
Communicating Photograph Content
Through Tactile Images to PeopleWith
Visual Impairments
Karolina Pakėnaitė 1*, Petar Nedelev1, Eirini Kamperou2, Michael J. Proulx2 and
Peter M. Hall 1

1Department of Computer Science, University of Bath, Bath, United Kingdom, 2Department of Psychology, University of Bath,
Bath, United Kingdom

Millions of people with a visual impairment across the world are denied access to visual
images. They are unable to enjoy the simple pleasures of viewing family photographs,
those in textbooks or tourist brochures and the pictorial embellishment of news stories
etc. We propose a simple, inexpensive but effective approach, to make content
accessible via touch. We use state-of-the-art algorithms to automatically process an
input photograph into a collage of icons, that depict the most important semantic
aspects of a scene. This collage is then printed onto swell paper. Our experiments show
that people can recognise content with an accuracy exceeding 70% and create
plausible narratives to explain it. This means that people can understand image
content via touch. Communicating scene foreground is a step forward, but there are
many other steps needed to provide the visually impaired with the fullest possible
access to visual content.
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1 INTRODUCTION

Pictures are an important means of communication. Illustrations in newspapers or in books help
bring a story to life. Photographs are used socially too, with around two billion being uploaded onto
social media platforms every day1. Pictures can also be informative, with school textbooks, holiday
brochures, museum catalogues, and more being dependent on them.

Our aim is to make photographic content accessible to people with a visual impairment at a low
cost. This can build bridges of opportunity and interaction for people with a visual impairment, both
professionally and socially (Way and Barner, 1997). Tactile images are currently made manually with
the help of a skilled, sighted individual, which is neither cost effective nor time efficient2.

Combining existing neural algorithms was explored. We used our developed algorithm to
automatically process an input photograph into a collage of recognisable icons (similar to road
signs). These icons can be simply collected from public online sources and are easy to read as
classification symbols. The collage of black icons on white background is printed on swell paper to
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form a tactile rendering of the photograph. It is a tactile artwork
that represents the most salient, identifiable objects in the picture.

To test the efficacy of our algorithm, experiments were
conducted to compare the collage with an edge map
representation. Canny edge detector was used, which is an
Image Processing Algorithm that creates white pixels at
window centres, if the window pattern contains a sufficiently
strong contrast edge (Canny, 1986). Edge maps are easy to make
and apply to any image, which makes them very cheap. However,
they are difficult (but not impossible) for sighted people to read
content into; the same is expected for tactile renderings of edge
maps. For the same photograph input in Figure 1A, the
difference can be seen between an edge-map representation
Figure 1B and our icon-based representation Figure 1C.
Figure 1 illustrates the difference between our icon-based
representation and an edge map representation for the same
input photograph.

Research participants (32 blindfolded, consisting of 12 with
visual impairments) were asked to describe the content of 10
tactile images taken from photographs of 12 different objects.
Results show that icons convey more information about input
photographs than edge maps; people can describe content with a
far greater degree of accuracy. Moreover, people were more likely
to comment on, or compose stories about icon-images than edge
map images.

We have shown that icon based tactile images are successful
in conveying semantic content, but more work is needed to fully
realise the potential of our general approach. Background
context is missing, which intuitively is a low barrier to break.
Many improved alternatives to edge maps also exist, such as
boundary of a segmented object. The optimal way to convey
information about a photo in tactile form remains an open
question.

2 BACKGROUND

There are 285 million people worldwide with a visual impairment
(Pascolini and Mariotti, 2011) and many are regularly faced with
the challenge of accessing visual information. This includes
activities such as viewing and sharing photographs online,
which has become a modern way of social interaction.

Textbook content might be quicker and easier to understand
by the sighted after viewing the corresponding image. Offline or
online, visually impaired users wish to view such images
independently.

Consider Figure 1A above. How might a viewer describe this
image to someone who cannot see it? Which aspects are crucial
for conveying the information, and what is the appropriate
amount of description? Different approaches exist to help
solve this problem. One might give a simple verbal
description, or a detailed interpretation. With advances in
technology, many have adapted to a screen reader-an
automated software that verbally describes images using
speech. However, this type of software might not be helpful
for everyone, especially individuals with an additional
disability such as a hearing impairment. Alternatively, some
have adjusted to accessing visual information by feeling tactile
images with their fingers.

