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People with mental stress often experience disturbed sleep, suggesting stress-related
abnormalities in brain activity during sleep. However, no study has looked at the
physiological oscillations in brain hemodynamics during sleep in relation to stress. In
this pilot study, we aimed to explore the relationships between bedtime stress and the
hemodynamics in the prefrontal cortex during the first sleep cycle. We tracked the stress
biomarkers, salivary cortisol, and secretory immunoglobulin A (sIgA) on a daily basis and
utilized the days of lower levels of measured stress as natural controls to the days of higher
levels of measured stress. Cortical hemodynamics was measured using a cutting-edge
wearable functional near-infrared spectroscopy (fNIRS) system. Time-domain, frequency-
domain features as well as nonlinear features were derived from the cleaned hemodynamic
signals. We proposed an original ensemble algorithm to generate an average importance
score for each feature based on the assessment of six statistical and machine learning
techniques. With all channels counted in, the top five most referred feature types are Hurst
exponent, mean, the ratio of the major/minor axis standard deviation of the Poincaré plot of
the signal, statistical complexity, and crest factor. The left rostral prefrontal cortex (RLPFC)
was the most relevant sub-region. Significantly strong correlations were found between
the hemodynamic features derived at this sub-region and all three stress indicators. The
dorsolateral prefrontal cortex (DLPFC) is also a relevant cortical area. The areas of mid-
DLPFC and caudal-DLPFC both demonstrated significant and moderate association to all
three stress indicators. No relevance was found in the ventrolateral prefrontal cortex. The
preliminary results shed light on the possible role of the RLPCF, especially the left RLPCF,
in processing stress during sleep. In addition, our findings echoed the previous stress
studies conducted during wake time and provides supplementary evidence on the
relevance of the dorsolateral prefrontal cortex in stress responses during sleep. This
pilot study serves as a proof-of-concept for a new research paradigm to stress research
and identified exciting opportunities for future studies.
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1 INTRODUCTION

There is abundant evidence that mental stress is often linked to
reduced sleep quality, suggesting abnormalities in brain activity
during sleep when people are stressed (Buysse et al., 2011). While
our understanding into how stress affects brain activity when we
are awake (and are engaged in lab-based stress induction tasks)
has been greatly advanced in recent years (Alonso et al., 2015;
Kramer et al., 2017; Chang and Yu, 2018; Rosenbaum et al., 2018;
Rampino et al., 2019; Schaal et al., 2019; Rosenbaum et al., 2021),
no study has looked at how stress modulates brain activity during
sleep. Attempts to study stress during sleep face several
challenges. First, traditional neuroimaging techniques for
studying stress in daytime are not suited for in-sleep
measurement due to various methodological restraints
imposed by these techniques. Hemodynamic imaging methods
such as functional magnetic resonance imaging (fMRI) can
generate hemodynamic profiles at high spatial resolution, but
they are invasive as people could hardly fall asleep in noisy fMRI
scanners. Functional near-infrared spectroscopy (fNIRS)
achieves better trade-off between convenience and spatial
resolution, but traditional fNIRS systems still use many cables
which make them unsuited for measurement during sleep.
Electrophysiological neuroimaging techniques such as
electroencephalography (EEG) is widely used to measure
brain activity during sleep, but their spatial resolution is
limited, and they are sensitive to motion artifacts. Second,
laboratory-induced stress response is often temporary, and the
effect could barely sustain until and throughout nocturnal sleep
(Rosenbaum et al., 2021). Established methods for inducing
social stress (e.g., the Trier Social Stress Test (Chang and Yu,
2018)), emotional stress (e.g., viewing scary pictures (Rampino
et al., 2019)), and physical stress (e.g., sleep deprivation (Alonso
et al., 2015)) may fail to mirror natural stress responses, as a
laboratory setting often does not represent the typical conditions
under which stress occurs in real life (Wolfram et al., 2013).
Laboratory-induced stress responses often fade out in an hour
(Rosenbaum et al., 2021; Rosenbaum et al., 2018), while real-life
stress responses could last hours to days or even longer after the
onset of the stressors (Joëls and Baram, 2009). Another pitfall of
lab-based stress induction protocols is that they are unsuited for
longitudinal repeated measurement from individual subjects as
they are likely to cause response habituation especially in the
hypothalamic–pituitary–adrenal (HPA) axis as indicated by the
cortisol secretion level (Schommer et al., 2003; Kudielka et al.,
2006; Jönsson et al., 2010; Gianferante et al., 2014). In addition,
stress has been routinely treated as a dichotomous variable
(i.e., stress is either present or absent) in many research
studies. In real life, however, people may experience various
levels of stress with different temporal profiles (Joëls and Baram,
2009). The dichotomous perspective of stress is also unnatural
when biomarkers of stress responses such as cortisol is used as an
indicator because it is difficult to set a universal cutoff line that
accommodates interpersonal variability.

This pilot study is the first to look at how bedtime stress
associates to brain activity during sleep. We aimed to explore
which cortical areas demonstrate stress-related blood flow

patterns during the first sleep cycle. Especially, we focused on
answering the following two research questions:

• What hemodynamic features are significantly associated to
each stress indicator?

• Which sub-regions in the PFC are significantly associated to
each stress indicator?

The study design included addressing the limitations of the
existing research paradigm. Table 1 highlights the originality of
the present study in comparison with previous studies. This study
adopted the N-of-1 approach which is an idiographic research
methodology that overcomes the pitfalls of the widely adopted
large-sample approach. The large-sample approach requires
stringent conditions such as cohort homogeneity—a condition
difficult to meet no matter how large the sample size is. When the
within-subject variability is much larger than the inter-subject
variability, which is common in psychology and physiology
studies, the large-sample approach often fails to provide us
with findings that generalize well to individuals (Molenaar,
2004; Barlow and Nock, 2009; Mehl and Conner, 2012; van
Ockenburg et al., 2015; Burg et al., 2017; Fishera et al., 2018;
Piccirillo et al., 2019). In contrast, the N-of-1 approach embraces
longitudinal repeated measurement on a single subject to
generate the most relevant and reliable information for the
specific person, which represents a true scientific undertaking
(Barlow and Nock, 2009).

