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Human emotion recognition is an important issue in human–computer interactions, and
electroencephalograph (EEG) has been widely applied to emotion recognition due to its
high reliability. In recent years, methods based on deep learning technology have reached
the state-of-the-art performance in EEG-based emotion recognition. However, there exist
singularities in the parameter space of deep neural networks, which may dramatically slow
down the training process. It is very worthy to investigate the specific influence of
singularities when applying deep neural networks to EEG-based emotion recognition.
In this paper, we mainly focus on this problem, and analyze the singular learning dynamics
of deep multilayer perceptrons theoretically and numerically. The results can help us to
design better algorithms to overcome the serious influence of singularities in deep neural
networks for EEG-based emotion recognition.
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1 INTRODUCTION

Emotion recognition is a fundamental task in affective computing and has attracted many
researchers’ attention in recent years (Mauss and Robinson, 2009). Human emotion can be
expressed through external signals and internal signals, where external signals usually include
facial expressions, body actions, and speeches, and electroencephalograph (EEG) and galvanic skin
response (GSR) are typical internal signals. EEG is the method to measure electrical activities of the
brain by using electrodes along the scalp skin and it is rather reliable; therefore, EEG has played a
more significant role in investigating human emotion recognition problem in recent years (Yin et al.,
2021).

For the emotion recognition problem based on EEG signals, researchers mainly investigate this
issue from two aspects: how to extract better features from EEG signals and how to construct a model
with better performance. For aspect 1, researchers have investigated the feature extraction methods
of EEG signals from a time domain, frequency domain, and time–frequency domain, respectively,
and a series of results have been given previously (Fang et al., 2020; Nawa et al., 2020). In this paper,
we mainly focus on aspect 2, i.e., the computational model problem, and researchers have proposed
manymodels to recognize emotions through EEG signals (Zong et al., 2016; Yang et al., 2018a; Zhang
et al., 2019; Cui et al., 2020). In recent years, deep learning technology has achieved great success in
many fields (Yang et al., 2018b; Yang et al., 2019; Basodi et al., 2020; Zhu and Zhang, 2021), andmany
works are devoted to addressing the EEG emotion recognition issue by applying deep neural
networks (DNNs) (Cao et al., 2020; Natarajan et al., 2021), where the performances based on deep
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learning also show significant superiority of conventional
methods (Ng et al., 2015; Tzirakis et al., 2017; Hassan et al.,
2019). However, the learning dynamics of DNNs, including deep
multilayer perceptrons (MLPs), deep belief networks and deep
convolution neural networks, are often affected by singularities,
which exist in the parameter space of DNNs (Nitta, 2016).

Due to the influence of singularities, the training of DNNs
often becomes very slow and the plateau phenomenon can often
be observed. When the DNNs are applied to EEG-based emotion
recognition, the severe negative effect of singularities on the
learning process of DNNs is also inevitable, where the
efficiency and performance of networks can also not be
guaranteed. However, up to now, there are rarely literatures
investigating this problem. In this paper, we mainly concern
this problem. The main contribution of this paper is to take the
theoretical and numerical analysis of singular learning in DNNs
for EEG-based emotion recognition.We choose deepMLPs as the
learning machine, where deep MLPs are of typical DNNs and the
results are also representative for other DNNs. The types of
singularities in parameter space are analyzed and the specific
influence of the singularities is clearly shown. Based on the
obtained results in this paper, we can further design the
related algorithms to overcome this issue.

The rest of this paper is organized as follows. A brief review of
related work is presented in Section 2. In Section 3, theoretical
analysis of singularities in deep MLPs for EEG-based emotion
recognition is taken and then the learning dynamics near
singularities are numerically analyzed in Section 4. Section 5
states conclusion and discussion.

2 RELATED WORK

In this section, we provide a brief overview of previous work on
EEG-based emotion recognition and singular learning of DNNs.

