. Linear acceleration (100 Hz) 12. WiFi reception (1 Hz)
5. Orientation (100 Hz) 13. GPS satellite reception (1 Hz)
6. Gravity (100 Hz) 14. GPS location (1 Hz)
7. Ambient light (100 Hz) 15. Audio (48 kHz)
8. Ambient pressure (100 Hz) 16. Video (1/30 Hz)

FIGURE 2 | The duration of each of the eight transportation activities by
the three participants in the complete SHL dataset. The total duration of the
annotated data is 2,812 h.

TABLE 2 | Three users in the complete SHL datasets.

Gender Age Days
of data collection

User1 Male 20–40 85
User2 Male 20–40 43
User3 Female 20–40 33

FIGURE 3 | Generic formulation of the transportation mode recognition
problem: a recognition pipeline is developed and optimized on a training set,
and then evaluated on a distinct testing set. The selection of sensor modalities
and the partitioning of the data in the training and testing sets were
provided by the challenge organizers.

5We refer to them as Still, Walk, Run, Bike, Car, Bus, Train, and Subway for short in
the following figures and text.
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the dataset collection protocol and procedure can be found in
(Gjoreski et al., 2018a).

2.2 Recognition Task Overview
While focusing on various evaluation aspects, the recognition
tasks addressed in the three challenges can be generalized to
develop a recognition system based on the training dataset and
then employ this system to recognize the mode of transportation
from the multimodal sensor data in the testing dataset. Figure 3
depicts this formulation of the problem.

The sensor data in the training set is segmented into L frames:
{s(1), . . . , s(l), . . . , s(L)}, where s(l) denotes the data in the l-th
frame. Each frame contains the data from M modalities, i.e.

s(l) � [s1(l), . . . , sm(l), . . . , sM(l)] (1)

and each modality contains Tm data samples, i.e.
sm(l) � [slm(1), . . . , s

l
m(Tm)]. The labels of these frames, {c(1),

. . . , c(l), . . . , c(L)}, are provided to the participants and
indicate which activity takes place in each frame.6 This allows
to train a classifier model.

In the testing dataset, the sensor data is also segmented into L̃
frames: {s(̃1), . . . , s ̃(L)}, however labels are hidden from
participants. The challenge consists in identifying the
transportation or locomotion classes with the trained classifier
model, i.e. to estimate the labels {c(̂1), . . . , c ̂(L ̃)}.

To evaluate the recognition performance, we use the F1 score
averaged over all the activity classes. Let M be the confusion
matrix, where the (i, j)-th elementMij gives the number of frames
originally from class i but was classified as class j. Suppose we
have C � 8 classes, the F1 score can be computed as:

recalli � Mii∑C

j�1Mij

, precisionj �
Mjj∑C

i�1Mij

, (2)

F1 � 1
C
∑C
i�1

2 · recalli · precisioni

recalli + precisioni

. (3)

The three challenges use various subsets of the complete SHL
dataset, and differ in terms of the definition of the training and
testing dataset. As shown in Figure 4, the three challenges
focused on time-independent, position-independent and user-
independent evaluation, respectively, although the latter two
types of evaluation naturally entail the first one. They all used

the raw data from the following 7 sensors (Table 3): accelerometer
(3 channels), gyroscope (3 channels), magnetometer (3 channels),
linear acceleration (3 channels), gravity (3 channel), orientation (4
channels), and ambient pressure (1 channel). The sampling rate of
all these sensors is 100 Hz.

2.3 Time-independent Recognition (SHL
2018 Challenge)
The SHL challenge 2018 focused on time-independent
evaluation, and used the data recorded by one user (User1)
with the phone at the hip pocket position (Hips). The
challenge used data recorded in 82 days (5–8 h per day), which
is split into training (62 days, 272 h) and testing (20 days, 95 h)7.
Figure 5A depicts the amount of data in each class activity for
training and testing.

The data in both training and testing sets are segmented into
frames with a sliding window of 1 minute long and a jump size of
60 s. The order of the frames in both training and testing sets was
shuffled randomly to ensure that there was no temporal
dependency between neighbouring frames. The objective to
impose an upper limit on the recognition latency, with the
maximum frame size used by the participants to be 1 minute.
The temporal order of the frames in the training set was disclosed
during the challenge. However, the original order of the testing
frames was hidden from the participants during the challenge, but
released after that.

Table 3 specifies the data files provided in the challenge. The
training dataset provides 21 files corresponding to 20 data
channels (from 7 sensor modalities) plus the label and frame
order. The testing set provides 20 files corresponding to 20 data
challenges from 7 sensor modalities, but without the label files.
which is similar to the training set but without the label and the
frame order. All the data are provided as plain text files in ASCII
format. The total sizes of the files are 5.5 and 1.9 GB for the
training and testing set, respectively. In the training set, the data
in each sensor channel corresponds to a matrix of size 16,310 ×
6,000, which contains 16,310 frames each with 6,000 data samples
(i.e. 1 minute long at sampling rate 100 Hz). The label file
contains a matrix of the same size (16,310 × 6,000), which
indicates sample-wise activities. In the testing set, the data file
in each sensor channel corresponds to a matrix of size 5,698 ×
6,000, which contains 5,698 frames each with 6,000 data samples.
The label file will be used by the challenge organizer for

FIGURE 4 | Evolution of the three SHL challenges, which focused on time-independent, position-independent and user-independent evaluation, respectively.

6In the three challenges, in each frame the labels are given on a sample-by-
sample basis.

7The exact dates for the training and testing data is released at the website of the
SHL 2018 challenge http://www.shl-dataset.org/activity-recognition-challenge/.
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performance evaluation, and thus was hidden from the
participants until the end of the challenge.

In the training set, each sensor data file contains a matrix of
size 16,310 lines × 6,000 columns, which corresponds to 16,310
frames each containing 6,000 data samples (i.e. 1-min data at
sampling rate 100 Hz). The label file contains a matrix of the same
size (16,310 × 6,000), which indicates sample-wise activities. In
the testing set, each sensor data file contains a matrix of size
5,698 × 6,000, corresponding to 5,698 frames each containing
6,000 samples. The label file will be used by the challenge
organizer for performance evaluation, and thus was hidden
from the participants until the end of the challenge.

Thirty-five teams registered their interests in the initial
advertising stage. Each team would have maximally one and
half months (1 June–July 15, 2018) to work on the challenge task
and develop its method. Eventually, we received 19 submissions
from 17 teams (two teams each contributed two submissions) by
the challenge deadline (July 20, 2018).

2.4 Position-independent Recognition (SHL
2019 Challenge)
The SHL challenge 2019 focused on position-independent
activity recognition. It used the data recorded by one user
(User1) with smartphones at four body positions
simultaneously (see Figure 1). The challenge data was

recorded in 82 days (5–8 h per day), which is split into
training, testing and validation. Specifically, the training set
contains 59 days of data recorded at three positions (Hips,
Torso and Bag); the testing set contains 20 days of data
recorded at the new position (Hand); the validation set
contains 3 days of data recorded at all the four positions8. The
rationale of having validation data is to help participants better
train the classification model. In total, we have 271 × 3 h of
training data, 77 h of testing data and 17 × 4 h of validation data,
respectively. Here × 3 and × 4 refer to data at three and four
locations, respectively. Figure 5B depicts the amount of data in
each class activity in the training, validation and testing sets.

The data in the training, testing and validation sets were
segmented into frames with a sliding window of 5 s long and
a jump size of 5 s. The objective is to impose an upper limit on the
recognition latency, with the maximum frame size used by the
challenge participants to be 5 s, which can benefit real-time
interactions. The frames in the training set are temporally
consecutive. The frames in the testing and validation sets are
shuffled randomly. The original order of the frames in these two
sets remains confidential until the end of the challenge.

TABLE 3 | Data files provided by the SHL recognition challenges 2018–2020. Position: B—Bag; T—Torso; Hi—Hips; Ha—Hand; Un—Unknown position; U1—User1;
U2—User2; U3—User3.

