
TYPE Original Research
PUBLISHED 04 January 2023
DOI 10.3389/fcomp.2022.1008062

OPEN ACCESS

EDITED BY

Bernhard Thalheim,
University of Kiel, Germany

REVIEWED BY

Neeraj Kumar Singh,
École Nationale Supérieure
d’Électrotechnique, d’Électronique,
d’Informatique, d’Hydraulique et des
Télécommunications (ENSEEIHT),
France
Giuseppe Destefanis,
Brunel University London,
United Kingdom
Mohamed Wiem Mkaouer,
Rochester Institute of Technology,
United States

*CORRESPONDENCE

Malvina Latifaj
malvina.latifaj@mdu.se

SPECIALTY SECTION

This article was submitted to
Software,
a section of the journal
Frontiers in Computer Science

RECEIVED 31 July 2022
ACCEPTED 15 December 2022
PUBLISHED 04 January 2023

CITATION

Latifaj M, Ciccozzi F and Mohlin M
(2023) Higher-order transformations
for the generation of synchronization
infrastructures in blended modeling.
Front. Comput. Sci. 4:1008062.
doi: 10.3389/fcomp.2022.1008062

COPYRIGHT

© 2023 Latifaj, Ciccozzi and Mohlin.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Higher-order transformations
for the generation of
synchronization infrastructures
in blended modeling

Malvina Latifaj1*, Federico Ciccozzi1 and Mattias Mohlin2

1School of Innovation, Design and Engineering, Mälardalen University, Vasteras, Sweden, 2HCL
Technologies, Malmo, Sweden

Introduction: Blended modeling aims at boosting the development of

complex multi-domain systems by enabling seamless multi-notation

modeling. The synchronization mechanisms between notations are embodied

in model transformations. Manually defining model transformations requires

specific knowledge of transformation languages, and it is a time-consuming

and error-prone task. Moreover, whenever any of the synchronized languages

or notations evolves, those transformations become obsolete.

Methods: In this paper, we propose an automated solution for generating

synchronization transformations in an industrial setting.

Results: The approach entails i) the specification of mapping rules

between two arbitrary domain-specific modeling languages leveraging a

mapping modeling language, appositely defined for this purpose, and ii) the

automatic generation of synchronization model transformations driven by the

mapping rules.

Discussion: We validated the proposed approach in two use cases. Although

our main goal was to provide a solution for synchronization between graphical

and textual notations of UML-RT state machines, the proposed approach is

language- and notation-agnostic.

KEYWORDS

blended modeling, multi-notation, automatic generation, model transformations,

higher-order transformations, mapping modeling language

1. Introduction

Demands on software functionality and quality increase at a very fast pace, and

the interconnected nature of software-intensive systems makes complexity of software

grow exponentially. A rather direct consequence is that the time and costs for software

development increase notably. Model-Driven Engineering (MDE) has been largely

adopted in industry as a powerful means to effectively tame the complexity of software-

intensive systems and their development, as shown by empirical studies (Hutchinson

et al., 2011), by using domain-specific abstractions formalized in domain-specific

modeling languages (DSML). DSMLs allow domain experts, who may not be software

experts, to describe complex functions in a more domain-focused and human-

centric way than if using traditional programming languages. DSMLs formalize the

communication language of engineers at the level of domain-specific concepts such as an

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.1008062
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.1008062&domain=pdf&date_stamp=2023-01-04
mailto:malvina.latifaj@mdu.se
https://doi.org/10.3389/fcomp.2022.1008062
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.1008062/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

engine and wheels for a car. These concepts may not exist

in other domains. Moreover, DSMLs support more efficient

integration of software with designs and implementations of

other disciplines. Domain-specific modeling demands a high

level of customization of modeling tools, typically involving

combinations and extensions of DSMLs and tailoring of the

modeling tools for their respective development domains and

contexts. Furthermore, tools are expected to provide multiple

modeling means, e.g., textual and graphical, to satisfy the

requirements set by different development phases, stakeholder

roles, and application domains.

However, domain-specific modeling tools, especially those

based on the Unified Modeling Language (UML) and its

profiles (as in the industrial tool addressed in this paper),

traditionally focus on one specific notation, which is most

often graphical or textual. This limits human communication,

especially across engineering disciplines. A notation that is

well understood by one engineering discipline may not be

as easily understood by engineers from another discipline.