In recent years, due to the high accuracy and stabilization of
EEG signals, EEG-based algorithms have attracted ever-
increasing attention in emotion recognition field. To extract
better features of EEG signals, researchers have proposed
various feature extraction models (Zheng et al., 2014; Zheng,
2017; Tao et al., 2020; Zhao et al., 2021), such as power spectral
density (PSD), differential entropy (DE), and differential
asymmetry (DASM). By using PSD and DE to extract
dimension reduced features of EEG signals, Fang et al. (2020)
chose the original features and dimension reduced features as the
multi-feature input and verified the validity of the proposed
method in the experiment part. Li et al. (2020) integrated
psychoacoustic knowledge and raw waveform embedding
within an augmented feature space. Song et al. (2020)
employed an additional branch to characterize the intrinsic
dynamic relationships between different EEG channels and a
type of sparse graphic representation was presented to extract
more discriminative features. Besides the feature extraction
methods, more attention is paid to study the emotion
classification. Given that the deep learning technology has
excellent capabilities, various types of DNNs have been widely
used in emotion classification (Li et al., 2018; Li et al., 2019; Ma

et al., 2019; Atmaja and Akagi, 2020; Cui et al., 2020; Zhong et al.,
2020), including deep convolution neural networks, deep MLPs,
long short term memory (LSTM)-based recurrent neural
networks, and graph neural networks. The obtained results
show that these DNN models can provide superior
performance compared to previous models (Yang et al., 2021a;
Yang et al., 2021b).

As mentioned above, various DNNs have been widely used in
EEG-based emotion recognition; however, the training
processes of DNNs often encounter many difficulties. Even if
numerous research studies have been developed to conduct
explanatory research, it is still very far to revealing the
mechanism. As there are singularities in the parameter space
of DNNs where the Fisher information matrix is singular, the
singular learning dynamics of DNNs have been studied and
have attracted more and more attention. As the basis of DNNs,
traditional neural networks often suffer from the serious
influence of various singularities (Amari et al., 2006; Guo
et al., 2018; Guo et al., 2019), and the learning dynamics of
DNNs are also easy to be influenced by the singularities. Nitta
(2016, 2018) analyzed the types of singularity in DNNs and deep
complex-value neural networks. Ainsworth and Shin (2020)
investigated the plateau phenomenon in Relu-based neural
networks. By using the spectral information of Fisher
information matrix, Liao et al. (2020) proposed an algorithm
to accelerate the training process of DNNs.

In view of the serious influence of singularities to DNNs, the
training processes of DNNs will also encounter difficulties when
applying DNNs to EEG-based emotion recognition. Thus, it is
necessary to take the theoretical and numerical analysis to reveal
the mechanism and propose related algorithms to overcome the
influence of singularities.

3 THEORETICAL ANALYSIS OF SINGULAR
LEARNING DYNAMICS OF DEEP
MULTILAYER PERCEPTRONS
In this section, we theoretically analyze the learning dynamics
near singularities of deep MLPs for the EEG-based emotion
recognition.

FIGURE 1 | Architecture of deep MLPs.
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3.1 Learning Paradigm of Deep Multilayer
Perceptrons
Firstly, we introduce a typical learning paradigm of deep MLPs.
For a typical deep multilayer perceptrons with L hidden layers
(the architecture of the networks is shown in Figure 1), assuming
Mi is the neuron number of hidden layer i,M0 is the dimension of
the input layer andML+1 is the dimension of the output layer, we
denote that: W(i)

jk represents the weight connecting from the jth
node of the previous layer to the kth node of hidden layer i, and
W(L+1)

pq represents the weight connecting from the pth node of
hidden layer L to the qth node of output layer for 1 ≤ i ≤ L, 1 ≤ j ≤
Mi−1, 1 ≤ k ≤ Mi, 1 ≤ p ≤ ML, and 1 ≤ q ≤ ML+1. Then θ � {W(1),
W(2), . . ., W(L+1)} represents all the parameters of the networks,
where W(i) � [W(i)

1 ,W(i)
2 , . . . ,W(i)

Mi
] and W(i)

j �
[W(i)

1j ,W
(i)
2j , . . . ,W

(i)
M(i−1)j]T for 1 ≤ i ≤ L + 1 and 1 ≤ j ≤ Mi.