Artists’ work generally includes semantic details only. This
observation motivated us to develop an algorithm for rendering
tactile pictures by simplifying both the low-level features and the
higher-level semantic content of the input. This was done both
visually and logically, whilst preserving the original context. The
aim is to increase tactile comprehension, and reconstruct an
original context of a photograph for a visually impaired user, by
simplifying the input image and outputting the most important
semantic contents.

To ensure consistency of terminology and to avoid confusion,
two terms will be used to describe people with a visual
impairment based on the World Health Organization
definition of blindness. By looking at visual acuity, if an
individual has a reduced visual input (logMAR < 1.3, n � 15),
the term Low Vision is used. If an individual has little or no
functional visual input (logMAR ≥ 1.3; n � 14), the term Blind is
used3. The term Visually Impaired will be used for both groups -
those who are blind and low vision. 8 years was chosen as a cut-off
age to differentiate between early and late onset, with congenitally
blind being included in the early group. The cut-off age was based

FIGURE 1 |Which photographic representation is easier to read into? The figure shows a panel of images with a photograph of animals in the (A), an edge map of
the same image in the (B), and icons representing only the two animals in the (C).

3World Health Organization. (2021). International statistical classification of
diseases and related health problems (11th Revision). 9D90 Vision impairment
including blindness. Retrieved from https://icd.who.int/browse11/l-m/en.
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on a study where primary visual cortex was mostly active among
the late blind (Büchel et al., 1998).

2.1 Psychology of Tactile Image
Recognition
A tactile picture is a physical representation of an image, executed
in relief and usually printed on a special paper, with swollen or
raised parts that can be felt with the fingers. Swell paper has a layer
of heat reactive microcapsules, and when a heat fuser is used, the
black markings are raised. Printing on swell paper can be a cost-
effective option and is suitable for use with a standard printer.
There are several techniques with different features for printing
tactile pictures, for example some allow single, and others multiple
levels of relief (Eriksson, 1999). The specific technique for
producing the image is irrelevant as only the general case will
be tackled here.

Tactile representations which allow visually impaired
individuals to perceive images in relief, needs some guarantee
for the content to be understood. Eriksson (1999) outlines the
form of a tactile picture, so that semantics can be perceived easily
by touch. The most important characteristic for identifying an
object is usually the shape, (not the colour or material) so all
objects within a tactile picture require separating without overlap.
The components of an object need to be in a distinct and logically
simplified form, with no incomplete objects.

When looking at photographs, it is generally the context that is
accessed first (Oliva and Torralba, 2006). This is usually true for
blind individuals when accessing information in photographs
online, or art pieces in museums, using touch or verbal
descriptions (Stangl et al., 2020; Hayhoe, 2013). Eriksson (1999)
further elaborates that it is rare for a visually impaired individual to
comprehend content or identify objects when touching a tactile
picture for the first time. This is due to the unique shape of each
object being difficult to classify without prior experience of the
shape. This means that most tactile pictures should be
accompanied with a description, to facilitate the reader’s
understanding of what they are feeling. This is not required if
the reader has had previous exposure to the shapes and objects.

Objects represented in 3D on 2D media, can be a heavy burden
on memory (Biederman, 1987). One study revealed that sighted
individuals recognise 3D drawings slower and with less accuracy
than 2D representations, because additional processing is required
(Lederman et al., 1990). In addition, tactual performance of
congenitally blind study participants was identical in both two
and three-dimensional representations on 2D media. This is
because interpretation of the third dimension is difficult without
visual imagery. Thus, icons represented in 2D were chosen for the
rendering stage. However, it is also observed that sighted,
blindfolded participants only achieved around 33% success
when attempting to recognise common objects that were
represented as raised 2D outlines (Lederman et al., 1990). In
contrast, 20 participants successfully recognised 100 common
objects by touch within 1 or 2 s. It concluded that it is
important to incorporate diagnostic substance differences on
raised pictures (Klatzky et al., 1985).

A novel technique for producing 3D objects in 2D media as
tactile line illustrations, has obtained promising results in
object-matching by blind participants (Panotopoulou et al.,
2020). Object models were taken at different, carefully
selected angles to extract 3D object parts with added
texturing technique, to give cues about the surface geometry.
The illustration of 3D objects was then printed onto
microcapsule paper. Multi-projection approach was inspired
by drawings created by blind individuals (Kennedy, 1993),
where 3D objects are “unfolded” or “flattened” to obtain 2D
illustrations (Kurze, 1997). However, it was not confirmed if this
improved object recognition without matching.