SHL 2018 SHL 2019 SHL 2020

Modality File Train
(Hi)

Test
(Hi)

Train
(BIT/Hi)

Validation
(B/T/Hi/Ha)

Test
(Ha)

Train
(BIT/Hi/Ha)

Validation
(BIT/Hi/Ha)

Test
(Un)

User U1 U1 U1 U1 U1 U1 U2+U3 U2+U3

Accelerometer Acc x.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Acc y.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Acc z.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gyroscope Gyr_x.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gyr y.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gyr_z.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Magnetometer Mag_x.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mag_y.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mag_z.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Linear acc. LAcc x.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
LAcc_y.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
LAcc_z.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gravity Gra_x.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gra y.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Gra_z.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Orientation Ori_w.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ori_x.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ori y.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ori_z.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pressure Pressure.txt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Label Label.txt ✓ × ✓ ✓ × ✓ ✓ ×

Dimension of each file
(row x column)

16,310× 6,000 5,698× 6,000 196,072 × 500 12,177 × 500 55,811 × 500 196,072 × 500 28,789 × 500 57,573 × 500

Total number of files 21 20 63 84 20 84 252 20
Total size of all the files (GB) 5.5 1.9 57.6 4.8 5.4 76.9 11.3 5.6

8The exact dates for the training and testing data is released at the website of the
SHL 2019 challenge http://www.shl-dataset.org/activity-recognition-challenge-
2019/.
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Table 3 specifies the data files provided in the challenge. The
training, testing and validation sets contain data collected at
various body positions. In the training and validation set, each
position contains 21 files corresponding to 20 data files (from 7
sensor modalities) and 1 label file. In the testing set, each position
contains 20 files of sensor data, but excluding the label file.

In the training set, the data file of each sensor channel
corresponds to a matrix of size 196,072 × 500, which contains
196,072 frames each with 500 data samples (i.e. 5-s data at
sampling rate 100 Hz). The label file contains a matrix of the
same size (196,072 × 500), which indicates sample-wise activities.
In the validation set, the data file of each sensor channel
corresponds to a matrix of size 12,177 × 500 and the label file
is of the same size. In the testing set, the data file in each sensor
channel contains a matrix of size 55,811 × 500. The label file will
be used by the challenge organizer for performance evaluation,
and thus was hidden from the participants until the end of the
challenge. All the data are provided as plain text files in ASCII
format. The total sizes of the training, testing and validation set
are 57.6, 5.4, and 4.8 GB, respectively.

Twenty-five teams registered their interests in the initial
advertising stage. Each team would have maximally one and
half months (15 May–June 30, 2019) to work on the challenge
task and develop its method. Eventually, we received 14
submissions from 14 teams by the submission deadline (June
30, 2019).

2.5 User-independent Recognition (SHL
2020 Challenge)
The SHL challenge 2020 focused on user-independent evaluation.
We have a “Train” user and a “Test” user. The “Train” user uses
the data from User1. The “Test” user combines the data from
User2 and User3 in order to get balanced testing data, as none of
the two users are able to participate in all the eight transportation
activities (User2 can not drive a car and User3 is deficient in
running). The challenge data is divided into three parts: training,
testing and validation. The training set contains 59 days of data
collected by the “Train” user at the four body positions (Bag,
Hips, Torso, Hand). The testing set contains the data collected by
the “Test” user at the Hips position (this position was unknown to
the participants during the challenge). The validation set contains
6 days of data collected by the “Test” user at the four body
position9. Similar to SHL 2019, the validation data is to help
participants better train the classification model. In total, we have
training data of 272 × 4 h, testing data of 160 h, and validation
data of 40 × 4 h, respectively. Figure 5C depicts the amount of
data in each transportation activity in the training, testing, and
validation sets.

FIGURE 5 | Amount of data for each of the eight transportation activities for the three challenges. (A) SHL 2018. (B) SHL 2019. (C) SHL 2020. The eight class
activities are: 1—Still; 2—Walk; 3—Run; 4—Bike; 5—Car; 6—Bus; 7—Train; 8—Subway.

9The exact dates for the training and testing data are released at the website of the
SHL 2020 challenge http://www.shl-dataset.org/activity-recognition-challenge-
2020/.
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Similar to SHL 2019, The data in the training and validation
sets were segmented into frames with a sliding window of 5 s long
and a jump size of 5 s. The frames in the training and validation
sets are consecutive in time. The data in the testing set was also
segmented into frames 5 s long, and the frames are permuted
randomly. The original order of the frames in the testing dataset
remained confidential until the end of the challenge. In the
previous challenge 2019, some teams reconstructed the
complete time series by looking at the signal continuity. To
prevent this in the challenge 2020, we used a larger jump size
(10 s) when segmenting the testing data.

Table 3 specifies the data files provided in the challenge. The
training, testing and validation sets contain data collected by
various users and at various body positions. In the training and
validation set, each position contains 21 files corresponding to 20
data files (from 7 sensor modalities) and 1 label file. In the testing
set, each position contains 20 files of sensor data, but excluding
the label file.

In the training set, the data file in each sensor channel contains a
matrix of size 196,072 × 500, which corresponds to 196,072 frames
each with 500 data samples (i.e. 5-s data at sampling rate 100 Hz).
The label file contains a matrix of the same size (196,072 × 500),
which indicates sample-wise activities. In the validation set, the
data file in each sensor channel contains a matrix of size 28,789 ×
500. The label file is of the same size as the data file. In the testing
set, each sensor file contains a matrix of size 57,573 × 500. The label
file will be used by the challenge organizer for performance
evaluation, and thus was hidden from the participants until the
end of the challenge. All the data are provided as plain text files in
ASCII format. The total sizes of the training, testing and validation
set are 76.9, 5.6, and 11.3 GB, respectively.

Thirty-three teams registered their interests in the initial
advertising stage. Each team would have maximally two and
half months (05 April–June 25, 2020) to work on the challenge
task and develop its method. Eventually, we received 15
submissions from 15 teams by the submission deadline (June
25, 2020).

2.6 Exemplary Samples
Figure 6 depicts the exemplary samples of accelerometer data
(X-, Y- and Z-axis) in SHL 2018. The data is collected by User1
at Hips position during the eight transportation and locomotion
activities. The three activities Walk, Run and Bike, which
involve intense human actions, show much stronger
vibration than the other five activities. These three activities
have also shown certain cyclic properties due to the rhythmic
action of human. The activities Car and Bus show stronger
vibration than the remaining three activities Still, Train and
Subway. Based on the observation, while some activities clearly
exhibit distinct signatures, it is still difficult to identify each
activity precisely solely based on their visual appearance. In SHL
2018, even though we consider a fixed phone position in a
trouser’s pocket, there is variability in the way the phone may be
placed and oriented, and due to change in clothing. This can also
be observed by comparing the data value at three-axes across the
eight activities that occur at different time instances. For
instance, in Figure 6 the Y-axis value reads at −10 during

the Bus activity and at 10 during the Subway activity: this
indicates an upside-down placement of the phone.

Figure 7 depicts the exemplary accelerometer data (X-, Y-, and
Z-axis) for the eight transportation and locomotion activities in
SHL 2020. The data is collected by User1 at the four positions
(Bag, Torso, Hips, and Hand) in the same time interval. While
being collected at the same time, the data at the four positions
appear different, due to different phone placement and
orientation. During Bike activity, the Hips phone moving
together with the human thigh presents more evident cyclic
pedalling behaviour than the phones at other positions. Due to
the engagement between hand and phone, the data at the Hand
positions appears noisier than the other three positions. This
highlights the challenge of position-independent recognition,
where the testing data is at the Hand position while the
training data is provided at the other positions.

Figure 8 depicts the exemplary accelerometer data (X-, Y-, and
Z-axis) for the eight transportation and locomotion activities in
SHL 2020. The data is collected by three users (User1, User2, and
User3) at the Hips position. The data presents obvious differences
across the three users, due to different phone orientations and
diverse human behaviours during transportation. This
observation also highlights the challenge of user-independent
recognition, where the model is trained for User1 and tested on
User2 and User3.