Moreover, engineers from the same or different disciplines may

have different notation preferences; not supporting multiple

notations negatively affects the throughput of engineers. Besides

the limits to communication, choosing one particular notation

also limits the pool of available tools to develop and manipulate

models that may be needed. For instance, choosing a graphical

notation limits the usability of text manipulation tools such as

text-based diff/merge, which is essential for team collaboration.

This mutual exclusion suffices the needs of developing small-

scale applications with only few stakeholder roles.

For larger systems, with heterogeneous components and

entailing different domain-specific aspects and different types

of stakeholders, mutual exclusion of notations is too restrictive

and voids many of the benefits that MDE can bring about.

When applying MDE in large-scale industrial projects, efficient

team support is crucial. Therefore, modeling tools need to

allow different stakeholders to work on overlapping parts of

models using different concrete syntaxes or simply notations.

In addition, the diversity of stakeholders leads to the need for

domain-specific editing facilities, which can be graphical, table-

based, form-based, and for many domains also textual (e.g.,

formal verification Lilius and Paltor, 1999).

1.1. Blended modeling

We have defined the notion of blended modeling in a

previous work (Ciccozzi et al., 2019) as follows:

Blended modeling is the activity of interacting seamlessly

with a single model (i.e., abstract syntax) through multiple

notations (i.e., concrete syntaxes), allowing a certain degree

of temporary inconsistencies.

Blended modeling is expected to aid in keeping the cognitive

flow of modeling effective and efficient, offering stakeholders a

proper set of intertwined formalisms, notations, and supporting

computer-aided mechanisms. This is important in the design

of modern systems, as their complexity has been increasing

exponentially over the past years (Persson et al., 2013).

At first sight, the notion of blended modeling may seem

similar to or overlapping with multi-view modeling (Cicchetti

et al., 2019) (and even multi-paradigm modeling) that is based

on the paradigm of viewpoint/ view/ model as formalized

in the ISO/IEC 42010 standard.1 Multi-view modeling is

commonly based on viewpoints (i.e. “conventions for the

construction, interpretation, and use of architecture views to

frame specific system concerns” Emery and Hilliard, 2009)

that are materialized through views, which are composed of

one or more models. In blended modeling, the focus is not

on identifying viewpoints and related views, but rather on

providing multiple blended editing and visualizing notations to

interact with a set of concepts.

The blended modeling paradigm focuses on the provision

of multiple concrete syntaxes, or simply notations, for a non-

empty set of abstract syntactical concepts. As such, it aims to

accommodate different notations, each designed for particular

modeling needs. The main implication of this definition of

blended modeling is that it assumes a single abstract syntax

supported by multiple concrete syntaxes. However, although

this definition is theoretically correct, in reality, language-

specific modeling frameworks can benefit frommultiple abstract

syntaxes for the following reasons.

To begin with, the definition and management of a concrete

syntax may be simpler if directly related to a dedicated abstract

syntax. Relating this to our industrial case, where we started

from a graphical concrete syntax, the first step involved the

definition of a textual concrete syntax by first defining a

dedicated abstract syntax. This was needed since the two abstract

syntaxes were not fully matching, and it generally allows for high

syntax-specific customizations. Furthermore, since notations are

usually meant to be highly customizable to user needs, and each

notation serves a different purpose, often at a different level of

detail, it may not be practical to adapt an existing abstract syntax

supporting one notation to another. In addition, depending on

the needs of two different users, there might exist two “different”

notations of the same type (e.g., two different textual notations

focusing on different aspects of the same modeling concepts

tailored to two different user types). Having a dedicated abstract

syntax per notation alleviates possible syntactical “pollution”

caused by reusing and adapting an existing abstract syntax,

which was not envisioned for that particular notation.Moreover,

there exist scenarios where different notations are represented

by different existing notation-specific DSMLs, formalizing the

same underlying language with a significant overlap, to serve the

1 https://www.iso.org/standard/50508.html

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.iso.org/standard/50508.html
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

needs of different communities, stakeholders, and/or purposes.

Therefore, in practice, blended modeling is not always limited

to seamless interaction with a single abstract syntax through

multiple notations, but it rather entails more complex cases.

