
On the Frontiers of Software Science
and Software Engineering
Yingxu Wang*†

Department of Electrical and Software Engineering, International Institute of Cognitive Informatics and Cognitive
Computing (I2CICC), Schulich School of Engineering, Hotchkiss Brain Institute, University of Calgary, Calgary, AB,
Canada

Advances in software engineering, software science, computational intelligence, and
intelligent mathematics have led to the establishment of Frontiers in Computer
Science—Software (FCSS). FCSS aims to promote transdisciplinary research on
software science and engineering (SSE), autonomous systems, and computational
intelligence. FCSS covers not only classical empirical software engineering and
industrial processes, but also contemporary topics of software science, intelligent
programming languages, autonomous code generation, mathematical foundations of
software, and programming knowledge bases. FCSS reports empirical studies and
emerging topics in software engineering including tools, development platforms,
industrial processes, management infrastructures, quality assurance schemes, big data
systems, and software migrations across languages and platforms.

Keywords: software science, software engineering, theoretical foundations, intelligent mathematics, empirical
studies, architectures, best practices, autonomous software generation

INTRODUCTION

The latest advances in computer science, software theories, intelligence science, knowledge science,
intelligent mathematics, and autonomous systems have triggered the emergence of software science
as a transdisciplinary field overarching software engineering, programming theories, formal
methods, and computational intelligence (Turing, 1950; von Neumann, 1946; Dijkstra, 1976;
Hoare, 1978; Hoare et al., 1987; Wang, 2014; Wang, 2007a; Wang et al., 2008; Wang and
Gafurov, 2010; Wang, 2016).

Software science studies the formal properties and mathematical models of software, general
methodologies for rigorous and efficient software development, and coherent theories underpinning
software behaviors and software engineering practices (Wang, 2014). The discipline of software
science encompasses theories and methodologies, intelligent mathematics, system software,
fundamental algorithms, organizational theories, cognitive complexity of software, and intelligent
behavior generation theories. Recent developments in software science have paved the way to enable
novel technologies for AI programming (AIP) (Wang and Xu, 2019).

Software engineering is a discipline underpinned by software science that adopts engineering
approaches to develop large-scale software towards high productivity, low cost, trustworthy
quality, and controllable development schedule (Wang, 2007a). Software engineering is one of the
most complicated branches of engineering fields because its objects are highly abstract and
intangible. It encompasses system modeling, architecting, development methodologies,
programming technologies, and supporting platforms. It also covers heuristic principles,
tools/environments, best practices, case studies, experiments, trials, and performance
benchmarking.

Edited and reviewed by:
Kaleem Siddiqi,

McGill University, Canada

*Correspondence:
Yingxu Wang

yingxu@ucalgary.ca

†FIEEE,
FBCS, FI2CICC, FAAIA, and FWIF,
Specialty Chief Editor of Frontiers of

Software Science and Software
Engineering

Specialty section:
This article was submitted to

Software,
a section of the journal

Frontiers in Computer Science

Received: 28 August 2021
Accepted: 09 November 2021

Published: 17 March 2022

Citation:
Wang Y (2022) On the Frontiers of

Software Science and
Software Engineering.

Front. Comput. Sci. 3:766053.
doi: 10.3389/fcomp.2021.766053

Frontiers in Computer Science | www.frontiersin.org March 2022 | Volume 3 | Article 7660531

SPECIALTY GRAND CHALLENGE
published: 17 March 2022

doi: 10.3389/fcomp.2021.766053

http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2021.766053&domain=pdf&date_stamp=2022-03-17
https://www.frontiersin.org/articles/10.3389/fcomp.2021.766053/full
https://www.frontiersin.org/articles/10.3389/fcomp.2021.766053/full
http://creativecommons.org/licenses/by/4.0/
mailto:yingxu@ucalgary.ca
https://doi.org/10.3389/fcomp.2021.766053
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2021.766053

This editorial addresses the objectives, missions, challenges,
and latest development of Frontiers in Computer
Science—Software (FCSS). In the framework of FCSS,
software science foci on foundations and theoretical
software engineering, whilst software engineering covers
heuristic principles, tools, development environments, best
practices, and programming technologies. A set of key
challenges and opportunities of software science and
engineering has been recognized in Challenges and
Opportunities in Software Science and Engineering. The
emerging fields of software science and novel technologies
of software engineering are elaborated in The Frontier of
Software Science and The Frontier of Software Engineering,
respectively.