Each detected object in an image should be represented solely
by a single, fixed-pose icon. This was partly supported by a study
where participants showed a preference for three-quarters front
view, when recognising objects (Palmer, 1981). Bartram (1974)
added that sighted individuals are slower to recognise objects of
different forms and shapes (e.g., a table lamp and a floor lamp),
than when viewing identical objects in different views (e.g.,
viewing a table lamp from the left or right side). Results from
another study showed that congenitally blind subjects can take
the point of view of another individual, and that visual experience
is not necessary (Heller and Kennedy, 1990).

Sighted individuals tend to spend longer exploring tactile
images, and therefore experience an excessive burden on
memory. In addition, blind individuals who understand braille,
tend to use different exploration strategies (i.e., using two fingers
instead of one), which can result in a faster pick up of information
and less memory burden (Heller, 1989). One study confirmed
that in raised line pictures, identification improved when five
fingers were used instead of one. It also added that multiple
fingers could potentially have a role in guiding exploration, when
the field of touch-view is increased (Klatzky et al., 1993). A few
reports state that people lose touch sensitivity as they age
(Manning and Tremblay, 2006; Tremblay and Master, 2015).
However, continuous practice in tactile recognition seems to
compensate for deteriorating sensitivity associated with
advancing age (Legge et al., 2008). It could be assumed that
tactile images are better comprehended by braille users than
sighted individuals, due to their experience of touching textured
materials. Another study concluded that individuals who lose
vision later in life, tend to interpret raised outlines more readily
than sighted individuals, or those who became blind before the
age of 3 months. An explanation being that they are typically
more familiar with pictures than early onset blind individuals,
and have greater tactile skills than the sighted. It also highlighted
that visual experience alone does not increase the performance of
a tactile task, since sighted participants did not score better than
the congenitally blind (Heller, 1989).

As mentioned earlier, there are important issues related to
dealing with information processing and potential cognitive or
perceptual load (Gallace and Spence, 2009; Lin et al., 2021). The
success of delivering visual information through touch, is not
only dependent on the technical specifics of the sensory
substitution device, but also on understanding how the brain
processes multi-sensory information (Brown and Proulx, 2016).
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2.2 Computer Vision Techniques for Making
Tactile Images
Tactile images can be made by hand. These are high quality and
often use raised contour lines or bas-relief regions, possibly with
colour projected onto the surface. This kind of tactile image often
exists for access to Fine Art and other cultural artefacts
(Reichinger et al., 2018; Cantoni et al., 2018). However, hand-
made, bespoke tactile images can be expensive one-offs, so there is
a need for an inexpensive and more general approach.

One automatic method for creating a tactile image is to use
edge maps, see Figure 1B for an example. This kind of tactile
image is exceptionally easy to create. The Canny edge detector
(Canny, 1986) for example, takes a computer fractions of a second
to produce an edge map. However, edge maps are not an efficient
way to communicate in tactile form (Way and Barner (1997),
Eriksson (1999)) and are only acceptable for the simplest of
objects.

We use Computer Vision algorithms to automatically process
the important semantic content of an input photograph, into a
form that can be printed as tactile image. There are many state-of-
the-art algorithms to choose from based around neural networks.

Many networks are able to detect objects in photographs,
including but not limited to Romera-Paredes and Torr (2016);
Salvador et al. (2017); Carion et al. (2020). Each network solves the
problem in slightly different ways. The variations are of importance
to Computer Vision researchers, but for our purposes we have the
luxury of choice.We opt forMask R-CNN (He et al., 2017) because
it: 1) makes code available to be used; 2) is fast to run; 3) reliably
detects many kinds of things; 4) works on ordinary photographs
(consisting multiple objects in a complex environment) as well as
on photographs in a data set (often showing one object only); 5)
detects objects at pixel level, outputting silhouette rather than by
placing a box containing an object on the image.

Object segmentation is not sufficient for us; we need to know
which objects are important. Some object detectors claim to
segment salience objects, for example see work by Romera-
Paredes and Torr (2016), but we opt to compute salience
independently. The pixel-level detector we use means we can
combine it with a pixel-level salience detector.

Saliency Detection can be defined as predicting the human
fixation points in images, or as identifying distinct visual regions
or objects within an image (Borji et al., 2015). The latter is entirely
subject to Bottom-up Saliency, whereas human fixation points
can be influenced both by Bottom-up Saliency and by Top-down
Control (defined by the semantic relationships between objects
within an image, and the current inner goal) (Melloni et al., 2012).
However, eye tracking techniques (Rossi et al., 2017) would be
neither practical, nor feasible for this project. We have opted to
use PiCANet (Liu et al., 2020), where for each image, pixel
informative contextual regions are learnt and contextual
attention is generated, thus allowing useful semantic features
to be obtained and better decisions made.