The representative scenario of our work is a single

underlying language (set of concepts) formalized through

multiple abstract syntaxes. We define this as extended blended

modeling. In this case, the abstract syntaxes may represent either

two partly overlapping formalizations of the same DSMLs or

even two entirely different DSMLs, provided that they are in

some way related to each other.

1.2. Our contribution

Our overall contribution is the means to automate the

definition of synchronization mechanisms across multiple

notations, regardless of whether the underlying abstract syntaxes

associated with the notations represent the same or disjoint

languages. The mechanisms described in this paper were

conceived for automating the engineering of synchronization

transformations across multiple notations of the same language

(UML-RT), but they have a broader applicability since they

can produce synchronization transformations across notations

of different languages as well as means for co-evolution across

different versions of a language. Technically, we provide a

solution for modeling environments based on the Eclipse

Modeling Framework (EMF) (Steinberg et al., 2008) and DSMLs

described using EMF’s meta-metamodel, Ecore.

1.3. Paper organization

The remainder of the paper is organized as follows. The

industrial setting and supporting arguments on the motivation

behind this work are described in Section 2. We discuss

work related to the problem domain in Section 3. The

developed approach and implementation are described in detail

in Section 4. Experiences from validating the approach are

included in Section 5. A discussion is provided in Section 6 and

the paper is concluded in Section 7.

2. Industrial setting, core problem,
and expected benefits

The research work described in this paper was carried

out in cooperation with HCL Technologies, which offers

an industrial Eclipse-based modeling tool, RTist,2 for the

development of complex, event-driven, and real-time software.

The tool is designed to support UML and its real-time profile

2 https://www.hcltech.com/software/rtist

(UML-RT). More specifically, the tool provides support for

specifying UML-RT architectures and applications by means of

graphical composite structure diagrams, for modeling structural

information, and state-machine diagrams, for modeling

behavior. Furthermore, the tool provides specific features to

complement models with fine-grained algorithmic behaviors by

embedding C/C++ action code in state-machines.

The long-term goal of HCL behind this research effort is

to improve the process of engineering software applications

by enabling developers, which will also be referred to as users

in the remainder of the paper, to work on overlapping parts

of a model using different modeling notations (i.e., graphical

and textual) seamlessly in the same modeling environment.

Although the ultimate goal of this effort is to provide a blended

modeling environment for the entire UML-RT language, in

this paper we focus on the most complex part, namely the

provision of a flexible solution for blended modeling of

UML-RT state-machines. Starting from the canonical graphical

concrete syntax for UML-RT state machines, the provision of a

blended modeling environment with seamless synchronization

can be broken down into two main steps which we have

successfully carried out in Latifaj et al. (2021, 2022). More

specifically, in Latifaj et al. (2021) we describe the effort of

designing, implementing and integrating a textual notation

for UML-RT state machines in RTist. In Latifaj et al.

(2022) we contribute with the customization of the textual

editor for UML-RT state-machines with advanced formatting

features including systematic support for hidden regions which

group hidden tokens (e.g., comments, whitespaces) between

two semantic tokens and the provision of synchronization

mechanism between textual and graphical notations. However,

the synchronization mechanisms were manually defined in

terms of model transformations between two specific DSMLs

describing textual and graphical notations. If any of the two

concrete syntaxes underwent a change, the mechanisms became

obsolete.

The specific industrial aim of this work was instead to

provide an automated solution for generating synchronization

infrastructures between potentially evolving concrete syntaxes

of UML-RT. To allow for evolution of the entailed DSMLs and

the co-evolution of the synchronization mechanisms, in this

work we contributed with the design and implementation

of a mechanism for the automatic generation of the

infrastructure required for seamless synchronization, i.e., model

transformations, between virtually any pair of Ecore-based

DSMLs (not only graphical and textual UML-RT state-

machines), that may or may not represent two different concrete

syntaxes of the same language. The provision of automatic

means for generating model synchronization transformations

from two given DSMLs that may or not represent two versions

of the same language simplifies remarkably the life of modeling

tool developers, but also allows domain experts without

particular knowledge in model transformations to practically

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.hcltech.com/software/rtist
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

put in place the infrastructure needed for synchronization

purposes. In our specific industrial setting, our approach brings

the following benefits.