With respect to the experiment settings, we performed the
measurement at the subject’s home using a cutting-edge wearable
fNIRS system together with non-invasive wearable and mobile
devices to achieve the highest level of ecological validity. We also
did not rely on lab-based stress induction protocols, as they
require the subjects to be actively engaged in cognitive tasks and
often fail to induce stress responses that sustain until bedtime.
Instead, we tracked the stress indicators on a daily basis, and
utilized the days of lower levels of measured stress as natural
controls to the days of higher levels of measured stress. Stress
responses in human may manifest in multiple physiological
systems with varied temporal profile (Joëls and Baram, 2009).
In this study, stress was quantified using both objective and
subjective indicators. The objective indicators included two
widely used stress biomarkers that reflect the hormonal and
immunological responses to stress: salivary cortisol and
secretory immunoglobulin A (sIgA). The rise of salivary
cortisol reveals the stress-related changes in the
hypothalamic–pituitary–adrenal (HPA) axis. Meanwhile,
stress-associated immunological response could occur more
rapidly compared to the HPA axis, characterized by a quick
and temporal rise and then decrease in sIgA (Engeland et al.,
2016). sIgA may also be a valuable indicator for differentiating
between positive and negative stress effects or between successful
and unsuccessful adaptation or coping with situational demands
(Zeier et al., 1996). The subjective perception of stress can be
measured using psychometric instruments ranging from as
simple as a Likert scale to as complex as the 30-item Perceived
Stress Questionnaire (PSQ) (Levenstein et al., 1993). In this study,
the perceived stress level was rated on a 1–10 Likert scale that was
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implemented using a mobile application. Another significant
difference of this study is that the measurement was mostly
performed when the subject was sleeping, while in previous
stress neuroimaging studies the subjects were all awake and
were engaged in cognitive tasks.

In this study, stress response was treated as a continuous
phenomenon in contrast to the traditional dichotomous
perspective. The data analysis focused on finding significant
associations between cortical hemodynamic features and each
individual stress indicator. Previous studies mostly rely on one
feature type—the mean of the concentration changes in
oxyhemoglobin (ΔO2Hb) and deoxyhemoglobin (ΔHHb).
While this feature type has the merit of easy interpretation, it
fails to fully capture the characteristics of the cortical
hemodynamic signals. In search for the most useful stress-
association features, we derived a wide range of time-domain,
frequency-domain, and nonlinear features from the cortical
hemodynamic signals. We also proposed an original ensemble
feature ranking algorithm that leverages six different statistical
and machine learning techniques to generate an average
importance score for each feature.

This pilot study does not intend to generate conclusive
findings, but rather serves as a proof-of-concept for a new
research paradigm that can be implemented to study stress in
unexplored settings (e.g., during sleep). Understanding the
neurophysiological mechanism that underlies the relation
between stress and sleep has the significance of giving hint to
the development of brain activity markers of stress, which can be
readily measured and monitored using wearable brain imaging
technologies. Despite of being a small-scale pilot study, the data
collection and analysis protocols are readily applicable to large-
scale studies. The observations from this study serve as a
foundation for future research to elucidate where the brain
processes stress during sleep, based on which new stress
indicators or stress coping strategies may be developed.

2 DATA COLLECTION

2.1 Measuring Stress
In this study, we quantified stress using both objective
(i.e., cortisol and sIgA) and subjective indicators

(i.e., perceived stress rating). Salivary cortisol and sIgA were
measured using the SOMA Dual Analyte LFD test kits. These
kits can be used for real-time measurement in a naturalistic
setting. Saliva samples were collected using oral fluid collector
(OFC) swabs and were incubated for 15 min in OFC buffers
before being read. The participant was instructed not to eat,
drink, or brush teeth 30 min prior to providing saliva samples.
The calibration range of cortisol and sIgA were 1.25–40 nmol/L
and 25–800 μg/ml, respectively (Dunbar et al., 2015). The validity
of the SOMA kits has been examined in previous studies
(Mitsuishi et al., 2019). The measured salivary cortisol and
sIgA data were manually logged in a CSV file. Perceived stress
was rated on a 1–10 Likert scale (1 � not stressed at all; 10 �
extremely stressed) which was implemented using a mobile
application named HealthLog.

2.2 Measuring Prefrontal Hemodynamics
A wearable functional near-infrared spectroscopy (fNIRS) (Brite
24; Artinis Medical Systems Co., Netherlands) was used to
measure the concentration changes in oxyhemoglobin
(ΔO2Hb) and deoxyhemoglobin (ΔHHb) in the PFC. The
fNIRS is a non-invasive brain imaging technique that strikes a
good trade-off between temporal and spatial resolution (Tak and
Ye, 2014). The advantage of the Brite 24 system—which weighs
only 300 g—is that it permits the monitoring of ΔO2Hb and
ΔHHb without imposing constraints on the posture and
movement of the subject, and thus is suited for studying
cortical hemodynamics during sleep. In this study, the Brite 24
consists of 10 transmitters (Tx) and 8 receivers (Rx). The Txs take
turns to emit light at wavelengths of 760 nm (dominantly
absorbed by HHb) and 850 nm (dominantly absorbed by
O2Hb). They were fixed on a soft neoprene head cap, which
ensures the alignment of optode placement across different
measurements. The optodes were placed at an interoptode
distance of 3 cm to achieve the maximum penetration depth
of 1.5 cm and were configured into 27 channels as shown in the
Template DAQ state at the bottom of Figure 1. All optodes were
placed between the FpZ–F3–Cz–F4–FpZ regions in the PFC
according to the international 10–20 EEG system. The
sampling rate was set to 50 Hz. The Brite 24 device has a
battery life of up to 2.5 h when it is used for continuous
online measurement. While the battery life could be extended

TABLE 1 | Research paradigm comparison between the current study and previous studies.

Previous studies Current study

Approach Large-sample (nomothetic) N-of-1 (idiographic)
Data collection 1. Experiment was performed in a lab using bulky equipment 1. Experiment was performed at the subject’s home using wearable and mobile

devices
2. Lab-induced stress 2. Stress occurs in daily life setting
3. Subjects were awake and engaged in cognitive tasks 3. Subject was sleeping

Data analysis 1. Limited features derived from hemodynamic signals (usually the
mean)

1. A wide range of features derived to characterize the hemodynamic patterns

2. Stress treated as dichotomous variable (either 1 or 0) 2. Stress treated as a continuous/ordinal variable
3. Basic statistical test used to find inter-group differences 3. Original ensemble algorithm for feature ranking

Ecological
validity

Low High
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by connecting the device to an external power supply, we decided
not to use that strategy out of safety concern for the subject. The
PFC was selected as the region of interest in this pilot study
because previous studies performed during wake time have shed
light on the role of the PFC in responding to acute and chronic
stress (Cerqueira et al., 2007; Hains and Arnsten, 2008; Dedovic
et al., 2009; Yuen et al., 2009; Arnsten et al., 2015; Nejati et al.,
2021).

The Brite 24 system consists of companion software named
OxySoft. The software allows the real-time inspection of the
signal quality of each channel when the fNIRS device is paired
up via Bluetooth connection. Channels with poor quality are
marked by red dots, as shown at the bottom of Figure 1. The
OxySoft supports several visualization formats of the ΔO2Hb
and ΔHHb signals, including time series plots, 2D heatmap,
and 3D heatmap in a glass head. The data recorded by the Brite
24 device were synchronized with the software at regular time
interval and were stored in temporal files. When a
measurement was stopped, OxySoft processed the temporal
files to generate a complete data file that contained raw optical
density (OD) data.