3 RESULTS AND ANALYSIS

3.1 Overview of the Results
Figure 9A depicts the results of the submissions to the three
challenges. The submissions to each challenge are ranked
according to their actual performance (F1 score) on the testing
data. As each participant team employs a distinct cross-validation
strategy, we requested each team to predict its testing
performance using the data that are made available to them
(i.e., the training data and the validation data). For ease of
comparison, in Figure 9A the predicted performance is
plotted together with the actual performance on the testing
data. Figure 9B gives the confusion matrices obtained by the
top team in each challenge, i.e., (Gjoreski et al., 2018b) (SHL
2018), (Janko et al., 2019), (SHL 2019), and (Zhu et al., 2020)
(SHL 2020). Figure 9A also indicates the baseline performance
achieved by the organization committee (Section 5).

For SHL 2018 (time-independent recognition), the actual
performance of the 19 submissions varies from 53.2 to 93.9%
on the testing set. Among these participants, two submissions
achieve an F1 score above 90%, eight submissions achieve an F1
score between 80 and 90%, five submissions achieve an F1 score
between 70 and 80%, and four submissions between 50 and 70%.
The best performance (F1 score of 93.9%) is reported by (Gjoreski
et al., 2018b), which employed an ensemble of classifiers,
including classical machine-learning and deep-learning models,
to do the prediction, and then smoothed the results with a post-
filter (hidden Markov model).

For SHL 2019 (position-independent recognition), the actual
performance of the 14 submissions varies from 31.5 to 78.4% on
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the testing set. Among these participants, 0 submission achieves
an F1 score above 80%, three submissions achieve an F1 score
above 70%, four submissions achieve an F1 score between 60 and
70%, five submissions achieve an F1 score between 50 and 60%,
and one submission below 50%. The best performance (F1 score
of 78.3%.) is reported by (Janko et al., 2019), which was based on
cross-position transfer learning. In this method, two classification
models are trained: one model is used to classify all the data
samples and another model is used to re-classify the data samples
that are classified as vehicle or still activities previously. The first
model is trained based on data at the three positions (Bag, Hips,
Torso) in the training and validation set; while the second model

is trained based on the data at the Hand position, which is
provided in the validation set.

For SHL 2020 (user-independent recognition), the actual
performance of the 15 submissions varies from 17.8 to 88.5%
on the testing set. Among these participants, one submission
achieves an F1 score above 80%, four submissions achieve an F1
score between 60 and 70%, three submissions achieve an F1 score
between 50 and 60%, and four submissions below 50%. The best
performance (F1 score of 88.5%.) is reported by (Zhu et al., 2020),
which, used a 1D DenseNet model for the classification task. The
method employed a pre-processing strategy that converts the
multimodal sensor data that are measured in a phone-centered

FIGURE 6 | Exemplary samples of accelerometer data in SHL 2018. The data is collected by User1 at Hips position.

FIGURE 7 | Exemplary samples of accelerometer data in SHL 2019. The data is collected by User1 at four body position in the same time interval: (A) Bag; (B)
Torso; (C) Hips; (D) Hand.
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coordinate system to a human-centered coordinate system before
feeding them to the deep neural network.

3.2 Performance Analysis
To avoid the influence of outliers, we take the top 10 results from
each challenge for comparison. For each submission, we compute
a confusion matrix and interpret the diagonal elements of the
matrix as the recognition accuracy of each class activity. In
Figure 10A we show a box-plot of the recognition accuracy of
each activity achieved by the top 10 submissions in each
challenge, and in Figure 10B we depict the averaged
confusion matrix. The technical details of the top 10
submissions in each challenge are summarized in Table 4.

Some consistent observations can bemade throughout the three
challenges. From the box-plot we observe that the first four
transportation activities (Still, Walk, Run, and Bike) are better
identified in comparison to another four activities (Car, Bus, Train,
and Subway). The movement of the smartphones during walking,
running and cycling is more intense than when the user is sitting or
standing in the bus, car, train or subway. This may contribute to
making the former four more distinctive than the latter four. In
SHL 2018, Train is the most challenging activity to identify,
followed by Subway and Car. In SHL 2019, Car is the most
challenging activity to identify, followed by Train and Subway.
In SHL 2020, Subway is the most challenging class to identify,
followed by Bus and Subway. From the confusion matrices of all
the three challenges, mutual confusion can be clearly observed
between motor vehicles (i.e. Bus versus Car), and also between rail
vehicles (i.e. Train versus Subway). This is possibly because the
smartphones carried by the users show similar motion patterns
during vehicle transportation, with two activities being road
transportation and two others being rail transportation. From

the confusion matrices, confusion is also observed between the
Still activity and four vehicle activities (Car, Bus, Train and
Subway). In particular, some vehicle activities are misclassified
as Still. It may occur that the smartphones become motionless
when a vehicle stops during travel.

The testing performance reported in SHL 2018 (the highest F1
93.4% and the average F1 86.9%) is much higher than the
performance reported in SHL 2019 (the highest F1 78.4% and
the average F1 66.5%) and SHL 2020 (the highest 88.5% and the
average 69.5%). There are mainly two reasons for the decreased
performance in the latter 2 years. First, SHL 2018 only considered
the challenge of temporal variation, while SHL 2019 and 2020 had
additional challenges from the variation of the phone positioning
and the variation of the user. During the discussions at the
challenge workshops (HASCA), it has been widely reported
from the participant teams of SHL 2019 and SHL 2020 that
the mismatch between the training data (which is recorded at a
specific body position/user) and the testing data (which is
recorded at a new body position or by a new user) degrades
the recognition performance significantly. This is also a challenge
in real-life applications. Second, in SHL 2018 the data was
segmented into 1-min frames, while in SHL 2019 and 2020
the data was segmented into 5-s frames. It is difficult to apply
a post-processing scheme (e.g. sequence modeling or temporal
smoothing) within a 5-s decision window in SHL 2019 and SHL
2020. In contrast, it was reported in SHL 2018 that applying post-
processing within the 1-min frame can improve the recognition
performance remarkably over individual 5-s frames (Wang et al.,
2018). For instance, the reference (Wang et al., 2018) achieved a
10 percentage points higher F1 score with temporal smoothing.

The performance reported in SHL 2020 is comparable to the
performance reported in SHL 2019.While the top performance in

FIGURE 8 | Exemplary samples of accelerometer data in SHL 2020. The data is collected by three users at Hips position: (A) User1; (B) User2; (C) User3.
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SHL 2020 (highest F1 88.4%) is much higher than the top one in
SHL 2019 (highest F1 78.4%), their mean performance (among
the top 10 submissions) are close, where SHL 2020 (average F1
69.5%) is only slightly higher than SHL 2019 (average F1 65.5%).
On one side, the user variation in SHL 2020 imposes more
challenges than SHL 2019, which used the data from the same
user. On the other side, performing recognition using the data at
the “Hand” phone in SHL 2019 is more difficult than the “Hips”
phone in SHL 2020. Combining both factors, it seems reasonable
that the two challenges achieve similar performance.

3.3 Machine Learning Algorithms
With the rise of deep learning in the activity recognition
community, it is interesting to evaluate the approaches
employed by participants to the challenge. The submissions to
the SHL challenges can be broadly divided into two categories:
classical machine learning (ML) and deep learning (DL).
Specifically, there are 11 ML and 8 DL submissions in SHL
2018, 6 ML, and 8 DL submissions in SHL 2019, and 6 ML,
and 9 DL submissions in SHL 2020, respectively. While the
amount of data is small, this reflects the growing interest in
deep learning methods. For ML approaches, most classifiers

compute hand-crafted features as input. These hand-crafted
features can be roughly divided into time-domain features
(statistical information of signal amplitude within a short time
window, e.g. mean, variance, median, quantile and auto
correlation) and frequency-domain features (e.g. Fourier
transform coefficients, energy and subband energy). Due to
the diversity of the features employed by the participants, a
systematic analysis or grouping is difficult. We refer the
interested reader to a recent work (Wang et al., 2019), which
reviewed the features for transportation mode recognition. For
DL approaches, several types of input are considered, including
time-domain raw data, time-frequency spectrogram, hand-
crafted features, or a hybrid mixture of them. There is a trend
that more teams are choosing to use DL over ML.