• It provides the means for seamless synchronization

of the standard graphical and the newly introduced

textual concrete syntaxes for UML-RT state-machines.

Being a standard language, UML-RT is unlikely to

evolve frequently. However, customers require viewing

and editing UML-RT models using various specialized

notations, each described by a specific DSML. These

DSMLs are tailored to customer needs and, unlike the

underlying UML-RT based language, they may be subject

to frequent changes. Thanks to our solution, as soon as any

of the notations undergoes a change, the synchronization

mechanisms can be regenerated with a minimal mapping

effort from the developers. Without our approach, the

actual model synchronization transformations would need

to be manually edited by the developers, which is clearly

a risky, error-prone, and time-consuming task. Our

solution gives architects and developers the possibility to

experiment when extending or evolving either concrete

syntax.

• Similarly, in case the UML-RT language itself would evolve,

alongside its concrete syntaxes, without a solution like

this based on automatic generation of synchronization,

all transformations would need to either be co-evolved

manually, which is again, an error-prone and time-

consuming effort, or re-written from scratch in case of

deep changes to the language and/or the related concrete

syntaxes. Our solution eases this process and provides the

means for a more flexible and “fast prototyping” kind of

modeling language and tool engineering process. Engineers

and developers can sketch changes to either of the concrete

syntaxes and try them out with automated generated

synchronization, too.

• If any other language would be included in the tool

ecosystem for, e.g., modeling multi-domain systems,

alongside UML-RT, our solution aids in establishing

synchronization infrastructures between them, pairwise.

Automation gives flexibility but also the possibility to

“try out” alternatives without having to spend much

effort and time writing and validating synchronization

transformations, and instead focus on the languages, their

concrete syntaxes, and how they are supposed to interact.

3. Related work

Prior to describing the literature related to our work

and comparing other approaches with ours, we want to

emphasize that not all solutions dedicated to the automatic

generation of model transformations relate to our research.

For instance, we limit our focus to the automatic generation

of horizontal model transformations and do not analyze

approaches toward the automatic generation of vertical model

transformations as described in Ráth et al. (2010), or generation

of model transformations for the exchange of models between

meta-modeling tools such as Kern et al. (2014), since the

mapping correspondences are defined between elements of M3

level models, while we target the specification of mapping

correspondences between elements of M2 level models.

3.1. Blending graphical and textual
editors

With respect to the proposed solutions dedicated to the

blending of textual and graphical editors, a large portion of tools

that offer graphical and textual notations such as Charfi et al.

(2009), Umple by Lethbridge et al. (2021), Excalibur by Ries et al.

(2018), Light UML,3 MetaUML,4 PlantUML,5 or FXDiagram,6

provide a limited set of features as one of the notations is read-

only and is only used for visualization purposes; thus editing the

model via multiple notations is not possible and that violates

the base notion of blended modeling that allows interacting (i.e.,

write and read) with the model viamultiple notations.

For another category of tools, the notations are predefined

and cannot be customized, and the solution is language-specific.

Alternatively, our approach is language-agnostic, meaning

that the synchronization mechanisms can be generated for

arbitrary DSMLs. For instance, Maro et al. (2015) provide a

solution for the semi-automatic generation of textual editors

from UML profile-based DSMLs and the implementation of

synchronization mechanisms with the existing graphical editor;

however, the developed transformations are specific to the

considered UML profile. Addazi and Ciccozzi (2021) propose

a blended modeling framework, but the solution is specific

to UML-based DSMLs. Lazăr (2011) develops a textual editor

for the Action Language for Foundational UML (Alf), but the

editing capabilities are restricted only to some parts of a UML

model, thus they do not cover the complete model. Scheidgen

(2008) proposes embedded textual editors for existing graphical

models, but the solution only provides pop-up boxes to textually

edit elements of graphical models rather than allowing seamless

editing of the entire model.