2.3 Measuring Complementary
Physiological Data
In addition to the Brite 24 system, we also used a Fitbit Sense
together with the companion Fitbit app to collect complementary
data of sleep, heart rate, and breath rate. These data were utilized
in the data preprocessing pipeline to remove physiological
artifacts, which is described in detail in the next section. Fitbit

is well-suited to this study as it supports the collection of multiple
streams of physiological signals without imposing additional
burden to the subject. Despite that Fitbit devices may not offer
medical-grade measurements, numerous validation studies have
demonstrated that Fitbit devices can achieve reasonable accuracy
and a better trade-off between accuracy and ecological validity
(Menghini et al., 2020; Liang and Chapa-Martell, 2019; Liang and
Chapa-Martell, 2018).

2.4 Data Collection Procedure
Grounded on the N-of-1 approach, a longitudinal data
collection experiment was conducted with a healthy subject
(male, 30 years). The principle of the N-of-1 method allows the
exclusion of confounding factors pertaining interpersonal
differences in health and physiological conditions. In
comparison, the traditional large-sample approach requires
stringent conditions such as cohort homogeneity and the
findings often do not generalize well to individuals
(Molenaar, 2004; Barlow and Nock, 2009; van Ockenburg
et al., 2015; Fishera et al., 2018). The large-sample approach
becomes especially problematic when the variability within
subject is much larger than the variability across subjects
(Mehl and Conner, 2012; Fishera et al., 2018). There has
been increasing evidence that the large-sample approach may
not provide us with information that generalizes well to
individuals (Molenaar and Campbell, 2009; Burg et al., 2017;
Piccirillo et al., 2019), and hence should not be deemed as more
scientific than other approaches that explicitly address within-
person variability (Mehl and Conner, 2012). On the other hand,
the N-of-1 approach has been well-recognized to provide the

FIGURE 1 | Screenshot of the OxySoft.
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highest reliability at the individual level (Molenaar, 2004;
Molenaar and Campbell, 2009; Mehl and Conner, 2012; van
Ockenburg et al., 2015). The subject was recruited through
personal connections. The inclusion criteria were 1) healthy
subjects aged 18–65 years without chronic diseases, sleep
disorders, and mental disorders, 2) has a smartphone, and 3)
understand the contents of the informed consent. This study
was approved by the Ethics Committee of the Kyoto University
of Advanced Science. Written informed consent was obtained
from the subject before the data collection experiment started.

The data collection procedure is illustrated in Figure 2. Saliva
samples were collected before bedtime at night. We ensured that
saliva sample collection was always done during a fixed time
period 22:00–23:00 to control the confounding effect of the
circadian hormonal rhythm (Oster et al., 2017). The subject
was asked to rate how stressful he felt on the HealthLog app
after a saliva sample was collected. The Brite 24 and Fitbit Sense
were put on the subject when he was ready for sleep. The Brite 24
head cap was placed symmetrically on the subject’s head, and the
Fitbit Sense was worn on the non-dominant wrist. To reset the
brain to a common baseline, the subject first went through a wake
rest phase where he simply sat quietly for 2 min while staying
awake. The wake rest phase was followed immediately by the
sleep phase. The Brite 24 was left on until it ran out of battery. The
subject was instructed to remove and stop the Brite 24 (simply by
pressing the main button) when he needed to go to the restroom
early morning or when he woke up, whichever happened first.
The subject was asked to synchronize the Fitbit Sense with the
companion mobile application after waking up.

3 DATA ANALYSIS

The objective of the data analysis was to identify the channel-wise
features derived from the hemodynamic signals that are
significantly associated to stress indicators. We first processed
the raw OD signals to yield cleaned high quality ΔO2Hb and
ΔHHb signals, and then derived features from the cleaned signals
at each channel. The data analysis pipeline was implemented
using Python 3.8.8.

3.1 Data Preprocessing
We exported data from all the devices and instruments for
preprocessing. Stress data and Fitbit data were aggregated at a
1-day resolution (i.e., one data point for each day during the
experiment period). The perceived stress data were exported from
the HealthLog app into a CSV file with a premium account
subscription. Fitbit data of sleep, heart rate, and breath rate were
exported using a web app that we developed in our previous study
(Liang et al., 2016). All these data were then merged by matching
date stamps.

The fNIRS data were collected at a high sampling rate of 50 Hz
and required more complex preprocessing. The total raw signals
measured by the Brite 24 consist of several components, and the
ΔO2Hb and ΔHHb related to neural activity is only a small
portion. Noisy components are those related to breath, heartbeat,
and movement, which need to be removed (Tak and Ye, 2014).
The fNIRS data preprocessing pipeline is illustrated in Figure 3.

1) Export raw OD signals. Using the OxySoft, we exported raw
OD signals in EDF format so that they were semi-compatible
with the data formats supported by the MNE-NIRS Python
library (Luke et al., 2021). Although the OxySoft also allows
the export of ΔO2Hb and ΔHHb signals that have been
converted from raw OD signals, unfortunately the Artinis
format of these signals is not supported by the MNE-NIRS
library at the time of this study. It is worth noting that the
MNE-NIRS library read in the EDF data as EEG signals by
default; hence, additional processing was needed to convert
the signal type to fNIRS after loading EDF files using the
MNE-NIRS library.

2) Trim the signals. Since we were only interested in the first sleep
cycle, we discarded the signal segments before the sleep start
time and after the first sleep cycle. The sleep start time as
recorded by the Fitbit Sense was used as the start time (Ts) of
the effective data. The end time (Te) of the effective data were
set to Te � Ts + 90 min as the average sleep cycle of healthy
adults is 90 min (Feinberg and Floyd, 1979).

3) Remove channels with poor signal quality. The quality of the
OD signals could be compromised by many factors during the
measurement. While the OxySoft allows real-time inspection

FIGURE 2 | Data collection procedure.
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of signal quality, it does not provide computational tools to
remove channels with poor signals. In our data preprocessing
pipeline, we removed channels with poor signal quality using
the Scalp Coupling Index (SCI) method (Pollonini et al.,
2014). We first performed channel-wise filtering on the OD
signals at both wavelengths using a band-pass filter
(0.7–1.5 Hz) to preserve only the heartbeat components.
The resulting signals were normalized to balance any
difference between their amplitudes. The zero-lag cross-
correlation between the resulting signals of the same
channel—defined as the SCI—was computed and used as a
quantitative measure of the signal-to-noise ratio of the
channel. Channels with an SCI-value below 0.75 were
regarded as poor channels and were removed from the
subsequent analysis.