We show in Figure 11A the box-plot of the F1 scores obtained
from these two families in the three challenges. Overall, DL
achieves a comparable higher upper bound at SHL 2018 and
2019, and a much larger higher upper bound at SHL 2020.
However, the median performance achieved by DL is slightly
lower than ML in the three challenges. One likely reason is that
DL approaches require more effort on architecture optimization.
The degrees of freedom make it more easily possible to deploy a

FIGURE 9 | Submission results of SHL 2018–2020. (A) Submission ranked based the F1 score for the testing data. The baseline results from the organization
committee (Section 5) are also indicated. (B) Confusion matrix from the top team. The eight class activities are: 1—Still; 2—Walk; 3—Run; 4—Bike; 5—Car; 6—Bus;
7—Train; 8—Subway.
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DL approach inadequately, for instance with a sub-optimal
architecture, or encountering overfitting. In comparison to DL,
ML approaches have much less hyper-parameters to optimize,
and they have been well studied since longer time ago, which
means that there is more expertise available in using these
approaches effectively. This reflects that DL is a relatively
recent development for activity recognition, and the
community is still in the process of gathering the necessary
expertise to employ it effectively. This is further compounded
by the long training time, which limits the amount of exploration
possible in a time-limited challenge.

In SHL 2018, the best performance achieved by DL approaches
(F1 93.9%) (Gjoreski et al., 2018b) is only 1.5 percentage points
higher than the best one by ML approaches (92.4%) (Janko et al.,
2018). In SHL 2019, the best performance by DL (75.9%) (Choi
and Lee, 2019) is 2.5 percentage points lower than the best
performance by ML (78.4%) (Janko et al., 2019). This is
slightly contradictory to the observations in the other 2 years,
and is possibly due to the big difference between the traning and
the testing data: one collected at Torso, Bag, and Hips positions
while another one collected at Hand position. The latent features
learned by DL approaches in the source domain do not generalize
well to the target domain. ML approaches use hand-crafted
features, which can include engineering knowledge, and thus

are more robust to handle the difference between the source and
the target domain. In SHL 2020, the best DL approach (F1 88.5%)
(Zhu et al., 2020) outperforms the best ML approach (F1 77.9%)
(Kalabakov et al., 2020) by 10.6 percentage points. However, the
boxplot of ML performance has a smaller dynamic range than the
boxplot of DL performance. This implies that the hand-crafted
features utilized in ML approaches are more robust to user
variation while the DL features do not generalize well to this
variation.

In Figures 11B,C we show the box-plot the computation time
reported by the ML and DL submissions. Since different research
groups use various computational facilities, it is difficult to make a
fair comparison (See Table 4). Overall, DL is much more
computationally complex than ML, consuming a larger
amount of time for training and testing.

Figure 12 summarizes the classifiers used by ML and DL
approaches in SHL 2018–2020. The ML approaches mainly
employ five types of classifiers: random forest (RF), support
vector machine (SVM), extreme gradient boost (XGBoost),
multi-layer perceptron neural network with up to two hidden
layers (MLP), and ensembles of classifiers (Ensembles). Among
these classifiers, RF is the most popular one (8 submissions),
followed by XGBoost (6 submissions) and MLP (4 submissions).
For the recognition tasks, XGBoost (Janko et al., 2018; Kalabakov

FIGURE 10 | Average performance of the top 10 teams in SHL 2018–2020. (A) Recognition accuracy for each class activity. (B) Average confusion matrix. The
eight class activities are: 1—Still; 2—Walk; 3—Run; 4—Bike; 5—Car; 6—Bus; 7—Train; 8—Subway. The boxplot illustrates the minimum, first quartile, median, third
quartile, and maximum values in each group of data, and the also the outlier values.
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TABLE 4 | Summary of the top 10 submissions to SHL 2018–2020.

Challenge Approach Rank Team Classifier Input Sensor
modality

Performance Computational resource Time Implementation Model
size
(MB)

References

Train
(%)

Test
(%)

CPU GPU Train
(h)

Test
(s)

Language Library

SHL 2018 ML 2 JSI-Classic XGBoost Features LAGMOPR 93.7 92.4 4-core@
3.6 GHz
RAM-16G

/ 8.5 20 Python ScikitLearn 43 Janko et al.
(2018)

4 S304 MLP Features AGMP 85.7 87.5 24-core@
2.5 GHz:
RAM-64G

/ 0.25 50 Java / 0.035 Widhalm et al.
(2018)

5 Confusion Matrix RF Features LAGMOPR 96.8 87.5 4-core@
2.5 GHz
RAM-8G

/ 0.15 32.4 Python ScikitLearn 1,122 Akbari et al.
(2018)

7 UCLab-Vrano RF Features AGMRP 94.2 85.2 16-core@
3.4 GHz
RAM-64G

Titan V 3 10 Python ScikitLearn 130 Matsuyama
et al. (2018)

8 Ubi-NUTS RF Features LAGMOPR 97.0 83.5 6-core@
3.6 GHz
RAM-128G

2 × GP100 0.41 7 Python ScikitLearn 198 Nakamura
et al. (2018)

10 Drifters1 SVM Features LGOPR 95.9 81.1 8-core@
2.4 GHz
RAM-30G

/ 0.5 900 Java WEKA 170 Wu et al.
(2018)

DL 1 JSI-Deep Ensemble
(DNN + ML)

Spectrogram +
features

LAGMOPR 96.0 93.9 4-core@
3.3 GHz
RAM-16G

GTX 1070 6.5 20 Python Keras
ScikitLearn

500 Gjoreski et al.
(2018)

5 Tesaguri CNN Spectrogram AG 93.0 88.8 6 × (4-
core@
2.5 GHz
RAM-8G)

/ 90 300 Python Keras 3 Ito et al.
(2018)

6 Drifters2 DNN Features LAGMOPR 97.7 86.3 8-core@
2.4 GHz
RAM-30G

GTX 950M 1 180 Python Keras 84 Akbari et al.
(2018)

9 UCLab-Nozaki CNN +
LSTM

Raw data AGMP 93.1 83.2 24-core@
3.4 GHz
RAM-192G

5 GPU 12 600 Python Pytorch 12 Yuki et al.
(2018)

SHL 2019 ML 1 JSI-First Random
Forest

Features LAGMOPR 83.0 78.4 4-core@
3.6GHs
RAM-16G

/ 8.5 20 Python ScikitLearn 43 Janko et al.
(2019)

4 Jellyfish XGBoost +
MLP

Features AGMP 94.5 66.9 28-core@
2.5 GHz
RAM-64G

5 × GTX 2080 1.25 50 Python ScikitLearn
Tensorflow

40.54 Lu et al.
(2019)

6 Gradient
Descent

Classifier
ensembles

Features LAGMOPR 70.6 64.2 4-core@
2.5 GHz
RAM-8G

? 6.7 556 Python ScikitLearn
Tensorflow

383.1 Ahmed et al.
(2019)

7 S304 MLP
ensembles

Features AGM 74.0 63.2 4-core@
2.8 GHz
RAM-8G

/ 1 30 Java AIT 0.2 Widhalm et al.
(2019)

DL 2 Yonsei-MCML CNN Time +
Frequency

LAGMOPR 60.3 75.9 4-core@
4.2 GHz
RAM-32G

GTX 1080 17 1,500 Python Tensorflow 210.9 Choi and Lee,
(2019)

3 We-can-fly CNN Time LAGMPR 67.1 70.3 14-core@
2.6 GHz
RAM-64G

TESLA V100 6 120 Python Pytorch 11 Zhu et al.
(2019)

(Continued on following page)
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TABLE 4 | (Continued) Summary of the top 10 submissions to SHL 2018–2020.