CHALLENGES AND OPPORTUNITIES IN
SOFTWARE SCIENCE AND ENGINEERING

Despite the fast growth of software engineering over the past
60 years, software development has still required intensive
manual interactions in the software industry (Dijkstra, 1976;
Hoare, 1978; Wang, 2014). This phenomenon indicates a
fundamental challenge to both theories and technologies of
Software Science and Engineering (SSE), which are
substantially constrained by the following reasons and
traditional practices.

1) The fundamental theories towards software science are immature:
It is indicated by a common perception shared by many
researchers and practitioners that software engineering does
not obey any known physical laws. However, there is a lack
of basic research seeking what really are the laws and their
theoretical foundation underpinning SSE.

2) The traditional perceptions on the essences of software are
questionable: Software or program is used be treated as a list
of code. However, latest discoveries reveal software is a cohesive
systemof intelligent behaviors generated by dynamic interactions
between the sets of operational events (E), process models (PM),
and structural models (SM) across the three dimensions (Wang,
2004; Wang, 2008a).

3) Essential Intelligent Mathematics (IM) for modeling and
manipulating human and software behaviors are missing: IMs
(Wang, 2020) for SSE are contemporary mathematical means
beyond propositional logics and discrete mathematics, which
encompass system algebra, concept algebra, and Real-Time
Process Algebra (RTPA) (Wang, 2008a), etc. It is discovered
that suitable IMs for software system specifications and
algorithm descriptions had been left behind to the
demands in SSE. As a result, none of the essential
processes from user requirement elicitation, system
specification, to code generation may be rigorously
manipulated towards the maturity of software science.

4) The current programming languages are anti-productive
because they are not designed for machine enabled
software generation: Our typical programming languages
are still machine-oriented constrained by deterministic

condition-driven compilers. The limited expressive power
of them, particularly in the most important real-time
environments, has substantially constrained their
adaptation to intelligent software specifications and AIP
towards autonomous intelligence generation (Wang and
Xu, 2019). Instead, non-programmable neural networks
have become the optional solutions for SSE in most
challenging real-time contexts (Wang, 2004; Wang, 2008b).

A set of Grand Challenges (GCs) to SSE have been identified in
basic research (Turing, 1950; von Neumann, 1946; Dijkstra, 1976;
Hoare, 1978; Hoare et al., 1987; Wang, 2014; Wang, 2007a; Wang
et al., 2008;Wang et al., 2021;Wang, 2002;Wang, 2007b;Wang et al.,
2009a; Wang et al., 2004; Wang, 2020; Wang, 2008c; Wang, 2012c;
Wang, 2004; Wang and Xu, 2019; Wang et al., 2009b) of this field,
which may be highlighted by the following fundamental queries:

1) What are the necessary and sufficient conditions for enabling
run-time software intelligence in SSE?

2) Why have AI and autonomous systems been developed by
data-driven neural networks rather than program-driven
software engineering?

3) Does that of GC2 indicate a theoretical or technical challenge
to SSE?

4) Howmature are our computing platforms and programming
languages for enabling autonomous software generation,
mostly at run-time?

5) Is Stored-Program-Controlled (SPC) computers (Turing,
1950; von Neumann, 1946), i.e., von Neumann machines
(VNM) (von Neumann, 1946), adequate enough for
intelligent software design? If not, what kind of computers
will be needed for the next generation of intelligent software
engineering?

6) Are our programming languages sufficiently expressive for
designing intelligent software? What would happen to a
software system if the deterministic if-then-else structures
were indeterminable at designed-time or exhausted at run-
time?

7) Are our mathematical means ready for rigorously expressing
software system requirements? Is our inference power adequate
for expressing real-time inexhaustive, indeterministic, and
uncertain behaviors in SSE?

8) How may an intelligent software system be trusted and
verified when its state space is infinitive in de facto, such
as those of self-driving vehicles and mission-critical robots?

9) How may a nondeterministic intelligent programming
language be created in order to enable run-time intelligent
behavior generation for handling indeterministic events and
autonomous decision-making requirements?