2.3 Non-Visual Methods
Before leaving the background section The use of non tactile
methods that communicate visual images in a non visual form are

mentioned which communicates visual images in a non-
visual form.

Many people with a visual impairment have adapted to
technology and use Alt Text when navigating the internet
through a screen reader. Alt Text produces short descriptions
of photographs in written form. Facebook Alt Text (Wu et al.,
2017) is an example of this and is used today. It works
automatically, saving time and human effort. Currently,
Facebook Alt Text lists basic information and descriptions in a
particular order as follows: people (e.g., whether it is a person
smiling, a baby or a child), objects (e.g., car, cloud, dog, shoes),
and settings/themes (e.g., inside restaurant, outdoors, in nature).
Facebook Alt Text recognises 100 common objects, and is not
written in sentences to keep accuracy as high as possible.

Just as sighted people benefit from a combination of prose and
pictures, visually impaired people might too. Our provision of
tactile images complements, rather than competes with alt-text
and other non-visual, non-tactile methods.

3 OUR ALGORITHM: FROM VISUAL TO
TACTILE IMAGE

One of the contributions of this paper is developing an
algorithm to process photographs into a tactile rendering.
Our form of tactile rendering is a swell-paper image of a
collage containing black icons on white background. The
algorithm outputs a collage of icons that reflects the salient
content of an input photograph.

As an overview, our algorithm has two parts, as shown in
Figure 2. First, the input photo is analysed into a map of the most
salient objects in the picture. The map locates the objects at pixel
level, so each can appear in silhouette. Each object has been
recognised as an object and each has a unique and a number to
identify it. See Section 3.1 for details.

This map is used as the starting point for the second section,
which is to create a collage of icons. Each identified salient object
is replaced with its corresponding icon, which is scaled to size and
moved if necessary to avoid overlap with nearby icons. The details
of this are left to Section 3.2.

3.1 Analysis
The purpose of analysis is to construct a model of the input
photograph, which is a map of salient objects. We use two neural
networks for this. The first, Mask R-CNN (He et al., 2017), detects
objects in the photograph. The output is a map of object labels,
object(x, y). When object detection is running, weights are loaded
from a model trained on the MS-COCO dataset (Lin et al., 2014)
into the network. The dataset consists of images representing 81
different classes of common objects (e.g., a person or a bike),
meaning that this is the number of classes the network can
recognise and classify.

The second network, PiCANet (Liu et al., 2020), provides a
salience map. We use a bottom-up salience map, typically
obtained from eye-gaze experiments: the algorithm assumes
that dwell time correlates with salience, and it learns to
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associate spatial colour patterns with dwell time. The output is a
salience map, sal(x, y), that is brightest over the most salient
pixels.

We now have a combined map of the form:

map(x, y) � [object(x, y), sal(x, y)]. (1)

We also have a list of the objects in the picture, which provides
the information to make a collage.

3.2 Rendering
The first step in rendering is to decide which objects to keep,
i.e., which are the most salient. This is straightforward, salience
per unit area for the jth object is computed as:

s(j) � ∑xysal(x, y)(id(x, y) � j)
∑xy(id(x, y) � j) . (2)

Next, the objects are thresholded to retain only the most
salient. Choosing a threshold is not easy; the intention is to
find balance between too many and too few objects. Simple
thresholds, such as using the mean of all salient objects does
not succeed this balance. A heuristic solution is using the mean μ,
and deviation σ of all salience values. We therefore define the
threshold as:

τ(μ, σ) �
μ, σ > μ
μ − 2σ, σ < 10

μ − σ

2
, otherwise.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(3)

Each detected object has a corresponding icon within an
assembled library. All icons are in png format, have equal
dimensions and are used to create the collage. Any selected
icon must be scaled to the correct size and moved, so it sits as
closely as possible over the corresponding object, given the other
objects around it.

That is, the icons are scaled by the ratio of the bounding
rectangle perimeter of the segmented object to the perimeter of
the icon: s � perimeter(object)/perimeter(icon). The scaling is
uniform so the shape of the icon does not change.

If the bounding rectangles of two objects overlap, then two
conditions arise. In the first case, the rectangle of one object sits
entirely inside the rectangle of another. Therefore, the smaller
object is deleted from further consideration. Had this not been
done, the icons could combine to make a single shape that would
be difficult to recognise. In the second case, the boxes partially
overlap. Here, the least salient of the two objects is pushed in the
direction of a vector that joins the box centres until there is no
overlap. This preserves the location of the most salient object, and
ensures that the icons cannot overlap.