Challenge Approach Rank Team Classifier Input Sensor
modality

Performance Computational resource Time Implementation Model
size
(MB)

References

Train
(%)

Test
(%)

CPU GPU Train
(h)

Test
(s)

Language Library

5 UESTC_IndRNN RNN Frequency LAGMR 82.6 56.2 10-core@
2.4 GHz
RAM-256G

Titan XP 3 600 Python Pytorch 34.6 Zheng et al.
(2019)

8 Orange Lab LSTM Time LA 60.4 62.5 8-core@
2.5 GHz
RAM-16G

GTX 1080 5 5 Python Pytorch 2.1 Alwan et al.
(2019)

9 GanbareAMT LSTM Time AGMP 63.7 50.0 12-core@
2.2 GHz,
RAM-120G

TESLA P100 100.3 21 Python Keras
(Tensorflow)

0.7 Friedich et al.
(2019)

10 TDU-DSML CNN Frequency AG 82.1 58.0 24-core@
2.2 GHz
RAM-128G

2 × GTX 1080 6.7 600 Python Keras
(Tensorflow)

10.2 Ito et al.
(2019)

SHL 2020 ML 3 ThirdTime’s
ACharm

XGBoost Features LAGMOPR 81.0 77.9 8-core@
3.6 GHz
RAM-16G

RTX 2060 0.08 15 Python ScikitLearn 60 Kalabakov
et al. (2020)

6 RED_CIRCLE RF Features LAGMOPR 77.0 59.1 2-core@
2.3 GHz
RAM-13G

/ 1 41 Python ScikitLearn 1825 Siraj and et al.
(2020)

7 ASIA RF Features LAGMP 86.0 62.6 8-core@
2.3 GHz
RAM-16G

/ 0.08 1 Python ScikitLearn 278 Brajesh and
Ray, (2020)

8 MDCA MLP Features AGMOPR 75.0 61.2 8-core@
1.9 GHz
RAM-16G

/ 0.03 3 Java AIT 0.2 Widhalm et al.
(2020)

10 SensingGO XGBoost Features LAGMP 50.0 55.0 12-core@
2 GHz
RAM-128G

/ 0.3 180 Python ScikitLearn 0.7 Tseng et al.
(2020)

DL 1 We-can-fly CNN Time LAGMPR 73.0 88.5 14-core@
2.6 GHz
RAM-128G

Tesla V100 6 120 Python Pytorch 30 Zhu et al.
(2020)

2 IndRNN RNN Features AGMOP 87.0 79.0 10-core@
2.4 GHz
RAM-256G

Titan XP 18 2,540 Python Pytorch 43 Zhao et al.
(2020)

4 DSML_TDU CNN Features LGM 67.9 76.4 8-core@
3.5 GHz
RAM-128G

GTX 1080Ti 2 300 Python Keras
(Tensorflow)

103 Yaguchi et al.
(2020)

5 DL_Lock CNN Features LAGM 79.0 59.4 6-core@
3.5 GHz
RAM-32G

RTX 2080 Ti 0,75 16 Python Keras
(Tensorflow)

19.3 Naseeb and
Saeedi,
(2020)

9 TDU_BSA CNN Frequency LAGMOP 84.8 55.7 6-core@
3.2 GHz
RAM-32G

RTX 2060 12 60 Python Keras
(Tensorflow)

114 Sekiguchi
et al. (2020)

Sensor modalitiy: L—Linear accelerometer; A—Accelerometer; G—Gyroscope; M—Magnetometer; O—Orientation; P—Pressure; R—Gravity.
Input: Time—raw data in the time domain; Frequency—raw data in the freqeucy domain; Spectrogram—raw data in the time-freqeuncy domain; Feature: hand-crafted feature.
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et al., 2020) performs the best in SHL 2018 and 2020, RF (Janko
et al., 2019) performs the best in SHL 2019 (see Table 4).

The DL approaches mainly employ four types of classifiers:
deep multi-layer perceptron neural network with more than two
hidden layers (DNN), convolutional neural network (CNN),
recursive neural network or long-short term memory neural
network (RNN), and CNN plus RNN (CNN-RNN). Among
these classifiers, CNN is the most popular one (10
submissions), followed by RNN (6 submissions). For the
recognition tasks, DNN (Gjoreski et al., 2018b) performs the
best in SHL 2018, CNN (Choi and Lee, 2019) performs the best in
SHL 2019, and CNN (Zhu et al., 2020) performs the best in SHL
2020 (see Table 6). In addition, the employment of adversarial
auto-encoder (AAE) (Balabka, 2019) and generative adversarial
networks (GAN) (Gunthermann et al., 2020) were reported in
SHL 2019 and 2020, respectively, although these two classifiers
did not achieve good performance (out of top 10) in the
challenges.

3.4 Software Implementation
Figure 13 summarizes the programming languages and libraries
used in the three challenges. For ML approaches, Python (15
submissions) is the most popular language, followed by Matlab (4
submissions) and Java (4 submissions). The languages C and R
are only sporadically used. Python Scikit-Learn (15 submissions)
is the most used library, followed by Matlab Machine Learning
Toolbox (4 submissions) and Java AIT (3 submissions). For DL
approaches, Python (25 submissions) was the sole programming
language. Keras (13 submissions) was the most widely used
library, followed by Tensorflow (7 submissions) and Pytorch
(7 submissions). Keras is a high-level deep learning library
that is built on top of Tensorflow, Microsoft Cognitive Toolkit
(CNTK), or Theano. Interestingly, all the Kera submissions used
the Tensorflow backend.

4 DISCUSSION

The numerous competition submissions and the discussions
during the presentations of the best performing approaches,
revealed numerous ideas and techniques on how to tackle the
temporal dynamics in the data, the position of the devices, and the
user variations in the sensor data. In this section we discuss the
most relevant.

4.1 Tackling Over-fitting
Over-fitting is a very general, but serious, problem in transportation
mode recognition. Referring back to Figure 9, most teams across the
three challenges suffered from the over-fitting problem, with the
predicted performancemuch higher than the actual performance for
the testing data. Three strategies have shown to be the most
successful in tackling the over-fitting problem.

Cross-validation is an effective way to detect the over-fitting
problem. This strategy proposes splitting the data into mutually
exclusive K folds, and then training and evaluating the models on
each fold, i.e., K times. The strategy has been investigated
specifically in (Widhalm et al., 2018) and it was discovered

that, for the training dataset with random-order segments, the
standard K-folds partitioning scheme tends to introduce upward
(optimistic) bias of the performance. Therefore, the authors
proposed an improved version of the strategy, i.e., first to un-
shuffle the data and recover the temporal order of the segments
(using the order file provided by the challenge organizer), and
then applying K-fold cross-validation. This strategy yielded more
accurate and realistic performance estimation.

Ensemble method is a effective approach to tackle the over-
fitting problem, e.g. by using RF (Antar et al., 2018; Matsuyama
et al., 2018; Nakamura et al., 2018; Siraj and et al., 2020; Brajesh
and Ray, 2020), XGBoost (Janko et al., 2018; Lu et al., 2019;
Kalabakov et al., 2020; Tseng et al., 2020) or ensembles of
classifiers (Gjoreski et al., 2018b; Janko et al., 2019; Ahmed
et al., 2019; Widhalm et al., 2019). In ML in general, it has
been shown numerous times that ensembles with a large number
of base predictors (above 50) are less prone to over-fitting. This
was also proven with our challenge, in which on average the
ensemble-based approaches achieved better results than the
single classifier methods.

Dropout is another strategy to avoid over-fitting, especially for
the approaches that use large Deep Learning architecture. This
approach randomly deactivates (ignores) a predefined number of
units in the neural network during training. This procedure is
applied to each mini-batch of data, i.e., predefined units are
randomly deactivated. This allows the model to train and update
with a different “view” of the configured network. Dropout makes
the training process noisy, forcing units within a layer to take on
more or less responsibility for the inputs and making the model
more robust. This has been also shown in the competition’s
submissions, where each Deep Learning architecture employed
dropout in order to improve the performance (Srivastava et al.,
2014).

4.2 Robust Representation
The unknown rotation and orientation of phone placement and
human-phone engagement impose challenges to position-
independent recognition. To tackle this challenge, several
strategies were proposed to use orientation/position-
independent representation of the sensor data.

Magnitude Representation
The magnitude of sensor data (accelerometer, gyroscope and
magnetometer), which is the magnitude of the vector represented
in 3D coordinate system, has been widely used (by most teams)
for feature computation or classifier training. Some of the teams
were going a step further, and remove the vector projections (x, y,
and z) and keeping only the magnitudes. This way, on one side
they are losing valuable information about the phone orientation,
but on the other hand the representations are orientation
independent and thus are having a more robust model.