4) Transform OD to ΔO2Hb and ΔHHb. The modified
Beer–Lambert law (MBLL) was applied to convert the OD
signals to ΔO2Hb and ΔHHb signals (Delpy et al., 1988). As
shown in Eq. 1, ϵO2HB(λi) and ϵHHB(λi) are the extinction
coefficients of O2Hb and HHb at wavelength of λi,
respectively. L denotes the interoptode distance. PPF(λi)
denotes the partial pathlength factor, which represents the
sensitivity of the measured optical density to the hemoglobin
concentration change in a focal region (Steinbrink et al.,
2001). In this study, L and PPF(λi) were set to 0.03 and 0.1
(Strangman et al., 2014).

ΔOD λi( ) � ϵO2HB λi( )ΔO2HB + ϵHHB λi( )ΔHHB[ ] × L × PPF λi( ).
(1)

5) Filter out physiological systemic responses. The hemodynamic
response due to neural activity has frequency content
predominantly below 0.5 Hz (in many cases around
0.1 Hz). The ΔO2Hb and ΔHHb signals were band-pass
filtered to remove cardiac and respiratory noise. According
to the Fitbit data, the subject typically had a breath and heart
rate between 11–13 bmp and 55–80 bmp, respectively, during
sleep. Hence, the cutoff frequency of the band-pass filter was
set to 0.02–0.18 Hz.

6) Remove motion artifacts. Although fNIRS is considered more
resilient to motion artifacts than EEG, abrupt head motion
such as tossing and turning in sleep may still induce spikes
that contaminate the true cortical hemodynamic signals. We
used the correlation based signal improvement (CBSI)
method (Cui et al., 2010) for motion artifacts removal.

This method is based on the observation that the ΔO2Hb
and ΔHHb signals, which are typically strongly negatively
correlated, will become more positively correlated when
contaminated with motion artifacts. Correspondingly, the
CBSI method removes motion artifact through recovering
the negative correlation between the ΔO2Hb and ΔHHb
signals.

7) Compute epoch-wise average. The effective data of each
measurement trial spanned over 90 min (generating
270,000 data points each night). The duration was
significantly longer than that of traditional fNIRS studies
where a measurement is usually at the scale of several
minutes. To efficiently analyze such huge amount of data,
we averaged the cleaned ΔO2Hb and ΔHHb signals epoch-by-
epoch at a 30-s interval. Each epoch contains 1,500 data
points. This step was compliant with the standard
procedure for sleep analysis (Iber et al., 2017). The output
time series signals are denoted as {Xn: n � 1, . . . , N} where
N � 180.

3.2 Feature Construction
We derived 36 features from the ΔO2Hb signal and 36 features
from the ΔHHb at each channel. These features fall into three
groups. The first group contains 11 time-domain features.
These features were directly extracted from the cleaned
signals.

• Descriptive statistics: mean ( �X), standard deviation (σ),
maximum (Xmax), and minimum (Xmin).

• Skewness (skew): a normalized measure of the asymmetry of
the probability distribution of a signal.

• Kurtosis (kurt): a normalized measure of the relative
importance of tails versus shoulders in causing dispersion
of a signal.

• The 5th-order moment (mmt5): a measure of the relative
importance of tails versus center in causing skew of a signal.

• Mean absolute value (MAV): the average of the absolute
value of the signal amplitude.

• Root mean square (RMS): a measure of the average power of
a signal.

• Zero crossing (ZC): the number of times the signal changes
value from positive to negative and vice versa. It can be
interpreted as a measure of the noisiness of a signal.

• Crest factor (CF): an indicator of how extreme the peaks are
in a signal.

FIGURE 3 | Pipeline for fNIRS data preprocessing.
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The second group contains two most typical frequency-
domain features. Fast Fourier transform (FFT) was applied to
convert {Xn: n � 1, 2, 3, . . . , N} from time domain to frequency
domain to extract the following two features.

• Total power (totalSpec): the sum of the spectral components
of a signal.

• Maximal power (maxSpec): the maximum amplitude of the
spectral components of a signal.

The third group contains 23 features that characterize the
nonlinear characteristics of the cortical hemodynamic signals.
Human physiological systems are dynamical systems that often
exhibit nonlinear characteristics (Goldberger and West, 1992;
Cheffer et al., 2021). Previous studies found that nonlinearities are
particularly present in the brain (Toyoda et al., 2008; Ma et al.,
2018). To extract nonlinear features, we first used Takens’ time-
delay embedding to construct a phase space representation of the
system as:

�u i( ) � x i( ), x i + τ( ), . . . , x i + τ d − 1( )( )( ), (2)

where τ is the time delay and d the embedding dimension. The
optimal value of τ and d were decided by minimizing the time-
delayed mutual information and by the false nearest neighbors
method (Kantz and Schreiber, 2003), respectively. The search
range was set to [1, 10] for τ and [2, 6] for d at an increment of 1.
The signals were then embedded using the optimal τopt and dopt.
The maximal Lyapunov exponent (MLE), Hurst exponent (HE),
and correlation dimension (CD) were computed from the
embedded ΔO2Hb and ΔHHb signals. Several nonlinear
analysis techniques were also applied to derive features,
including recurrence quantitative analysis (RQA), Poincaré
plots (PP), and detrended fluctuation analysis (DFA). Different
measures of entropy were also calculated.

The RQA computes several quantitative metrics from a
recurrence plot (RP). A RP is a visualization of the recurrence
behavior of the phase space trajectory �u(i) of a dynamical system.
Each element in the RP is calculated by the following equation:

R i, j( ) � Θ ϵ− ‖ �u i( ) − �u j( ) ‖( ), (3)

where Θ: R → (0, 1) is the Heaviside step function, ϵ is a cutoff
distance, and ‖▪‖ is the Euclidean norm. In this study, ϵ was set to
0.85. The metrics derived from a RP quantify the recurrence
behavior of a dynamic system.

Poincaré plot (PP) is a special type of RP used to quantify
self-similarity of a dynamical system. It is a scatter plot of each
pair of consecutive data points in a time series signal
(technogram), which is often in a shape of ellipse. The
minor axis (or width) of the ellipse, denoted as SD1,
reflects the level of short-term instantaneous variability.
The major axis (or length) of the ellipse, denoted as SD2,
reflects the long-term variability. PP has been widely used in
ECG analysis to help diagnose cardio abnormalities (Hoshi
et al., 2013).

The DFA method is often used to quantify the fractal scaling
properties and is useful for revealing the statistical self-similarity

of a signal (Peng et al., 1994). It has been proven particularly
useful in neurology studies (Peng et al., 1994; Hardstone et al.,
2012). The DFA first converts a signal to mean-centered
cumulative sum. The output signal is then split into epochs,
detrended, and the RMS is computed. This process is repeated
over a range of epoch sizes n at different scale. A linear trend line
is then fit to the log (RMS) − log(n) plot. The slope of the fitted
trend line, denoted by α, is called scaling exponent.