Moving a box away from another might lead to one box leaving
the constraints of the image, thus a scaling operation is applied. If a
given bounding box reaches the border of the image, the box is simply
resized until it no longer overlaps any other boxes. In an image, there
could be many overlapping boxes. In an attempt to retain as much of
the original position of the objects as possible, of the original position
of the objects, we iterate through the sets of all pairs of overlapping
boxes, and at each iteration only a single move per pair is allowed.

The output image is then rendered as black icons on white
background and printed on swell paper for later use.

4 EXPERIMENTS: ICONS ARE EFFECTIVE
TACTILE REPRESENTATIONS

Amixed repeated measures design was used to assess the number
of correctly identified objects in each image, with familiar and
unfamiliar objects for edge maps and icons only representations.

4.1 Participants
A statistical power analysis was performed for sample size
estimation, using data from a published study by Lederman

FIGURE 2 | The algorithm in overview, from visual to tactile images. The input image at the left is processed to produce both a detection and a salience map. These
are combined into a collage, with a salient object list to call up the icons in the library. The output image places the relevant icons into representative spatial locations in
the image.

Frontiers in Computer Science | www.frontiersin.org January 2022 | Volume 3 | Article 7877355

Pakėnaitė et al. Communicating Photograph Content

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


FIGURE 3 | Examples of photographs being represented as an edge map or using icons only.

Frontiers in Computer Science | www.frontiersin.org January 2022 | Volume 3 | Article 7877356

Pakėnaitė et al. Communicating Photograph Content

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


et al. (1990). Performance differences for tactually identifying two
and three-dimensional drawings of common objects were
compared between seven sighted blindfolded, and seven
congenitally blind participants. The effect size in this study
was 1.5, which is considered extremely large using the criteria
by Cohen (2013). With α � 0.05 and power � 0.8, the projected
sample size needed with this effect size [when using G*Power 3.1
(Faul et al., 2009)] is approximately N � 14 for this simplest
between/within group comparison. Thus, our proposed sample
size of N + 6 should be more than adequate for the main objective
of this study. This should also allow for expected attrition, and
our additional objectives of controlling for possible mediating/
moderating factors/subgroup analysis, etc. Because it is more
difficult to find a sufficient number of participants with visual
impairment than sighted participants, the value of 0.2 was
inputted into “Allocation ratio N2/N1” on G*Power 3.1. The
output resulted in 18 for sample size group 1 and 4 for sample size
group 2. Thus, the aim was to have at least 20 sighted and 10
visually impaired participants.

A total of 32 participants were recruited for the study, 12 of
whom were visually impaired (37.5%). They were recruited by
word of mouth from the University of Bath, the Association of the
Blind of Western Greece, and Galloway’s Society for the Blind.
The study included 22 females (68.7%) and 10 males (31.3%),
ranging from 16 to 62 years old (M � 35.78, SD � 15.52). Of the
visually impaired participants, 2 were congenitally blind, 4
became blind in later life, and 6 were early blind. The average
age was 41.33 years (SD � 13.14), while for the sighted
participants the average age was 32.45 (SD � 16.18). Early
blind participants had very little to no visual memory. 22
participants (68.8%) were not at all proficient in braille or
moon system, five participants (15.6%) were not very
proficient, 1 (3.1%) was quite proficient, 2 (6.3%) were
proficient, and 2 (6.3%) were very proficient. Regarding tactile
diagram experience, 22 participants (75.0%) were not at all
proficient, 2 (6.3%) were not very proficient, 4 (12.5%) were
quite proficient, 1 (3.1%) was proficient, and another 1 (3.1%) was
very proficient.

4.2 Stimuli
The stimuli were created based on 10 photographs containing
common objects. For icon only representations, a combination of
object Mask R-CNN (He et al., 2017) and saliency PiCANet (Liu
et al., 2020) detection algorithms were used to identify the most
salient objects in each photograph and replaced to scale with an
icon on a blank canvas. An example can be seen in the third
column of Figure 3. When Mask R-CNN was running, weights
were loaded from a model trained on the MS-COCO dataset into
the network to detect any of 81 different classes of common
objects (Lin et al., 2014). Object Detection architecture was
implemented using Detectron (Facebook AI Research’s
software system)4. Saliency Detection PiCANet was
implemented using MATLAB with the Caffe framework (Liu

et al., 2020). An overall set of 12 icons were used, resulting from
the detection of 22 salient objects. Eight icons of football, car, cat,
dog, elephant, person, tennis racket, and zebra were used in the
training phase, and four remaining icons of bicycle, clock, giraffe,
and umbrella were introduced as new objects in the second part of
the study.