In this paper, the widely used log-sigmoid function ϕ(x) � 1
1+e−x is

adopted as the activation of hidden layers and the purelin
function ψ(x) � x is adopted as the activation function of
output layer, then for the input x ∈ RM0 , by denoting the
input to hidden layer k as X(k−1) for 1 ≤ k ≤ L and the input
to output layer as X(L), the mathematical model of the networks
can be described as follows:

f(x, θ) � ψ((W(L+1))TX(L)) � (W(L+1))TX(L). (1)

For 1 ≤ k ≤ L, X(k) can be computed as X(k) �
ϕ(X(k−1),W(k)) � ϕ((W(k))TX(k−1)) and X(0) is the input x.

We choose the square loss function to measure the error:

l(y, x, θ) � 1
2
(y − f(x, θ))2, (2)

and use the gradient descent method to minimize the loss:

θt+1 � θt − η
zl(y, x, θt)

zθt
, (3)

where η is the learning rate.

3.2 Singularities of Deep Multilayer
Perceptrons in
Electroencephalograph-Based Emotion
Recognition
In this paper, we mainly focus on the mechanism of singular
learning dynamics of deep MLPs applied to EEG-based emotion
recognition domain, not seeking the best performance; therefore,
the size of the networks need not to be very large, and an
appropriate size that can capture the essence of singular
learning dynamics can satisfy the requirement. Without loss of
generality, we choose the deepMLPs with two hidden layers and a
single output neuron, i.e., L � 2 and M3 � 1,
i.e., W(3) � W(3)

1 � [W(3)
11 ,W

(3)
21 , . . . ,W

(3)
M21]T, we simply

denoted as W(3) � [W(3)
1 ,W(3)

2 , . . . ,W(3)
M2

]. Then, the deep
MLPs can be rewritten as:

f(x, θ) � (W(3))Tϕ(ϕ(x,W(1)),W2)
�∑

M2

j�1
W(3)

j ϕ(ϕ(x,W(1)),W(2)
j ). (4)

Next, we analyze the types of singularities. From Eq. 4, we can
see that if one output weight equals zero, e.g.,W(3)

j � 0, whatever
the values ofW(1) andW(2)

j be, the output of unit jwill be always 0

FIGURE 2 | Case 1 (Fast Convergence). (A) Trajectory of training error.
(B) Trajectory of W(3). (C) Trajectory of classification accuracy.
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and the unit seems to be vanished. As the values ofW(1) andW(2)
j

have no effect on the output of the deep MLPs, the training
process will encounter difficulties on the subspace
R1 � {θ|W(3)

j � 0}. Besides the above singularity, if there are
two elements of weight W(2) overlap, e.g., W(2)

i � W(2)
j , then

W(3)
i ϕ(ϕ(x,W(1)),W(2)

i )
+W(3)

j ϕ(ϕ(x,W(1)),W(2)
j )

� (W(3)
i +W(3)

j )ϕ(ϕ(x,W(1)),W(2)
i )

remains the same value when W(3)
i +W(3)

j takes a fixed value,
regardless of particular values of W(3)

i and W(3)
j . Therefore, we

can identify their sum W � W(3)
i +W(3)

j ; nevertheless, each of
W(3)

i andW(3)
j remains unidentifiable. Thus, the training will also

suffer difficulties on the subspace R2 � {θ|W(2)
i � W(2)

j }.
To sum up the above analysis, it can be seen that there are at

least two types of singularities:

(1) Zero weight singularity: R1 � {θ|W(3)
j � 0},

(2) Overlap singularity: R2 � {θ|W(2)
i � W(2)

j }.

Till now, we have theoretically analyzed the types of
singularity that existed in the parameter space of deep MLPs;
in the next section, we will numerically analyze the influence of
singularities to solve EEG-based emotion recognition problem.

4 NUMERICAL ANALYSIS OF LEARNING
DYNAMICS NEAR SINGULARITIES

In this section, we take the numerical analysis of singularities by
taking experiments on the dataset of EEG signals. For the EEG
datasets, the SEED dataset is a typical benchmark dataset that is
developed by SJTU and has been widely used to evaluate the
proposed methods on EEG-based emotion recognition. In this
paper, the training process will be carried out using the SEED
dataset.