The derived nonlinear features are summarized below.

• Optimal delay (τopt).
• Optimal embedding dimension (dopt).
• Maximal Lyapunov exponent (MLE): a measure of
separation rate of a signal’s trajectories in the phase
space. It indicates the predictability of a dynamic system.
A positive maximum Lyapunov exponent is an indicator of
the presence of chaos (Eckmann and Ruelle, 1985).

• Hurst exponent (HE): a measure of long-term memory (or
long-range dependency) of a signal. A value of HE in the
range 0–0.5 indicates long-term negative autocorrelation,
while a value in the range 0.5–1.0 indicates long-term
positive autocorrelation. A value of 0.5 can indicate a
completely uncorrelated signal.

• Correlation dimension (CD): an indicator used to
distinguish deterministic chaos from stochastic processes.

• Recurrence rate (RR): the number of black dots in a RP
excluding the main diagonal line. It is a measure of the
relative density of recurrence points in the entire RP.

• Percent determinism (DET): the fraction of recurrence
points that form diagonal lines. It reports the percentage
of recurrent points in diagonal structures.

• Maximal diagonal line length (Dmax): the length of the single
longest line in the diagonal direction within an entire RP.
The smaller the Dmax, the more divergent the trajectories.

• Average diagonal line length (Davg): the average time that
two segments of the phase space trajectory are close to
each other.

• Entropy of diagonal lines lengths (ENTD): the Shannon
entropy of the frequency distribution of the diagonal line
lengths. It reflects the complexity of the deterministic
structure in the system.

• Laminarity (LAM): the histogram of lengths of vertical lines
in a RP. It reports the percentage of recurrent points in
vertical structures.

• Trapping time (TT): the average length of the vertical lines.
It indicates the mean time the system will abide at a
specific state.

• Longest vertical line length (Vmax): the maximal length of
the vertical lines in the entire RP.

• Entropy of vertical lines lengths (ENTV): the Shannon
entropy of the frequency distribution of the vertical line
lengths.

• Standard deviation of the minor axis of a PP (SD1).
• Standard deviation of the major axis of a PP (SD2).
• Ratio of SD1 and SD2 (SDratio); computed as SD1/SD2.
• Area of the fitted ellipse (Se): the area of the ellipse fitted into
the PP. It is computed as Se � π × SD1 × SD2.
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• Scaling exponent (α): the slope of the fitted trend line in
DFA, where each epoch has no overlap.

• Scaling exponent with overlap (αOL): the slope of the fitted
trend line in DFA, where each epoch has 50% overlap.

• Sample entropy (sampEn): a measure of the negative natural
logarithm of the probability that if two sets of data points of
length m have Euclidean distance D [Xm (n1), Xm (n2)] < r
(n1 ≠ n2) then two sets of data points of m + 1 also have
Euclidean distance D [Xm+1 (n1), Xm+1 (n2)] < r. In this
study, rwas set to 0.2σ. A lower value for the sample entropy
corresponds to a higher probability indicating more self-
similarity and less noise in the signal (Richman and
Moorman, 2000).

• Permutation entropy (perEn): a complexity measure that
captures the order relations between the values of a signal.
Signals with smaller perEn are more regular and
deterministic, and those with higher perEn are noisier
and more random.

• Statistical complexity (SC): the product of the normalized
permutation and a normalized version of the
Jensen–Shannon divergence between the ordinal
distribution and the uniform distribution (López-Ruiz
et al., 1995).

3.3 Feature Ranking
We proposed an original ensemble approach to rank channel-
wise hemodynamic features for each stress indicator. As
outlined in Figure 4, this approach utilized six feature
selection statistical and machine learning techniques to
generate an average importance score for each feature �ζ ,
calculated the correlation coefficient cor and the
corresponding p-value between each feature and a target
stress indicator, and performed feature pruning based on
the specified criteria. Feature ranking was performed on

ΔO2Hb and ΔHHb features separately. The six feature
selection techniques included F-test, mutual information,
multivariate linear regression, least absolute shrinkage and
selection operator (Lasso) regression, Ridge regression, and
recursive feature elimination (RFE).

The F-test and mutual information (MI) are univariate
methods that consider the relationship between each feature
and a target stress indicator individually. The F-test method
performs a hypothesis testing between a model created by just
a constant and another model created by a constant and a
hemodynamic feature, and hence reveals the significance of
each feature in improving the model. The calculated F-statistic
was used as the importance scores of features. While the
F-statistic only reflects the linear relationship between a
feature and a target stress indicator, the MI method analyzes
nonlinear relationships by calculating information gain (Estevez
et al., 2009; Ross, 2014). The MI between a hemodynamic feature
and a target stress indicator reveals the reduction in uncertainty
for the stress indicator given the known value of the feature (Ross,
2014), which was used as the importance score of features. The
multivariate linear regression (LR) method fits a linear model
with coefficients to minimize the residual between the observed
values and the predicted values of the stress indicator. The Lasso
regression and Ridge regression methods address the over-fitting
problem of linear regression through L1-regularization and L2-
regularization, respectively. In addition, the Lasso regression is
considered a very useful technique in selecting a strong subset of
features as it aggressively produces coefficients of 0 for some
features. On the other hand, the Ridge regression is suited for data
interpretation because useful features tend to have non-zero
coefficients. The α parameters were all set to 0.5 for Lasso and
Ridge regression. For the three linear regression methods, the
estimated coefficients were used as the importance scores of the
features. The RFE method selects features by recursively

FIGURE 4 | Proposed ensemble method for selecting important hemodynamic features.
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removing the weakest features until only five features are left. The
ranking position of RFE was used as the importance score.

The cortical hemodynamic features were all scaled between [0,
1] before each feature selection technique was performed. For
feature i (i ∈ Sfeature), the importance score generated by method
k, denoted by ζki (k ∈ Smethod), were also scaled between [0, 1].
For a stress indicator j (j is either cortisol, sIgA, or perceived
stress), the scores of all feature ranking methods for feature i were
then averaged to produce an average score (denoted as �ζ i,j) of
feature i. The computation of the �ζ i,j is explained in Eq. 4. We
also defined the support of feature iwith respect to stress indicator
j (denoted as supporti,j) as the number of feature selection
methods that yielded an importance score above 0.50 for
feature i. Since the �ζ only indicates the relative ranking of a
feature, we calculated the linear correlation between individual
feature and a target stress indicator (denoted as cori,j) to better
interpret the quantitative relationships. The Pearson’s correlation
analysis was performed when cortisol and sIgA were used as the
stress indicator, and Spearman’s correlation analysis was
performed when perceived stress was used as the stress
indicator. The p-values (denoted as pi,j) were calculated to
indicate the significance of the correlation coefficients at a
significance level of 0.05. The features that satisfied the
following four criteria were selected as important features: 1)
�ζ i,j > 0.50, 2) supporti,j ≥ 3, and 3) cori,j > 0.50, and 4) pi,j < 0.05.
Feature ranking was performed in a channel-wise manner and for
ΔO2Hb and ΔHHb signals separately.