For a comparison, the edge map of the photograph was
extracted through kernel convolutions, which were facilitated
by OpenCV, a third-party code library. Firstly, an initial Gaussian
blur was computed on the entire image using a 5 × 5 kernel with
SD of 0.9, to reduce the low-level noise. Canny edge detection
(Canny, 1986) was then applied to the blurred image. Note that
although a blurring stage is included in the Canny edge detection
algorithm, another blur filter is applied beforehand as the implicit
one was insufficient for the noise reduction. For the edges, the
default values of 100 and 200 for the minimum and maximum of
the intensity gradient respectively were used. The colours of the
pixels in the edge map were inverted, so the edges are represented
by black pixels and everything else by white pixels. An example
can be seen in the second column of Figure 3. This allows the
edges to be raised when printing on a swell paper that turns a
picture tactile. All materials were printed on swell paper using a
Zyfuse Heater.

4.3 Procedure
Participants were introduced to the study procedure, and
personal data was collected including age, any visual
deprivation they might have, the cause of impairment, and
previous experience with braille or moon system and tactile
images. Participants were asked these questions to account for
any individual differences, noted by Thinus-Blanc and Gaunet
(1997). Any possible relationships between such factors and
performance in tactile picture comprehension, was then used
for analysis. In the first part of the study, participants were
familiarised with 8 out of the 12 icons. They were blindfolded
and instructed to feel the eight mixed images with both hands,
and were told what each icon represented, using the labels of
football, car, cat, dog, elephant, person, tennis racket, and zebra.
After this, the images were shuffled and participants were asked to
identify each icon in 30 seconds with a 10 seconds time warning
at the end. They were told whether their guess was correct, and if
not, the icon was named for them after the allotted time. If
participants did not name at least 7 out of 8 items correctly, the
procedure was repeated until all items were identified. This was
repeated up to 3 times. Finally, each participant was asked to
describe their strategy for remembering the icons and given a 2-
minutes break.

In the second part of the study, participants were asked to
identify objects from a selection of representations, including 10
iconic and 10 edge maps. They were firstly provided with an edge
map example, featuring a pigeon, to familiarise themselves with
this type of representation. Following this, they were given
1 minute to identify the main objects in each representation,
followed by a 10 s time warning. No feedback was given to the
participants for correct or incorrect answers. Responses were
marked using the labels of football, car, cat, dog, elephant, person,
tennis racket, zebra, bicycle, clock, giraffe, and umbrella, or close

4Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., and He, K., (2018).
Detectron. Retrieved from https://github.com/facebookresearch/detectron.
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synonyms (e.g., time for clock, vehicle for car, etc.). If responses
were vague (e.g., “animal” for giraffe), further questions were
asked (e.g., “Could you bemore specific on what animal you think
it could be?”). Finally, participants were asked to describe their
strategy for identifying the objects. The study took approximately
35 minutes.

In cases where participants were not available for a face-to-face
session, the stimuli and a blindfold were posted to them, and the
study was conducted through their preferred choice of video call
software. Participants were instructed not to open the package
prior to the study. The eight images were shuffled by themselves
(or with a help of someone else) after familiarisation in the
training phase, and the researcher was shown which image
they were about to touch before doing so. The images for the
second part of the study were premixed by the researcher before
the materials were sent to the participant; the order for each
participant was randomised but then corrected, so that the two
representations of a given image were not presented sequentially.

4.4 Results
4.4.1 Quantitative Data
A Mixed ANOVA was performed to identify whether having a
visual impairment affects the percentage of correctly identified
objects; whether there is a difference in correctly identifying
objects from each type of representation; and whether vision
affects the percentage of correctly identified objects in each
representation, as shown in Table 1. All relevant assumptions
have been checked for, and were met including homogeneity of
variances.

Results showed a significant main effect of representation type
on percentage of correctly identified objects (F(1, 30) � 222.339,
p < 0.001, η2p � .881), suggesting that participants recognised
more objects correctly if they were represented through icons
rather than edge maps. A main effect of sightedness was also
found (F(1, 30) � 190.937, p < 0.001, η2p � .864), suggesting that
visually impaired participants recognised more objects correctly,
irrespective of the representation used. No interaction effect was
observed (F(1, 30) � 3.394, p � 0.075), meaning that sightedness
did not affect which representation participants recognised more
objects from.