Coordinate Transformation
Several submissions converted the sensor data from phone-
centred coordinate system to human-centred coordination
system, which can potentially increase the robustness to
phone placement (Zhu et al., 2020; Zhao et al., 2020; Siraj
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FIGURE 11 | Comparison between classical machine learning and deep learning approaches. (A) F1 score for the testing data. (B) Training time. (C) Testing time.
The boxplot illustrates the minimum, first quartile, median, third quartile, and maximum values in each group of data, and the also the outlier values.

FIGURE 12 | Specific classifier employed by classical machine learning and deep learning approaches in SHL 2018–2020.
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and et al., 2020; Tseng et al., 2020; Sekiguchi et al., 2020;
Ahmed et al., 2019). The idea with this technique is to reduce
the dependence on the orientation of the phone relative to the
body. Once this transformation is performed, one can
additionally filter the data and remove the orientation-
specific features.

Random Rotation
This scheme proposed in (Choi and Lee, 2019) is to randomly
change the orientation of the sensor data in the training set,
aiming to increase the robustness of the trained model to new
phone positioning. This could also be a strategy against over-
fitting. The rationale behind this strategy is that the phone
orientation is not the same for the same activities for different
users, e.g., the phone in the pocket can have various
orientations—some users put it with the screen towards the
leg, others vice versa. This technique is especially useful if you
are using not only the magnitude of the acceleration vector, but
also the vector projection along the three axes.

4.3 Data Augmentation
The challenges 2019 and 2020 provided a small amount of
validation data, e.g. the data collected at “Hand” phones (SHL
2019), and the data collected by User2 and User3 (SHL 2020). The
validation data was a possibility to exploit data augmentation
techniques.

Exploiting Target Domain Data
Several submissions proposed to enhance the training
performance by exploiting the validation dataset (Janko et al.,
2019; Widhalm et al., 2019; Choi and Lee, 2019; Ito et al., 2019).
In SHL 2018 and 2019, the frames in the validation set are
permuted randomly. It has been reported that the traditional

cross-validation scheme that randomly splits the dataset,
neglecting the temporal correlation between the neighbouring
frames, may lead to an upward scoring bias (Widhalm et al.,
2018). To solve this problem, one submission (Janko et al., 2019)
proposed an order-recovering approach which that can roughly
recover the temporal orders of the frames by looking at temporal
dependencies across frames.

Transfer Learning
The idea with transfer learning is that a previously learned model
is used and adapted to another, related task. This approach has
proven successful in numerous applications of Deep Learning,
where a Neural network trained on some dataset is reused and
adapted to make classifications on another dataset. In our case,
some researchers also tried to implement it so that they tackle the
problem with cross-location of the smartphones, i.e., pocket,
hand, backpack, etc. In particular, this approach trains the
model at source locations and generalizes it to new target
locations, exploiting the small amount of validation data
(Janko et al., 2019; Ito et al., 2019).

Position-specific Modeling
In SHL 2020, the phone placement location in the testing set is
unknown, but is disclosed to be one of the four locations in the
training set. To exploit this fact, several submissions employed
machine learning techniques to recognize the phone location
first, and then developed a position-dependent model using the
training and validation data. Interestingly, most of these
submissions can estimate the phone location (“Hips”) correctly
(Kalabakov et al., 2020; Widhalm et al., 2020; Zhao et al., 2020;
Yaguchi et al., 2020; Sekiguchi et al., 2020), whereas one
submission obtained a wrong estimation of the phone location
(“Hand”) (Siraj and et al., 2020).

FIGURE 13 | Programming languages and libraries used by the submissions for classical machine learning and deep learning.
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User-specific Modeling
In SHL 2020, the validation and the testing dataset are collected
by the same users (User2 and User3). One submission (Kalabakov
et al., 2020) developed a user-specific modeling approach that
exploited this fact to improve the recognition performance. The
method trains two user-dependent models (for User2 and User3,
respectively) by applying transfer learning techniques to the
validation dataset. During testing, the method classifies the
data into two users and applies the user-specific models for
recognition.

4.4 Post-processing
In SHL 2018, the length of the testing segment is 1 minute. Since
for performance evaluation, the label is one label per sensor
sample, not per window, participants explored a variety of
windows (subframe) size, ranging from 0.1 s up to the whole
1-min segment, and then improved the recognition accuracy with
post-processing approaches that exploit the temporal correlation
between neighbouring subframes. Majority voting and the hidden
Markov model (HMM) are two most popular post-processing
techniques.

Most submissions that employed a 1-min decision window
assume a single class activity within this frame. However, it was
observed in the challenge data that a 1-min frame may contain
more than one activity, i. e, the transition between two activities
may occur. For instance, in the testing data of SHL 2018, 226 out
of the 5,698 frames contain such a transition. In this case, either
doing classification or performing post-processing within the 1-
min frame may produce erroneous results, because the stationary
assumption does not hold any more. One submission (Widhalm
et al., 2018) managed to deal with this issue by employing a 3-s
decision window followed by a hiddenMarkovmodel (HMM) for
post-processing. This approach can better capture the transition
within the long segment of 1 min. Indeed, HMMs are well suited
to model the temporal dynamics of activities as most activities
will transition from the “Walk” activity to another one and back
to “Walk”.

In SHL 2019 and 2020, the length of the testing segment is
reduced to 5 s to encourage real-life applications with a shorter
decision delay. The transition between activities rarely occurs in
such a short segment. To prevent temporal smoothing, the testing
frames are randomly shuffled, with the temporal order remain
unknown to the participants. Interestingly, one submission
(Janko et al., 2019) at SHL 2019 “cleverly” reconstructed the
temporal sequence of the shuffled frames by exploiting the
correlation between neighbouring frames, and that helped
reach high performance. To prevent this trick (Janko et al.,
2019), we used a larger jump size (10 s) when segmenting the
testing data in SHL 2020. Despite this, one submission (Widhalm
et al., 2020) managed to smooth the decision temporally by
proposing a nearest-neighbour smoothing approach.

5 BASELINE IMPLEMENTATION

To better understand the challenges of the three tasks, we (the
challenge organization committee) implemented two baseline

systems that we applied to SHL 2018–2020. The baseline
systems are based on the classical machine learning (ML) and
deep learning (DL) pipelines, respectively, and were originally
proposed in (Wang et al., 2018).

5.1 Classical Machine Learning Pipeline
Figure 14 depicts the classical machine learning pipeline for
transportation mode recognition. We compute hand-crafted
features from the sensor data and feed them as input to the
classifier.

We use the data from three inertial sensors: accelerometer,
gyroscope, magnetometer. Each sensor contains three channels of
measurement along the X, Y, and Z axis of the device, respectively.
To increase the robustness to unknown orientation and placement
of the smartphone device, we compute the magnitude combining
the three channels of each sensor, i.e.

sacc(n) �
������������������������
s2acc_x(n) + s2acc_y(n) + s2acc_z(n)

√
(4)

sgyr(n) �
������������������������
s2gyr_x(n) + s2gyr_y(n) + s2gyr_z(n)

√
(5)

smag(n) �
��������������������������
s2mag_x(n) + s2mag_y(n) + s2mag_z(n)

√
(6)

where n denotes the sample index. We denote the magnitude
sequence in the l frame of size T as

sacc(l) � [slacc(1), , . . . , slacc(T)] (7)

sgyr(l) � [slgyr(1), , . . . , slgyr(T)] (8)

smag(l) � [slmag(1), , . . . , slmag(T)] (9)

In each data frame, we compute hand-crafted features on the
three sensors, separately, and then cascade the features into a
vector as

SH(l) �
f acc(l)
f gyr(l)
f mag(l)

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦
445×1

, (10)

where facc(l), fgyr(l), fmag(l) denote a vector of hand-crafted
features computed on the l-th frame of the magnitude
sequence on the accelerometer, gyroscope, and magnetometer,
respectively. As suggested in (Wang et al., 2019), we compute 147
accelerometer features, 150 gyroscope features and 148
magnetometer features, which were previously identified using
a mutual information feature selection approach. The dimension
of the feature vector sH is 445. The detailed definition of these
features is given in (Wang et al., 2019), which include various
quantile ranges of the data value in the time domain, various
subband energies in the frequency domain, and various statistical
variables.