�ζ i,j � 1
6

∑
k∈Smethod

ζki,j. (4)

4 RESULTS

4.1 Descriptive Statistics
In total 15 days of data were collected from the subject. As shown
in Table 2, the average level of salivary cortisol and sIgA were 3.4
nmol and 295.3 μg/ml, respectively. These values were within the
normal ranges for healthy adults (Zeier et al., 1996; Oster et al.,
2017). Perceived stress ranges from 2.0 to 8.0 with an average
score of 3.8. Only 4 out of the 15 days were rated above 5,
indicating that the subject did not perceive constant chronic
stress during the data collection experiment. A correlation
analysis found no significant linear relationship among the
three stress indicators.

4.2 PFCHemodynamic Features Associated
to Stress
Channel-wise hemodynamic features associated to stress
indicators are summarized in Table 3–8. The aggregated
frequency of each feature type is illustrated in Figure 5.
Visualization of the channels associated to each stress
indicator is provided in Figures 6, 7.

Stress was associated to features in both time and frequency
domains as well as to nonlinear features. For cortisol, the top
three associated cortical hemodynamic features of both the
ΔO2Hb and ΔHHb signals are the �X of channel 16, the
sampEn of channel 26, and the SDratio of channel 12. These
three features were supported by all six feature selection
techniques of the ensemble feature ranking algorithm. Higher
cortisol level was strongly associated to increased mean of ΔO2Hb
but decreased mean of ΔHHb at channel 26, strongly associated
to increased sample entropy of both the ΔO2Hb and ΔHHb
signals at channel 16, and moderately associated to decreased
SDratio of both the ΔO2Hb and ΔHHb signals at channel 12. With
all channels counted in, the most frequently referred feature type
was the time-domain feature �X. Five feature types were found to
be associated only to cortisol but not to the other two stress
indicators: mmt5, sampEn, PE, DET, and maxSpec.

Less channel-wise features were found to associate to sIgA.
Only two ΔO2Hb features (i.e., HE of channel 21 and SDratio of
channel 26) and one ΔHHb feature (i.e., SDratio of channel 26)
were supported by all six feature selection technique. A lower
sIgA level was moderately associated to higher values of the Hurst
exponent of the ΔO2Hb signal at channel 21 as well as increased
SDratio of both the ΔO2Hb and ΔHHb signals at channel 26. The
most frequently referred feature type for sIgA were HE, SDratio,
τopt, and ZC. In addition, ZC was associated only to sIgA but not
to the other two stress indicators.

Two time-domain features associated to perceived stress were
supported by all six feature selection methods. These two features
were also the only features that had non-zero coefficient when the
Lasso method was applied. Higher perceived stress was strongly
associated to reduced skewness of the ΔO2Hb signal and
increased crest factor of the ΔHHb signal at channel 16. The
most frequently referred feature types wereHE,MLE, and αOL. In
the meantime, α, αOL, and Xmin were the feature types specific to
perceived stress.

Figures 6, 7 demonstrated that channel 3 (optode pair Tx3-
Rx1), 16 (Tx6-Rx5), 20 (Tx9-Rx6), 21 (Tx5-Rx7), and 26 (Tx9-
Rx8) were the most relevant channels. The features of both the

TABLE 2 | Descriptive statistics of stress indicators.

Mean SD Range corps1 pps
2 corsIgA3 psIgA

4

Cortisol (nmol) 3.4 3.3 1.5–13.2 −0.05 0.855 −0.38 0.144
sIgA (μg/ml) 295.3 163.0 89.7–674.1 0.17 0.528 — —

Perceived stress 3.8 1.6 2.0–8.0 — — — —

1Correlation coefficient to perceived stress.
2p-value of the correlation coefficient to perceived stress.
3Correlation coefficient to sIgA.
4p-value of the correlation coefficient to sIgA.
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ΔO2Hb and the ΔHHb signals at channel 16 were strongly
associated to all three stress indicators. Channel 20 had similar
relevance but with only moderate associations. The features of the
ΔO2Hb signals at channels 3 and 21 were moderately associated
to all three stress indicators. In addition, the features of both the
ΔO2Hb and the ΔHHb signals at channel 26 were moderately
associated to both cortisol and sIgA.

5 DISCUSSION

This pilot study demonstrated the feasibility of investigating
stressed brain during sleep by configuring a digital ecosystem
with wearable/portable devices and mobile applications. The
sleep data collected with Fitbit Sense provided information on
sleep start time, and the heart and breath rate data facilitated
personalized filtering of the fNIRS signals. The use of mobile
applications such as the HealthLog app can also help reduce the
burden of manual log, and thus is likely to improve subjects’
adherence to the study protocol. We do not intend to draw

conclusions due to the pilot nature of the study; instead, we
discuss several observations that may inspire future studies in the
same direction.

Stress can be measured along multiple dimensions using
several indicators. In this study, we measured salivary cortisol,
sIgA, and collected subjective ratings on perceived stress. The
correlation analysis revealed that while some features derived
from the cortical hemodynamic signals associated with all stress
indicators, others may be specific to only one or two stress
indicators. The analysis showed that the brain activity may be
characterized using various features derived from the
hemodynamic signals. Time-domain features, frequency-
domain features, and nonlinear features all showed promise.
Taken together, the top five most frequently referred feature
types were Hurst exponent, mean, the ratio of the major/minor
axis standard deviation of a Poincaré plot, statistical complexity,
and crest factor. Breaking down into individual stress indicator,
the mean of the cortical hemodynamic signals is the most
frequently referred feature type for cortisol. This coincides
with the fact that most studies that rely on cortisol as the

TABLE 3 | Channel-wise ΔO2Hb features associated to salivary cortisol.

ChID1 Feature F-test MI LR Lasso Ridge RFE �ζ support cor p

16 mean 1.00 1.00 1.00 1.00 1.00 0.91 0.99 6 0.99 0.001
26 sampEn 1.00 0.85 1.00 1.00 1.00 1.00 0.97 6 0.71 0.032
12 SDratio 1.00 0.63 0.78 1.00 1.00 1.00 0.90 6 −0.59 0.045
8 PE 1.00 0.54 0.46 1.00 0.93 0.97 0.82 5 −0.55 0.027
14 mmt5 1.00 0.32 0.81 1.00 1.00 0.57 0.78 5 0.76 0.001
20 SC 1.00 0.21 0.52 1.00 1.00 0.89 0.77 5 0.52 0.038
3 CF 0.97 0.99 0.38 0.00 1.00 1.00 0.72 4 −0.56 0.045
10 mean 1.00 0.03 1.00 0.00 1.00 1.00 0.67 4 −0.81 0.004
5 DET 0.78 0.77 0.25 1.00 0.16 0.94 0.65 4 −0.69 0.003
21 skew 1.00 0.00 0.34 1.00 0.55 1.00 0.65 4 0.54 0.045
8 dopt 0.86 1.00 0.35 0.00 0.67 0.94 0.64 4 −0.52 0.038
19 mmt5 1.00 0.00 0.81 0.00 0.85 1.00 0.61 4 −0.53 0.034
11 HE 1.00 0.01 0.58 0.00 0.95 1.00 0.59 4 −0.67 0.016
11 SDratio 0.74 0.76 0.16 0.00 0.99 0.54 0.53 4 −0.62 0.033

1Channel ID.