10) How will SSE enable the next generation of intelligent system
software and autonomous behavior generation systems?

These GCs provide a set of theoretical and technological
challenges to and opportunities for SSE as well as the software
industry. Any breakthrough on the set of GCs will lead to a wide
range of technical innovations and applications in the software
and computational intelligence industries.

Frontiers in Computer Science | www.frontiersin.org March 2022 | Volume 3 | Article 7660532

Wang Software Science and Engineering Frontiers

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

THE FRONTIER OF SOFTWARE SCIENCE

It is recognized that a rigorous theoretical framework of software
science is yet to be sought based on a plenty of repositories of
empirical knowledge about the nature of software and its
development. As Edsger Dijkstra stated that “Software
engineering is programming when you can’t (achieve) (Dijkstra,
1976).” Therefore, software science is what one cannot solve by
empirical software engineering (Wang, 2014). The pinnacle of
software science is the theories of formal methods (Turing, 1950;
Hoare, 1978; Hoare et al., 1987; Wang et al., 2008) and platforms of
system software including operating systems, compilers, database
systems, and Internet-based distributed systems (von Neumann,
1946; Dijkstra, 1976; Wang, 2014). C.A.R. Hoare has revealed that
software is amathematical entity (Hoare, 1978) thatmay be formally
denoted by a behavioral process known as the unified process theory
in formalmethods towards software engineering (Hoare et al., 1987).
A set of 30+ laws of programming has been discovered byHoare and
his colleagues (Hoare et al., 1987).While being a visiting professor in
Prof. Hoare’s laboratory at the University of Oxford, the author of
this article has developed a Real-Time Process Algebra (RTPA)
(Wang, 2008a). RTPA extendsHoare’s sequential process theory to a
system of intelligent mathematics for formally denotating system
and human cognitive, inference, and behavioral processes as a
general theory towards software science (Wang, 2014). Based on
RTPA, a comprehensive set of 95 mathematical laws and associated
theorems on software structures, behaviors, and processes has been
formally established (Wang et al., 2008).

Software science is a discipline that studies the formal
properties and mathematical models of software, general
methodologies for rigorous and efficient software
development, and coherent theories and laws underpinning
software behaviors as well as software engineering practices.
The architecture of software science encompasses theories and
methodologies, intelligent mathematics, intelligent system
software, and software engineering processes (Wang,
2007a). It is noteworthy that the focuses of software science
are on the fundamental platforms of Intelligent System
Software (ISS) including those of intelligent operating
systems, intelligent requirement specifiers, intelligent
compilers, and intelligent programming knowledge bases.
The development of ISS will be based on an indispensable
foundation known as intelligent mathematics that enables
software engineering to be matured towards software
science based on rigorous denotational mathematics beyond
inexpressive programming languages.

It is noteworthy that IM (Wang, 2012a; Wang, 2012d; Wang,
2020) is centric in software science as a category of denotational
mathematical structures. IM deals with complex mathematical
entities beyond pure numbers such as abstract objects, complex
relations, behavioral interactions, denotational concepts,
knowledge, processes, programmable intelligence, and general
systems. IM is an indispensable foundation for dealing with the
abstract and complex entities of software structures and behaviors. A
set of IMs have been created in the last decade embodied by system
algebra (Wang, 2008b), concept algebra (Wang, 2006; Wang, 2010),
RTPA (Wang, 2008a), semantic algebra (Wang, 2010; Wang, 2013),

and inference algebra (Wang, 2012b) towards AIP. IM provides a
coherent set of contemporary mathematical means and explicit
expressive power for manipulating both complex mathematical
objects and long-chains of serial or deep-layers of embedded
mathematical operations in applied domains. In software science,
a GeneralMathematicalModel of Software (GMMS) (Wang, 2014) is
discovered based on RTPA that reveals any software system is a
derived instance of GMMS for rigorously manipulating arbitrary
software systems as behavioral interactions in the universe of discourse
of software (Ω) determined by the Cartesian product Ω � E x PM x
SM (Wang, 2014). Therefore, the maturity of IM may indicate the
maturity of software science for rigorously processing system
architectures and behaviors with abstract concepts, complex
relations, and dynamic processes (Wang, 2020).