To improve the robustness of the classifiers, we employ a
normalization pre-processing that reduce the dynamic range of
the features bymapping them to a range of (0, 1). Let’s take them-th
feature fm as an example. After computing fm across all the frames in
the training dataset, we obtain the percentile 95 (Q95

m ) and percentile
5 (Q5

m) of fm for the training data. The normalization is conducted in
each frame l as
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f
−
m(l)←min max

fm(l) − Q5
m

Q95
m − Q5

m

, 0( ), 1( ). (11)

After normalization, the new feature vector is expressed as

S
−
H(l) �

f
−
acc(l)

f
−
gyr(l)

f
−
mag(l)

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦
445×1

. (12)

Note that we can apply the same normalization procedure to
the data frames in the testing set, given Q95

m and Q5
m are already

computed from the training data in advance.
For the recognition task, we use the well-known random forest

classifier. The classifier is implemented with the Machine
Learning Toolbox of Matlab. We set the number of trees as 20
and in each tree the parameter “minleafsize” as 1,000, and set
other parameters as default in the toolbox.

5.2 Deep Learning Pipeline
Figure 15 illustrates the deep learning pipeline that infers the
mode of transportation from sensor data with a convolutional
neural network (CNN).

In each data frame l, we convert the time-domain sequence
sacc(l), sgyr(l), and Smag(l) to the frequency domain via Fourier
transform.We retain only the data in first half frequency range, i.e
[0, fs/2]), and then compute the magnitude of the sequence as
Sacc(l), Sgyr(l), and Smag(l). We cascade the new data from the three
sensors into a vector as.

SF(l) �
Sacc(l)
Sgyr(l)
Smag(l)

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
753×1

. (13)

Suppose each frame contains 500 data samples, the size of the
vector Sacc(l), Sgyr(l), Smag(l) is 251 × 1 each, and the size of the
new vector SF (l) is thus 753 × 1.

Similarly to the ML pipeline, we employ a normalization pre-
processing that reduce the dynamic range of the features by
mapping them to a range of (0, 1). Let’s take SkF(l), the k-the
frequency bin in the l-the frame as an example. After computing
SF(l) across all the frames in the training dataset, we obtain the
percentile 95 (Q95

k ) and percentile 5 (Q5
k) of S

k
F for the training

data. The normalization is conducted at each frequency bin l as

S
−k
F(l)←

SkF(l) − Q5
k

Q95
k − Q5

k

. (14)

After normalization, we represent the new feature vector as

S
−
F(l) �

S
−
acc(l)

S
−
gyr(l)

S
−
mag(l)

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦
753×1

. (15)

Note that we can apply the same normalization procedure to
the data frames in the testing set, given Q95

k and Q5
k are already

computed from the training data in advance.
Figure 15 illustrates the architecture of the deep neural

network, which sequentially consists of one input layer,
multiple convolutional neural network (CNN) blocks, multiple

fully-connected neural network (FCNN) blocks, and one decision
layer. The input layer receives and stores the normalized feature
vector from the sensor data. Each CNN block consists of one
convolution layer (Conv), one batch-normalization layer (Norm),
one nonlinear layer (ReLU). Each FCNN block consists of one
fully-connected layer (FC), one batch-normalization layer
(Norm) and one nonlinear layer (ReLU) and one dropout
layer (Drop). The decision layer consists of a fully-connected
layer (FC) and a nonlinear layer (SoftMax), which outputs the
prediction result on the transportation mode. The batch
normalization processes the sensor data in a mini-batch style,
which normalizes the updates of the weights of the neural
network per small subsets of training samples. It can
accelerate the training speed and increase the robustness to
random initializations. The dropout layer randomly forces the
parameters of the neural network to zero with a predefined
probability, which can prevent over-fitting effectively
(Srivastava et al., 2014). The detailed configuration of the
proposed architecture is given in Table 5.

The CNN classifier is implemented with the Deep Learning
Toolbox of Matlab. We use the stochastic gradient descent with
momentum (SGDM) as the optimizer, and set other parameters
as default in the toolbox.

5.3 Baseline Results
We applied the two baseline systems to the recognition tasks of
the three challenges. For each task, we retrain the recognition
classifier using the training/validation data provided in the
corresponding challenge. For ease of comparison, we
consistently use a decision window of 5 s.

We test two schemes to use the validation data: AO (trAining
data Only) and AV (trAining and Validation). In the first scheme
AO, we only use the training data to train the classifier. In the
second scheme, we use both training and validation data to train
the classifier.

For SHL 2018, where the data is provided in the format of 1-min
segments, we chopped data into 5-s frames, each containing 500
samples. For the frames in the training set, we used a sliding
window of 5 s long and skip size 2.5 s. For the frames in the testing
set, we used a sliding window of 5 s long and skip size 5 s. In this
way, we generate training data of 375,130 frames and testing data of
68,376 frames. For each pipeline (ML and DL), the classifier is
trained using the training data and then applied to the testing data.

For SHL 2019, where the data is provided in the format of 5-s
segments, we don’t need any pre-processing. In total, we have training
data of 558,216 frames, validation data of 42,177 frames, and testing
data of 55,811 frames. As mentioned earlier, for each pipeline (ML
and DL), we trained two types of classifiers: AO and AV.

Similarly, for SHL 2020, where the data is also provided in the
format of 5-s segments, we have training data of 784,288 frames,
validation data of 115,156 frames and testing data of 57,573
frames. For each pipeline (ML and DL), we trained two types of
classifiers: one using the training data only (AO) and one using
both the training and validation data (AV).

For model training and testing, we used a desktop computer
equipped with an Intel i7-4,770 4-core CPU @ 3.40 GHz with
32 GB memory, and a GeForce GTX 1080 Ti GPU with 3584
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CUDA cores @ 1.58 GHz and 11 GB memory. The programs are
coded in Matlab and are based on the Deep Learning and
Machine Learning Toolbox.

Table 6 shows the detailed baseline results for SHL 2018–2020.10

From the baseline results, the challenging level of the three tasks can
be ranked as SHL 2018 < SHL 2020 < SHL 2019. Using the data
collected at the same body position (Hips) by the same user, SHL
2018 is the easiest task considering only the temporal variation. SHL
2019 used the data collected from the same user but at different
body positions. The testing position (Hand) is very different from
the training position (Bag, Hips, Torso) as it involves many
interactions between humans and smartphones, which are not
captured by the other three positions. For this reason, SHL 2019
is themost challenging task for ourML andDL pipelines. SHL 2020
used data collected from the different users. While the testing
position (Hips) is unknown, but is included in the training data,
which provides the data collected at the four positions (Hips, Bag,
Torso, Hand). The testing position (Hips) is easier than the one
(Hand) in the previous year, as it involves less human interactions.
For this reason, SHL 2020 is easier than SHL 2019, but more
challenging than SHL 2018.

Similar to other submissions, DL outperforms ML, achieving
6–15 ppt (percentage point) higher F1 score in the three
challenges. It seems that the high-level features extracted by
DL from the data outperforms the hand-crafted features. On
the other hand, the computational complexity of DL is much
higher than ML. The training time of DL is about 50 times ML,
while the testing time is about twice.

Similar to other submissions, data augmentation plays an
important role to increase recognition performance. For both
SHL 2019 and 2020, the classifier trained with training and
validation data (AV) outperforms the one trained with training
data alone (AO). In particular, DL can improve the performance by
6.3 ppt in SHL 2019, and by 10.8 ppt in SHL 2020. In contrast, the
improvement achieved by ML is much less, being 3.3 and 1.4 ppt
for SHL 2019 and 2020, respectively. It seems that DL can better
exploit augmented data to improve the recognition performance in
challenging scenarios. In addition, both ML and DL baselines
struggle to distinguish vehicle activities, i.e. train/subway and car/
bus. This is the same as what we observed at the participants of the
three challenges (Figure 10).