4.1 Data Preprocessing
The SEED dataset (Zheng and Lu, 2015) is collected from 62-
channel EEG device and contains EEG signals of three emotions
(positive, neutral, and negative) from 15 subjects. Due to the low
signal-to-noise ratio of raw EEG signals, it is rather necessary to
take the preprocessing step to extract meaningful features. As is
known, there are five frequency bands for each EEG channel:
delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz),
and gamma (31–50 Hz). That means, for one subject, the data are
the form 5 × 62, the dimension of raw EEG signal is very large,
and then we use principal component analysis (PCA) (Abdi and
Williams, 2010) to extract the features of the EEG signal. After the
PCA step, the form of EEG signals becomes 5 × 5, and then by
putting every element of the data to a vector, the dimension of the
input can be finally reduced to be 25.

4.2 Learning Trajectories Near Singularities
Now, we take experiments on the SEED dataset, and the learning
dynamics near singularities will be numerically analyzed. We

choose the neuron numbers of two hidden layers as L1 � 8 and L2
� 8; thus, the architecture of the deepMLPs is 25−8−8−1. As there
are three emotions in the SEED dataset, we set values 1, 2, and 3
corresponding to labels positive, neutral, and negative,
respectively. We choose the training sample number and

FIGURE 3 | Case 2 (Zero weight singularity). (A) Trajectory of training
error. (B) Trajectory of W(3). (C) Trajectory of classification accuracy.
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testing sample number to be 1,000 and 500, respectively. Then, by
setting the learning rate to η � 0.002, the target error to 0.05, and
the maximum epochs to 8,000, we use Eq. 3 to accomplish the
experiment. By analyzing the experiment results, two cases of

learning dynamics will be shown. Besides training error,
classification accuracy is also used to measure the
performance. In the following figures of experiment results,
“◦” and “×” represent the initial state and final state,

FIGURE 4 | Case 3 (Extending training time ofCase 2). (A) Trajectory of
training error. (B) Trajectory of W(3). (C) Trajectory of classification accuracy.

FIGURE 5 | Case 4 (Changing initial value of Case 2). (A) Trajectory of
training error. (B) Trajectory of W(3). (C) Trajectory of classification accuracy.
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respectively. The experiments were run by using Matlab 2013a on
a PC with an Intel Core i7-9700K CPU @3.60 GHz, 32 GB RAM
and NVIDIA GeForce RTX 2070 GPU.

Case 1. Fast convergence: The learning process fast converges to
the global minimum.

For this case, the learning dynamics does not suffer from any
influence of singularity and the parameters fast converge to the
optimal value. The initial value of W(3) is W(3)(0) � [0.8874,
0.6993, 0.5367, −0.9415, −0.8464, −0.9280, 0.3335, −0.7339]T and
the final value of W(3) is W(3) � [3.1443, 2.5868, 2.3291, −1.1544,
−1.2281, −2.9704, 2.9650, −1.8221]T. The experiment results are
shown in Figure 2, which represent the trajectories of training
error, output weights W(3), and classification accuracy,
respectively.

As can be seen from Figure 2A, the learning dynamics quickly
converge to the global minimum and have not been affected by
any singularity.

Case 2. Zero weight singularity: the learning process is affected by
the elimination singularity.

For this case, one output weight crosses 0 during the learning
process and a plateau phenomenon can be obviously observed.
The initial value of W(3) is W(3)(0) � [0.4825, 0.9885, −0.9522,
−0.3505, −0.5004, 0.9749, −0.9111, −0.5056]T, and the final
student parameters are W(3) � [3.0297, 3.1006, −1.7413,
0.1717, −1.9567, 3.5131, −1.9037, −0.9143]T. The experiment
results are shown in Figure 3, which represent the trajectories
of training error, output weightsW(3) and classification accuracy,
respectively.

From Figure 3B, we can see thatW(3)
4 crosses 0 in the learning

process and the learning process is affected by elimination
singularity. During the stage W(3)

4 crosses 0, the plateau
phenomenon can be obviously observed (Figure 3A). Then,
the student parameters escape the influence of elimination
singularity. After the training process, we can see that the
training error is bigger than that in Case 1 and the
classification accuracy is also lower than that in Case 1, which
means that the parameters do not reach the optimum.