A paired sample t-test was used to identify any differences in
the percentage of correctly identified objects that were learned
during the training phase or not. A percentage of 71.57% (SD �
25.93) learned icons were correctly recognised, while 33.87% (SD
� 29.51) of new icons were correctly recognised. A significant
difference between the learned and new icons was found (t(30) �
8.189, p < 0.001), suggesting that the icons learned beforehand are
more likely to be recognised than new icons that are new.

Pearson’s 2-tailed correlation revealed that participants with
more correctly identified learned objects also correctly
identified more new objects, (ρ � 0.579, p � 0.001). It must
also be noted that no significant correlation was found between
participants’ age and percentage of correctly identified objects (ρ
� 0.357, p � 0.045). Furthermore, no significant correlation was
found between the number of correctly recognised learned icons
and correctly identified edge map objects (ρ � 0.224, p � 0.083).

4.4.2 Qualitative Data
Recognising objects in tactile images at a high rate, although useful,
is by no means the end of comprehension. The explanations and
narratives that people construct about the content is important,
although due to the nature of qualitative data, it is harder to
interpret. Even though story building was not directly instructed,
participants did construct explanatory narratives.

After recognising icons of a person and a tennis racket,
participants assumed that the picture was of a person playing
tennis (see Figure 4A). In the case of two people playing football,
the story was “playing football”. Some pictures were more
complex and harder to interpret. One such photograph
showed a cyclist next to a car on a road. Our algorithm
recognised all the parts, but displayed them as non-
overlapping icons for a person, a bicycle, and a car. The
requirement for icons not to overlap confused the narratives:
one participant said “a person is trying to decide whether to
commute by a car or by bike”. Another felt it was “a person
crossing the road with his bike” or “a person with his car and bike
parked”. Figure 4B provides other interpretations. This shows the
innate ambiguity in some of the pictures.

However, being able to make a plausible narrative at all, is
arguably preferable to making no narrative at all, and participants
rarely gave such commentaries when presented with edge maps.
This may be expected if recognition is a perquisite to any
explanation. (If nothing is recognised, there is nothing to
explain.) Rather, as in Figure 4, participants commented on
characteristics of the tactile image that are extraneous to its
semantic content, such as the textural experience it gave.

TABLE 1 | Percentages and Standard Deviations of correctly identified objects for
each representation type for sighted and visually impaired individuals.

Sightedness Representation type

Icons only Edge maps

Sighted 57.6%, SD � 26.9 5.45%, SD � 8.01

Visually impaired 74.62%, SD � 14.14 7.76%, SD � 15.03

FIGURE 4 | Comments by different participants for some of these
representations.
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5 DISCUSSION

The combination of Mask R-CNN (He et al., 2017) and PiCANet
(Liu et al., 2020) made it possible to automatically detect, identify,
and localise salient objects. The icon-based tactile representation
worked particularly well among Visually Impaired participants:
74.62% for icons and 7.76% for edge maps. Many participants
enjoyed grasping some information about photographs through
simple iconic representations; in contrast, feeling edge maps led to
cognitive overload. Moreover, participants were able to construct
relevant narratives from the icon images, but rarely from edge
maps. Not only were objects more easily identifiable through icons,
but it also brought the story within photographs to life.

Icons and edge maps are not the only choices available when
processing photos into tactile images. When artists draw, it is
common for them to deliberately highlight the most salient
aspects of a scene, providing an idea of a possible alternative
route for automation. The literature provides many methods for
making strokes (Hertzmann et al., 2002; Lang and Alexa, 2015),
including the contemporary use of neural networks (Li et al.,
2019b,a). However, the question of where to place strokes is
crucial; some reasonable solutions exist for 3D models (DeCarlo
et al., 2003) but the case for photographs remains open.
Therefore, the use of icons is a direct and available route to
demonstrate semantic content. Our particular choice of style for
icons was based on previous psychology research works, i.e., 2D
representations are easier to recognise than 3D, and is the
preferred method for recognising objects in three-quarters
front view (Bartram, 1974; Palmer, 1981; Klatzky et al., 1985;
Biederman, 1987; Lederman et al., 1990; Eriksson, 1999).

The importance of icon size should not be overlooked when
developing images. While size variation of icon was notified in the
information sheet, most participants did not remember this and
were often surprised by the change. This resulted in low confidence
and some incorrect responses. For example, many participants
identified the elephant icons as dogs because icons of elephants
were small in the training phase. If participants used the icon
images for longer, then confidence and judgment may return.