Figure 16 depicts the confusion matrices of the ML and DL
baseline systems for SHL 2018–2020. The two baseline pipelines
perform robustly across the three tasks. In comparison with
Figure 9, the performance of the DL baseline is slightly higher
than the second place in SHL 2018 (92.9 vs 92.4%)11, the fifth
place in SHL 2019 (66.6 vs 66.2%), and third place in SHL 2020

FIGURE 14 | Classical machine learning pipeline based on random forest.

FIGURE 15 | Deep learning pipeline based on the convolutional neural network.

TABLE 5 | Configuration of the convolutional neural network.

Input layer size: (753, 1)
Conv1/Conv2/Conv3 number: 100; size: (15,1); stride: (1,1); padding: (0,0)
FC1/FC2/FC3 nodes: 300
Dropl/Drop2/Drop3 50%
FC4 nodes: 8
Norm1-6 mini-batch: 500

10Note that the computation time only considers the training and testing time of
the classifier. The feature computation and data loading and writing time are not
taken into account.

11The DL baseline achieves an F1 score of 92.9% after applying post-filtering within
the 1-min segment (Wang et al., 2018).
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(78.8 vs 77.9%). In fact, the baseline systems were just retained
without fine-tuning. We can use this pipeline (Wang et al., 2018)
as a comparative reference in future challenge events.

6 REFLECTIONS ON THE CHALLENGE
ORGANIZATION

We offer some comments on what might motivate people to
participate to our challenge.

Initially we were wondering whether teams might participate
solely for the financial motivation of winning one of the three
prizes awarded each year (800, 400 and 200 GBP for the first to
third prize), similarly to how non-academic teams compete on
other data science challenges (e.g., on Kaggle). Such a
motivation could have been detrimental to our challenge
which aims to capture a snapshot of the state of the art,
rather than just seeking solutions reaching the highest

performance. To avoid this issue, we advertised clearly that
the challenge requires the submission of a paper to the HASCA
workshop organised at Ubicomp, which we peer reviewed for
quality. This may have weeded out teams not interested in the
scientific publication exercise, but we also recognize that the
prizes awarded are small in contrast to other data science
challenges (e.g., on Kaggle). In the end, the vast majority of
participants came unsuprisingly from academia, which may
further have been enhanced by our advertising the challenge
only on academic mailing lists (e.g., CHI, Ubicomp). Overall,
the financial incentive is certainly beneficial but does not appear
to be the main driver for participation. Notably, some of the
winning teams were rather large, which further reduces the
individual financial incentive if winning teams shared the prize
among members. We noticed teams participating for 3 years in a
row despite not winning any of the prizes. Informal discussions
with participants revealed that the “challenge” aspect seemed a
key motivation.

TABLE 6 |Baseline performance for SHL 2018–2020. AO: the classifier is trained using the training data only; AV: the classifier is trained using both the training and validation
data.

Raw data frames (5 s) ML DL

Training Testing Training time (s) Testing time (s) F1 (%) Training time (s) Testing time (s) F1 (%)

SHL 2018 375,130 68,376 94 3.4 76.6 4,604 7.5 82.5
SHL 2019 558,216 (AO) 55,811 160 2.3 56.9 7,066 6.1 60.3

600,393 (AV) 55,811 171 2.9 60.2 8,810 6.7 66.6
SHL 2020 784,288 (AO) 57,573 239 2.7 61.9 11,936 6.3 68.0

899,444 (AV) 57,573 304 3.3 63.3 13,110 6.8 78.8

FIGURE 16 | Confusion matrices of the ML and DL baseline systems for SHL 2018–2020 with a 5-s decision window. The eight class activities are: 1—Still;
2—Walk; 3—Run; 4—Bike; 5—Car; 6—Bus; 7—Train; 8—Subway.
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We understood that for the supervisors of some research groups,
encouraging PhD students to participate in a well-delimited
challenge is a good way to induce new PhD students in research
skills and collaboration within the team. We gave a certificate of
participation to all teams. This was requested explicitly by
participants the first year of the challenge. We received additional
feedback in the following years that such a certificate was valuable to
participants. We speculate this may be useful to show engagement
with an international event, whichmay be valued by the university or
by future employers. Another motivation is clearly the opportunity
to have the work of the participants published to the HASCA
workshop organised alongside Ubicomp. As a lesson learned,
awarding a certificate and a venue for publication seems to be a
good recipe to follow for other challenge organisers.

We widely advertised through multiple mailing lists, with a
particular effort to widening participation (e.g., Women in
Machine Learning). Each year saw about 30 expressions of
interest, out of which 50% led to actual submission of a
competition entry. Asking for expression of interest at the
start of the challenge period is helpful to organise the
workload once the competition entries are received and may
be another advice to other challenge organisers.

Finally, we initially debated whether to organise the challenge on
an established platform. Eventually, we decided to roll-out our own
challenge process with a manual submission process (via email) but
with awell define file submission format, which allows an automated
evaluation at the end. This worked well for our challenge, at the
expense of not having niceties such as real-time scoreboards that
other platforms might have. However, such scoreboards may also
lead to participants over-fitting their methods, and we decided for a
“blind” submission to prevent this instead. Participants obviously
could split our part of the training data for their own validation
approach and in some cases we indicate some parts of already-public
data could be used as validation. The take home message is to
communicate a clear file format for the submission. We never
experienced submissions using an incorrect format. We did provide
an example of such result file format as a reference, and this may
have helped ensuring the correct format.

7 CONCLUSION

We surveyed the state of the art in transportation and locomotion
recognition from smartphone motions sensors, as captured by the
achievements obtained during the three SHL recognition challenges
2018–2020, which aimed to recognize user’s transportation and
locomotion mode from smartphone motion sensors.

In total, 21, 14 and 15 submissions were received for the three
challenges, respectively. SHL 2018 achieves the highest F1 score
93.9% and an average F1 score of 86.9% (top 10 teams) for time-
independent evaluation and 1-min decision window (Wang et al.,
2018). SHL 2019 achieves the highest F1 score of 78.4% and an
average F1 score of 66.5% (top 10 teams) for position
independent evaluation and 5-s decision window (Wang et al.,
2019). SHL 2020 achieves the highest F1 score of 88.9% and an
average F1 score of 69.5% (top 10 teams) for user-independent
evaluation and 5-s decision window (Wang et al., 2020). Because

the approaches are implemented by different research groups
with varying expertise, the conclusions drawn will be confined to
the submissions of the SHL challenges. We additionally provide a
general baseline solution that can be applied to the three
challenges. The baseline results confirm the challenging level
of the three challenges being ranked as: SHL 2018 being the
easiest, followed by SHL 2020, and SHL 2019 being the hardest.

The submissions can be broadly divided into ML and DL
pipelines. We observe that DL is becoming more popular with
the evolution of the challenges, starting with 42%of the submissions
in 2018 to 60% of the submissions in 2020. Overall, DL approaches
outperformed the ML approaches in the three challenges, but are
more computationally complex. The downside is that in the worst
case DL may perform much less well than ML approaches, which
we attribute to the complexity of effectively deploying deep learning
approaches and optimizing architecture and hyper parameters
effectively within a time-constrained challenged. Various
schemes have been employed by the participant teams to tackle
the challenge of the variation of time, user and position, including
robust representation, data augmentation, tackling over-fitting, and
post-processing. These methods provide a good insight for
developing novel algorithms for activity recognition in real life.

The challenges showcased an increased sophistication in state
of the art methods. Transportation and locomotion mode
recognition based only on motion sensors was able to
distinguish most modes with relative ease, and to a more
limited extent was able to distinguish subtly distinct modes,
for example between train and subway (rail transport) or
between bus and car (road transport). However there are still
evident disadvantage when using only one sensor modality.
Future work would be to exploit the multi-modal sensor data
[e.g. GPS (Wang et al., 2019), image (Richoz et al., 2019), sound
(Wang and Roggen, 2019), and multimodal fusion (Richoz et al.,
2020)] to improve the robustness to position and user variation12.
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