FIGURE 5 | Frequency of associated feature types summed across all channels.
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stress indicator solely characterize the cortical hemodynamic
patterns using the mean of the ΔO2Hb and the ΔHHb signals.
On the other hand, nonlinear features of the hemodynamic
signals could be more useful when sIgA and perceived stress
are used as stress indicators. Four feature types had the same
highest frequency for sIgA: Hurst exponent, major/minor axis
standard deviation ratio of the Poincaré plot, optimal delay,
and zero crossing. For perceived stress, Hurst exponent,
maximal Lyapunov exponent, and over lapped α in DFA
were the most frequently referred feature types. It is also

found that the time-domain features (e.g., mean) derived from
theΔO2Hb signals and those from theΔHHb signals demonstrated
opposite correlation directions to stress indicators, whereas the
nonlinear features (e.g., Hurst exponent, correlation dimension,
and statistical complexity) derived from the two cortical
hemodynamic signals demonstrate the same correlation
direction. While the two hemodynamic signals share some
common important features, each one also contributed unique
features. This suggests the necessity of consider both signals when
investigating braining activity using fNIRS, which provides support

FIGURE 6 | Visualization of channels associated to ΔO2Hb on the optode template. Stress indicator is (A) cortisol, (B) sIgA, and (C) perceived stress, respectively.

FIGURE 7 | Visualization of channels associated to ΔHHb on the optode template. Stress indicator is (A) cortisol, (B) sIgA, and (C) perceived stress, respectively.
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to the argument made in previous studies (Tachtsidis and
Scholkmann, 2016). It is also worth mentioning that the time-
domain and frequency-domain features have the merit of their

interpretability, whereas some nonlinear features such as the Hurst
exponent and the optimal delay may hinder straightforward
interpretation.

TABLE 4 | Channel-wise ΔHHb features associated to salivary cortisol.

ChID Feature F-test MI LR Lasso Ridge RFE �ζ support cor p

26 sampEn 1.00 1.00 1.00 1.00 1.00 1.00 1.00 6 0.71 0.032
16 mean 1.00 0.80 1.00 1.00 1.00 1.00 0.97 6 −0.99 0.002
12 SDratio 1.00 0.69 0.60 1.00 1.00 0.83 0.85 6 −0.59 0.045
15 HE 1.00 0.91 0.46 1.00 0.88 0.37 0.77 4 0.54 0.030
8 PE 1.00 0.34 0.58 1.00 0.86 0.66 0.74 5 −0.55 0.027
10 mean 1.00 0.40 1.00 0.00 1.00 1.00 0.73 4 0.71 0.020
9 dopt 1.00 0.20 0.58 1.00 0.47 1.00 0.71 4 0.57 0.022
13 mean 1.00 1.00 0.91 0.00 1.00 0.34 0.71 4 −0.63 0.009
11 HE 1.00 0.36 0.89 0.00 1.00 0.91 0.69 4 −0.76 0.004
20 SC 1.00 0.11 0.30 1.00 1.00 0.69 0.68 4 0.52 0.038
24 kurt 0.77 0.81 0.11 1.00 0.45 0.77 0.65 4 −0.54 0.031
21 skew 1.00 0.31 0.63 0.00 0.64 1.00 0.60 4 −0.59 0.026
6 mmt5 1.00 0.65 0.37 0.00 0.83 0.69 0.59 4 0.68 0.004
19 CF 1.00 0.50 0.38 0.00 0.50 1.00 0.57 4 0.55 0.027
8 dopt 0.86 0.74 0.25 0.00 0.62 0.86 0.56 4 −0.52 0.038
14 maxSpec 0.64 0.14 0.14 1.00 0.54 0.54 0.50 4 0.69 0.003

TABLE 5 | Channel-wise ΔO2Hb features associated to salivary sIgA.

ChID Feature F-test MI LR Lasso Ridge RFE �ζ support cor p

21 HE 1.00 0.81 1.00 1.00 1.00 1.00 0.97 6 −0.58 0.029
26 SDratio 1.00 0.62 1.00 1.00 1.00 1.00 0.94 6 −0.69 0.041
7 MLE 1.00 0.00 0.95 1.00 1.00 1.00 0.82 5 0.55 0.029
16 ZC 0.17 0.75 1.00 1.00 1.00 1.00 0.82 5 −0.97 0.005
16 τopt 1.00 0.75 0.86 0.35 0.82 1.00 0.80 5 1.00 0.000
3 HE 1.00 1.00 0.22 0.03 1.00 0.83 0.68 4 −0.61 0.027

TABLE 6 | Channel-wise ΔHHb features associated to salivary sIgA.

ChID Feature F-test MI LR Lasso Ridge RFE �ζ support cor p

26 SDratio 1.00 0.55 1.00 1.00 1.00 1.00 0.93 6 −0.69 0.041
16 τopt 1.00 0.75 0.91 0.31 0.86 1.00 0.81 5 1.00 0.000
8 CD 1.00 0.85 0.66 0.47 1.00 0.74 0.79 5 −0.50 0.047
16 ZC 0.17 0.75 0.81 1.00 1.00 1.00 0.79 5 −0.97 0.005
20 dopt 0.79 1.00 0.41 0.42 0.60 0.91 0.69 4 −0.59 0.017
20 SC 1.00 0.63 0.32 0.49 1.00 0.69 0.69 4 −0.63 0.009

TABLE 7 | Channel-wise ΔO2Hb features associated to perceived stress.