THE FRONTIER OF SOFTWARE
ENGINEERING

The latest advances of theories and methodologies in software
science, computational intelligence, and IMs have paved a way to
enable machines to generate programs in software engineering
(Wang, 2007a). The challenges to intelligent program generation
have been constrained by the lack of autonomous programming
theories and the difficulties stemmed from the complexity of
software. The missing of machine-understandable semantical
rules of software behaviors has prevented software engineering
from advancing to intelligent program generation. Pilot studies
indicate that a fusion of the analytic (mathematical rule-based)
and gray-box (machine-learning-based) methodologies will be
necessarily adopted towards autonomous program generation
(Wang, 2004; Wang and Xu, 2019).

An ultimate strategy for the next generation of software
engineering is AIP (Wang, 2004; Wang et al., 2009b; Wang
and Xu, 2019), which has been enabled by a comprehensive
set of software laws for software architectures, structures, and
behaviors. In the AIP approach to software engineering, IMs
service as rigorous mathematical means for conveying human
programming knowledge and skills to machines (Wang, 2014).
IMs for AIP is underpinned by: 1) System algebra for software
architectural design; 2) Concept algebra and semantic algebra for
rigorous requirement modeling; and 3) RTPA for formally
manipulating software structures and behaviors. Not only the
architectures of computational intelligent systems, but also their
dynamic behaviors can be rigorously and systematically
manipulated by IMs. Several large-scale projects designed
based IMs have demonstrated that they are a set of powerful
mathematical means for dealing with concepts, knowledge,
behavioral processes, and human/machine intelligence in real-
world software engineering.

The relationship between software science and software
engineering is explained by analogizing those of pure and applied
physics. Without theoretical physics there would be no maturity of
applied physics; so is software science for software engineering. It is
recognized that the phenomena where almost all the fundamental
problems that could not be solved in the past 60 years in software
engineering has been stemmed from the lack of rigorous theories in

Frontiers in Computer Science | www.frontiersin.org March 2022 | Volume 3 | Article 7660533

Wang Software Science and Engineering Frontiers

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

the discipline of software science toward autonomous software
generation.

CONCLUSION

The emerging field of Software Science and Engineering (SSE)
investigates into the theoretical foundations and intelligent
mathematics for autonomous software generation. This
editorial has explored the latest basic research in software
science. Applications of software science and intelligent
mathematics in software engineering and autonomous
software generation have been presented. A set of key
challenges and opportunities for SSE has been formally
reviewed and analyzed towards intelligent software
engineering and AIP. The advanced of SSE will enable the
horse being put in the front of the cart in order to enhance
traditional human-centered programming by intelligent
machines in the central processes of software engineering.

Fronters in Computer Science (FCS)—Software (FCSS) is a new
section in Journal of FCS. FCSS aims to promote transdisciplinary
research and engineering applications in software science, software
engineering, software architecture, and industrial processes. The

coverage of FCSS encompasses not only classical empirical
software engineering, but also contemporary topics of software
science, AI programming, and their mathematical and cognitive
foundations. Original papers, revised conference articles, and
industrial technical reports are welcome in all fields and topics
of software, programming, algorithms, software engineering, and
software science.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

ACKNOWLEDGMENTS

Many people have contributed to the establishment of FCSS. The
Specialty Chief Editor (SCE) of FCSS would like to thank the EIC
of FCS, KS, as well as associate editors and the board of reviewers.
The SCE of FCSS would like to acknowledge the professional
work of Dr. Thomas Croft, Dr. Enrique Morillas, Bennett Colgan,
and Rossana Isola at the editorial office of Frontiers.

REFERENCES

Dijkstra, E. W. (1976). A Discipline of Programming. Englewood Cliffs, NJ:
Prentice-Hall.

Hoare, C. A. R. (1978). Communicating Sequential Processes. Commun. ACM 21
(8), 666–677. doi:10.1145/359576.359585

Hoare, C. A. R., Hayes, I. J., Jifeng, H., Morgan, C. C., Roscoe, A. W., Sanders, J. W.,
et al. (1987). etcLaws of Programming. Commun. ACM 30 (8), 672–686.
doi:10.1145/27651.27653

Turing, A. M. (1950). Computing Machinery and Intelligence. Mind LIX (59),
433–460. doi:10.1093/mind/lix.236.433

von Neumann, J. (1946). The Principles of Large-Scale Computing Machines. Ann.
Hist. Comput. 3 (3), 263–273.