One particularly interesting issue that arose from scale, was
confusion between perspective scaling and actual object size.
Some participants described the football iconic picture
(Figure 3D) as football being played by either “a man and a
child” or “two people at different distances.” Congenitally blind
participants tended to describe icons as big or small, rather than
the corresponding objects as being close or far.

Icon size also affected the textural features of an icon. The
tennis racket was sometimes identified as a lollipop or a balloon;
and the zebra icon as a horse or a dog. Tactile resolution for the
skin is approximately 2.5 mm (Sherrick and Craig, 1982). In other
words, when two points are closer, they tend to feel like one point.
It could be assumed that these icons were not recognised correctly
because of low touch sensitivity as noted by Manning and
Tremblay (2006); Tremblay and Master (2015), but incorrect
responses were made by participants of varying tactual
experiences which agrees with research works by Legge et al.
(2008) and Heller (1989). Thus, the implementation of size
criteria of icons might be necessary to improve intelligibility.

For the strategy of remembering the icons, participants often
looked for specific features first, like texture or distinctive parts,
rather than outlines. Several participants commented that
visualising an icon as a whole was difficult. For example, a cat
was remembered by its curved tail, a zebra by their stripes, an
elephant by its trunk, a car by their wheels, and a tennis racket by
their strings. The umbrella icon was sometimes identified as a cat,
because the curved tail felt like the curved handle. The umbrella
icon was not included in the training phase of the experiment, so
it had to be learned. Again, greater familiarity may mitigate such
issues, but this is an open question.

Some participants developed a strategy for identifying icons of
animals, by remembering which direction these fixed icons were
facing in the training phase of the study. That is, all animal icons
were facing the right, except the zebra. This strategy was
particularly useful when size of icons changed drastically and
some features were no longer touchable, e.g., after the icon of a
zebra turned very small, its their stripes were no longer palpable to
some participants, but it was still correctly identified due to
direction. One participant wondered whether these icons would
still be recognisable if they were mirrored. Since icons were
primarily remembered by their distinctive features rather than
as a whole, it would be interesting to investigate whether icons with
varying poses would be recognisable should the distinctive features
remain fixed (i.e., tail of a cat stays unchanged while the body could
vary to match the pose on the photograph).

With the effect of reduced performance in object
identification, when icons changed size after training, we could
assume that it would be harder to recognise icons that change
their poses accordingly. However, the first part of the experiment
consisted of fixed sized icons only, thus it is unclear whether the
outcome would have been different if participants were trained to
recognise icons in different sizes.

It is prominently noticeable that our icon representations
displayed only some of the foreground of the picture and
none of the background. Also, our algorithm does not allow
icon overlap. Both of these characteristics contributed to the
diversity of narratives about the tactile images. Biederman (1981)
has presented some results in object identification and found that
produced accuracy varies when objects are presented on different
types of background. With many more research studies on gist of
the scene, such as Davenport and Potter (2004) or Munneke et al.
(2013), it is clear that objects are identified more accurately when
the background scene is consistent (e.g., a sandcastle on a beach
instead of a sandcastle on a road). Future work would be needed
to determine whether this effect is similar in touch senses,
alongside an investigation of whether objects correctly
identified by facilitation of background information, leads to a
better contextual understanding. How to present background
information tactually and intelligibly would be an important
avenue for future research.

Another potential area for future work is having the neural
network learn the thresholds discussed in the rendering phase.
This can be achieved with transfer learning, so the model also
includes the numeric threshold value as an output of the final
layer. The difficulty with this is finding, or creating data that has
adequate thresholds for many scenes.
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With some future work listed and no particular focus on the
best neural networks to use, our algorithm has a potential to bring
a new accessibility feature to the visually impaired community - a
feature that automatically communicates information about
images, saving time and reducing costs of tactile image
production.

6 CONCLUSION

Our approach for rendering tactile images by detecting important
objects, communicates content in such a way that people can
construct a meaningful narrative of the visual image. Overall,
participants reported that edgemaps have toomuchnoise to be useful.

We can display foreground icons only in a fixed pose and in a
non-overlapping fashion. Considerable work is needed to
discover how to produce better icons automatically. One
prominent gap in our iconic representations is that it has no
background information. Such inclusion poses a considerable
challenge, which brings a research opportunity for future work.

Nonetheless, we have provided the first known approach that is
capable of communicating some content via touch; a small step
technically perhaps, but with millions world-wide having little or no
access to photos, this is a small step with a potentially large impact.
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