Case 3. Extending training time of Case 2.
In this experiment, we only increase the training epochs to

15,000, and the rest of the experiment setup remains the same
with that in Case 2. The experiment results are shown in Figure 4.
Compared to Figure 3, it can be seen that the learning process
that is affected by the zero weight singularity can arrive at the
optimum, but it costs much more time. This means that the zero

weight singularities will greatly reduce the efficiency of
deep MLPs.

Case 4. Changing initial value of Case 2.
In order to confirm that the plateau phenomenon corresponds

to the zero weight singularity, a supplementary experiment is
carried out here where only the initial value of W(3)(0) has been
changed and the rest of the experiment setup remains the same.
The initial value of W(3) is W(3)(0) � [−0.5056, −0.9111, 1.7749,
−0.5004, 1.6495, −0.9522, 0.9885, 1.2825]T, and the final student
parameters areW(3) � [−1.3660, −1.8232, 3.2529, −1.9425, 3.2450,
−1.6325, 1.9452, 3.4158]T. The experiment results are shown in
Figure 5, which represent the trajectories of training error, output
weights W(3), and classification accuracy, respectively. As can be
seen in Figure 5, there is not any weight of W(3) that becomes
zero. Also, no plateau phenomenon can be observed, and the
classification accuracy has reached a comparatively high value. By
comparing the experiment results shown in Figures 3, 5, we can
conclude that the plateau phenomenon is indeed caused by zero
weight singularity.

Remark 1. From the results shown in Figures 2–5 and Table 1,
we can see that the training and testing accuracy in Case 2 is the
lowest. This means that when the training process is affected by
the zero weight singularity, the parameters cannot achieve the
optimum after the same training time with that in fast
convergence case. When we extend the training time in
Case 2, the parameters can escape the influence of zero weight
singularity and finally arrive at the optimum, which is shown in
Case 3. Thus, the points in zero weight singularity are saddle
points, not local minimum. To sum up, the zero weight
singularity will seriously delay the training process, and it is
worthy to investigate algorithms to overcome the influence of
zero weight singularities.

Remark 2. When taking the experiments, we do not observe the
learning dynamics of deep MLPs that are affected by overlap
singularities. The results are in accordance with the conclusion
where we analyze the learning dynamics of shallow neural
networks (Guo et al., 2018); i.e., the overlap singularities
mainly influence the neural networks with low dimension and
the large-scale networks predominantly suffer from zero weight
singularities. Thus, we should pay more attention to how to
overcome the influence of zero weight singularities.

In this section, we have numerically analyzed the learning
dynamics near singularities of deepMLPs for EEG-based emotion
recognition and showed the singular case. We can obtain that the

TABLE 1 | Training and testing classification accuracy.

Iteration number Training
classification accuracy

Testing
classification accuracy

Case 1 8,000 0.948 0.941
Case 2 8,000 0.901 0.894
Case 3 15,000 0.944 0.938
Case 4 8,000 0.924 0.920
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learning dynamics of deep MLPs are mainly influenced by zero
weight singularities and rarely affected by overlap singularities.

5 CONCLUSION AND DISCUSSION

Deep learning technology has been widely used in EEG-based
emotion recognition and has shown superior performance
compared to traditional methods. However, for various DNNs,
there exist singularities in the parameter space, which cause singular
behaviors in the training process. In this paper, we investigate the
singular learning dynamics of DNNs when applied to EEG-based
emotion recognition. By choosing deep MLPs as the learning
machine, we firstly take the theoretical analysis of singularities
of deep MLPs, and obtained that there are at least two types of
singularities: overlap singularity and zero weight singularity. Then,
by doing several experiments, the numerical analysis is taken. The
experiment results show that the learning dynamics of deep MLPs
are seriously influenced by zero weight singularities and rarely
affected by overlap singularities. Furthermore, the plateau
phenomenon is caused by zero weight singularity. Thus, we
should pay more attention to how to overcome the serious
influence of zero weight singularity to improve the efficiency of
DNNs in EEG-based emotion recognition in the future.
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