Wang, Y. (2002). “Cognitive Models of the Brain,” in Proceedings of the First IEEE
International Conference on Cognitive Informatics (ICCI’02), Calgary, AB,
Canada, August 2002 (IEEE CS Press), 259–269.

Wang, Y. (2009). “Formal Description of the Cognitive Process of Memorization,”
in Transactions on Computational Science. Editors M. L. Gavrilova and
C. J. K. Tan (Berlin, Germany: Springer), 5, 81–98. doi:10.1007/978-3-642-
02097-1_5

Wang, Y., and Gafurov, D. (2010). The Cognitive Process of Comprehension.
Int’l J. Cogn. Inform. Nat. Intelligence 4 (3), 44–58. doi:10.4018/
jcini.2010070104

Wang, Y. (2012). In Search of Denotational Mathematics: Novel Mathematical
Means for Contemporary Intelligence, Brain, and Knowledge Sciences. J. Adv.
Math. Appl. 1 (1), 4–26. doi:10.1166/jama.2012.1002

Wang, Y. (2012). Inference Algebra (IA). Int’l J. Cogn. Inform. Nat. Intelligence 6
(1), 21–47. doi:10.4018/jcini.2012010102

Wang, Y., Karray, F., Kaynak, O., Kwong, S., Leung, H., Hou, M., et al. (2021).
Perspectives on the Philosophical, Cognitive and Mathematical Foundations of
Symbiotic Autonomous Systems. Philosophical Trans. R. Soc. (A) Oxford, UK
379 (2207), 1–20. doi:10.1098/rsta.2020.0362

Wang, Y. (2020). “Keynote: Intelligent Mathematics: A Basic Research on
Foundations of Autonomous Systems, General AI, Machine Learning, and
Intelligence Science,” in Proceedings of the IEEE 19th Int’l Conf. on Cognitive
Informatics and Cognitive Computing (ICCI*CC’20), Beijing, China,
September 2020 (NY: IEEE Press), 5.

Wang, Y., Latombe, J.-C., Zhang, D., and Kinsner, W. (2009). Advances in
Cognitive Informatics and Cognitive Computing: Report on IEEE ICCI’08
at Stanford University. Int’l J. Cogn. Inform. Nat. Intelligence 3 (4), 91–95.
doi:10.4018/jcini.2009062306

Wang, Y., Liu, D., and Ruhe, G. (2004). “Formal Description of the Cognitive
Process of Decision Making,” in Proceedings of the 3rd IEEE
International Conference on Cognitive Informatics, Victoria, BC,
Canada, August 2004 (IEEE CS, Press), 124–130. doi:10.1109/
coginf.2004.1327467

Wang, Y. (2016). On Cognitive Foundations and Mathematical Theories of
Knowledge Science. Int’l J. Cogn. Inform. Nat. Intelligence 10 (2), 1–25.
doi:10.4018/ijcini.2016040101

Wang, Y. (2004). “On Cognitive Informatics Foundations of Software
Engineering,” in Proceedings of the 3rd IEEE Int’l Conference on
Cognitive Informatics (ICCI’04), Canada, August 2004 (IEEE CS Press),
22–31.

Wang, Y. (2006). “On Concept Algebra and Knowledge Representation,” in
Proceedings of the IEEE 5th Int’l Conference on Cognitive Informatics
(ICCI’06), Beijing, China, July 2006, 320–331. doi:10.1109/
coginf.2006.365514

Wang, Y. (2010). On Concept Algebra for Computing with Words (CWW).
Int’l J. Semantic Comput. 4 (3), 331–356. doi:10.1142/s1793351x10001061

Wang, Y. (2012). On Denotational Mathematics Foundations for the Next
Generation of Computers: Cognitive Computers for Knowledge
Processing. J. Adv. Math. Appl. 1 (1), 118–129. doi:10.1166/
jama.2012.1009

Wang, Y. (2008). “On Mathematical Laws of Software,” in Transactions of
Computational Science. Editors M. L. Gavrilova, C. J. K. Tan, Y. Wang,
Y. Yao, and G. Wang (Berlin, Germany: Springer), 2, 46–83. doi:10.1007/
978-3-540-87563-5_4