ChID Feature F-test MI LR Lasso Ridge RFE �ζ support cor p

16 skew 1.00 0.58 1.00 1.00 1.00 1.00 0.93 6 −0.89 0.041
23 MLE 1.00 1.00 1.00 0.00 1.00 1.00 0.83 5 0.86 0.003
12 α 0.94 0.98 0.64 0.00 0.86 1.00 0.74 5 0.69 0.013
12 αOL 1.00 1.00 0.61 0.00 1.00 0.80 0.73 5 0.74 0.006
1 CD 1.00 1.00 0.39 0.00 1.00 0.97 0.73 4 0.57 0.032
18 mean 1.00 0.20 1.00 0.00 1.00 1.00 0.70 4 −0.62 0.010
20 HE 1.00 0.92 0.48 0.00 1.00 0.74 0.69 4 0.58 0.018
3 CF 1.00 1.00 0.29 0.00 1.00 0.80 0.68 4 0.62 0.025
21 τopt 1.00 1.00 0.13 0.00 0.82 0.71 0.61 4 0.73 0.003
9 SC 1.00 0.00 0.78 0.00 0.99 0.69 0.58 4 0.51 0.042
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This study also generated preliminary observations on the sub-
regions in the PFC associated to stress. The left rostral prefrontal
cortex (channel 16; optode pair Tx6-Rx5), or RLPFC for short, is
undoubtedly the most relevant sub-region. Significantly strong
correlations were found between the hemodynamic features
derived at this sub-region and all three stress indicators. The
specific features selected at channel 16 varied depending on the
target stress indicator. Higher cortisol level (indicating stronger
stress response) was associated to increased mean ΔO2Hb and
decreased mean ΔHHb. Lower sIgA level (indicating stronger
stress response) was associated to higher levels of noisiness in
the ΔO2Hb and ΔHHb signals characterized by increased zero
crossing. Higher perceived stress level was associated to increased
symmetry in the ΔO2Hb signal and higher peak in the ΔHHb
signal. The dorsolateral prefrontal cortex (DLPFC) was also a
relevant cortical area. The area of mid-DLPFC (channel 3;
optode pair Tx3-Rx1) and caudal-DLPFC (channel 20; optode
pair Tx9-Rx6) both demonstrated significant and moderate
associations to all three stress indicators. In the case of the
caudal-DLPFC (channel 20), consistent relationships were found
between stress and a same feature: the statistical complexity of the
ΔHHb signal. In contrast, a ΔO2Hb feature at the mid-DLPFC
(channel 3) correlates differently to different stress indicators. To
be more specific, lower crest factor of the ΔO2Hb signal at channel
3 was associated to higher cortisol level (indicating stronger

hormonal stress response) but at the same time higher sIgA
level (indicating weaker immunological stress response). Rather
than viewing this as contradictory, an alternative interpretation
could be that different stress indicators characterize different facets
of the human stress response, suggesting the necessity of using
multiple indicators in stress studies. The relevance of the DLPFC in
stress response of healthy subjects during wake time has been
documented in previous stress studies using near-infrared
spectroscopy (NIRS) technique (Yang et al., 2007; Yanagisawa
et al., 2011; Rosenbaum et al., 2018; Schaal et al., 2019). Table 9
summarizes the experiment protocols and the main findings of
these studies, which were all conducted when subjects were awake
and were engaged in cognitive tasks. Our findings provide
supplementary support to the within-person role of the DLPFC
in processing stress during sleep. In addition, the preliminary result
shed light on the possible role of the RLPFC, especially the left
RLPFC, in processing stress during sleep. On the other hand, no
relevance was found in the ventrolateral prefrontal cortex
(VLPFC). While (Yanagisawa et al., 2011) found negative
association between the activity in the VLPFC and the
subjective ratings on social pain (which was induced by a
feeling of social isolation), our finding suggests that this region
may not be involved in processing daily life stress during sleep.

The preliminary findings should be interpreted with caution
due to the strong limitations of the present study. First, while the

TABLE 8 | Channel-wise ΔHHb features associated to perceived stress.

ChID Feature F-test MI LR Lasso Ridge RFE �ζ support cor p

16 CF 1.00 0.80 0.98 1.00 1.00 1.00 0.96 6 0.89 0.041
12 α 1.00 0.91 1.00 0.00 1.00 1.00 0.82 5 0.69 0.013
23 MLE 1.00 1.00 1.00 0.00 1.00 0.94 0.82 5 0.79 0.011
1 CD 1.00 1.00 0.81 0.00 1.00 1.00 0.80 5 0.62 0.019
16 kurt 0.52 1.00 1.00 0.00 0.84 1.00 0.73 5 0.89 0.041
12 αOL 1.00 0.94 0.52 0.00 0.96 0.86 0.71 5 0.72 0.008
9 MLE 0.92 1.00 0.36 0.00 0.92 0.94 0.69 4 0.50 0.047
10 Xmin 1.00 1.00 0.55 0.00 0.58 0.89 0.67 5 0.70 0.024
24 αOL 1.00 0.00 1.00 0.00 1.00 1.00 0.67 4 0.52 0.039
25 HE 1.00 0.72 0.47 0.00 1.00 0.69 0.65 4 0.58 0.018
20 HE 1.00 0.59 0.53 0.00 1.00 0.66 0.63 5 0.54 0.031
9 SC 1.00 0.00 0.76 0.00 1.00 1.00 0.63 4 0.51 0.042

TABLE 9 | Comparison of Experiment Protocols and Main Findings of Previous Daytime fNIRS Stress Studies and the Current In-sleep fNIRS Stress Study.

Study Stress induction Stress indicators Main findings

Yang et al. (2007) Negative pictures None Increased activity in the PFC among females of the experiment group
Yanagisawa et al.
(2011)

Cyberball task Subjective rating on social pain Decreased activity in the VLPFC

Rosenbaum et al.
(2018)

Trier Social Stress Test
(TSST)

Cortisol1, heart rate, subjective
stress rating

Positive association between the activity in the right DLPFC and cortisol response;
positive association between the activity in the bilateral DLPFC and subjective
stress rating

Schaal et al. (2019) Maastricht Acute Stress
Test (MAST)

Cortisol, heart rate, subjective
stress rating

Increased activity in the left DLPFC and the bilateral orbitofrontal cortex (OFC)
during the mental arithmetic task; decreased activity in the left DLPFC during the
hand immersion task

This study Naturalistic daily life
stressors

Cortisol, sIgA, subjective stress
rating

Positive association between the activity in the right caudal-DLPFC, the left RLPFC
and cortisol response; positive association between the activity in the caudal-
DLPFC and subjective stress rating

1Refers to salivary cortisol unless otherwise specified.
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idiographic N-of-1 approach adopted in this study represents a
true scientific undertaking (Barlow and Nock, 2009), the
preliminary findings solely hold for this specific subject.
Future studies may conduct the longitudinal measurement on
more subjects to identify possible common patterns across
subjects. Second, the data analysis protocol in this study did
not count in the interplay among different channels nor the
confounding effect of different sleep stages. Analyzing the
orchestration of the cortical hemodynamic signals from a
dynamic network perspective may leads to new insights into
how the brain responds to stress during sleep. Furthermore, this
study only focused on the activity in the PFC area in the first sleep
cycle. The potential role of other cortical areas in stress response
during a full course of sleep demands further studies.
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