Wang, Y. (2013). On Semantic Algebra: A Denotational Mathematics for Natural
Language Comprehension and Cognitive Computing. J. Adv. Math. Appl. 2 (2),
145–161. doi:10.1166/jama.2013.1039

Wang, Y. (2008). On System Algebra. Int’l J. Cogn. Inform. Nat. Intelligence 2 (2),
20–43. doi:10.4018/jcini.2008040102

Wang, Y. (2008). On the Big-R Notation for Describing Interative and Recursive
Behaviors. Int. J. Cogn. Inform. Nat. Intelligence 2 (1), 17–28. doi:10.4018/
jcini.2008010102

Frontiers in Computer Science | www.frontiersin.org March 2022 | Volume 3 | Article 7660534

Wang Software Science and Engineering Frontiers

https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/27651.27653
https://doi.org/10.1093/mind/lix.236.433
https://doi.org/10.1007/978-3-642-02097-1_5
https://doi.org/10.1007/978-3-642-02097-1_5
https://doi.org/10.4018/jcini.2010070104
https://doi.org/10.4018/jcini.2010070104
https://doi.org/10.1166/jama.2012.1002
https://doi.org/10.4018/jcini.2012010102
https://doi.org/10.1098/rsta.2020.0362
https://doi.org/10.4018/jcini.2009062306
https://doi.org/10.1109/coginf.2004.1327467
https://doi.org/10.1109/coginf.2004.1327467
https://doi.org/10.4018/ijcini.2016040101
https://doi.org/10.1109/coginf.2006.365514
https://doi.org/10.1109/coginf.2006.365514
https://doi.org/10.1142/s1793351x10001061
https://doi.org/10.1166/jama.2012.1009
https://doi.org/10.1166/jama.2012.1009
https://doi.org/10.1007/978-3-540-87563-5_4
https://doi.org/10.1007/978-3-540-87563-5_4
https://doi.org/10.1166/jama.2013.1039
https://doi.org/10.4018/jcini.2008040102
https://doi.org/10.4018/jcini.2008010102
https://doi.org/10.4018/jcini.2008010102
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Wang, Y. (2012). On Visual Semantic Algebra (VSA): A Denotational
Mathematical Structure for Modeling and Manipulating Visual Objects and
Patterns. Softw. Intell. Sci. New Transdisciplinary Findings. 68–81. doi:10.4018/
978-1-4666-0261-8

Wang, Y. (2008). Rtpa. Int’l J. Cogn. Inform. Nat. Intelligence 2 (2), 44–62.
doi:10.4018/jcini.2008040103

Wang, Y. (2007). Software Engineering Foundations: A Software Science
Perspective, 1. NY, USA: CRC/Auerbach Publications, 580 pp.

Wang, Y. (2014). Software Science: On the General Mathematical Models and Formal
Properties of Software. J. Adv.Math. Appl. 3 (2), 130–147. doi:10.1166/jama.2014.1060

Wang, Y. (2007). The Cognitive Processes of Formal Inferences. Int’l J. Cogn.
Inform. Nat. Intelligence 1 (4), 75–86. doi:10.4018/jcini.2007100106

Wang, Y., and Xu, J. (2019). “RTPA-based Software Generation by AI Programming,”
in Proceedings of the 18th IEEE Int’l Conference on Cognitive Informatics and
Cognitive Computing (ICCI*CC’19), Polytechnic Milan, Italy, July 2019 (IEEE CS
Press), 41–46. doi:10.1109/iccicc46617.2019.9146036

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022Wang. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Computer Science | www.frontiersin.org March 2022 | Volume 3 | Article 7660535

Wang Software Science and Engineering Frontiers

https://doi.org/10.4018/978-1-4666-0261-8
https://doi.org/10.4018/978-1-4666-0261-8
https://doi.org/10.4018/jcini.2008040103
https://doi.org/10.1166/jama.2014.1060
https://doi.org/10.4018/jcini.2007100106
https://doi.org/10.1109/iccicc46617.2019.9146036
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

	On the Frontiers of Software Science and Software Engineering
	Introduction
	Challenges and Opportunities in Software Science and Engineering
	The Frontier of Software Science
	The Frontier of Software Engineering
	Conclusion
	Author Contributions
	Acknowledgments
	References