On another note, while the majority of tools intermixing

between graphical and textual editors do so in a parser-based

fashion, tools such as JetBrains MPS7 and MelanEE (Atkinson

3 http://lightuml.sourceforge.net

4 https://github.com/ogheorghies/MetaUML

5 https://plantuml.com

6 https://jankoehnlein.github.io/FXDiagram/

7 https://www.jetbrains.com/mps/concepts/

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
http://lightuml.sourceforge.net
https://github.com/ogheorghies/MetaUML
https://plantuml.com
https://jankoehnlein.github.io/FXDiagram/
https://www.jetbrains.com/mps/concepts/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

and Gerbig, 2016) follow a projectional approach where the

abstract syntax tree (AST) is modified directly upon every

change, and the changes are automatically reflected in the

different concrete syntaxes that are visualized as projections.

This bypasses the stages of parser-based approaches where the

parser must first check the correctness of the syntactic aspects

and then construct the AST from the character sequence that

users input through text editors. In terms of textual notations,

tools that follow a projectional approach only imitate the

behavior of parser-based textual editors, and are actually limited

to a fixed format. Lastly, the interested reader can find a

more extensive systematic review of solutions dedicated to the

blending of multiple notations in David et al. (2022). These

solutions, however, are based on the concept of only one abstract

syntax, whereas our focus is on multiple abstract syntaxes that

may represent two partially overlapping formalizations of the

same DSML or even two completely different DSMLs as long as

they are related in some way.

3.2. Model weaving

Model weaving allows the definition of relationships and

correspondences between metamodel elements in a weaving

model, and allows the execution of operations based on

them (e.g., a model transformation can be automatically

generated based on a weaving model) (Bézivin, 2005). Several

publications in the literature have been devoted to efforts to

automate the generation of model transformations by means

of weaving models. Lopes et al. (2006) propose a mapping

metamodel based on the Eclipse Modeling Framework (EMF),

and contribute with tools that enable the generation of

model transformations conforming to the Atlas Transformation

Language (ATL) from a mapping model. Didonet Del Fabro and

Valduriez (2009) build on that work and propose a solution

to use matching transformations for the creation of weaving

models that can automate the production of executable model

transformations. These approaches focus on the semi-automatic

creation of weaving models and their manual adjustment

for semantically and syntactically similar languages, and the

manual creation of weaving models for semantically and

syntactically different languages for several purposes, including

model transformations. However, relying only on metamodel

data to create weaving models (i.e., mapping models) without

considering the developer’s intentions does not guarantee the

accuracy of themappingmodel with respect to the requirements.

The use of inaccurate and ambiguous weaving models may

result in incorrect model transformations that do not meet

the initial requirements. Manual verification and adjustment of

an extensive weaving model can be as challenging as finding

a needle in the haystack. This might lead to the creation

of mapping models being simpler than manually fine-tuning

automatically generated ones. In addition, while one may argue

that the weaving approaches provide a flexible and automated

way to derive mapping models, they may not be able to properly

deal with semantic differences among the mapped languages

(i.e., semantics often needs human understanding to be correctly

managed). In our setting, the mappingmodeling language is not

the main focus, but rather a key enabler for the overall goal being

the definition of powerful higher-order transformations (HOTs)

for generating synchronization transformations and addressing

challenging cases, such as synchronization between different

languages.

In a nutshell, by allowing for more complex unambiguous

mappings, we can cater to a wider range of languages, and

provide powerful mechanisms to support the translation

of these mappings to model transformations, thus the

generation of the synchronization infrastructure between

languages and notations. By doing so, we also increase the

generalizability of our approach. Lastly, from a usability

point of view, these solutions tend to provide a tree-

based editor only, while providing an additional textual

editor can prove useful thanks to its syntax-agnostic

editing features.

Ecore2Ecore8 is a plugin, distributed with EMF, that was

originally implemented with the goal of supporting metamodel

evolution. As it is possible to define mappings between two

metamodels, we presume that it could be used to definemapping

models that, in turn, can be used to generate language-specific

model transformations. However, the solution does not provide

mechanisms for the generation of model transformations.

On another note, Diskin et al. (2017) propose a theoretical

framework where traceability mappings are regarded as a core

aspect of transformations definition and management and our

approach can be considered a materialization of this message.

Blouin et al. (2008) propose Malan, a MApping LANguage that

supports mutually exclusive graphical and textual definitions of

schema mappings in Papyrus. The source and target schemas

are expressed as UML class diagrams, and the solution only

generates XSLT stylesheets that convert XML documents into

other formats, such as HTML or plain text. Hillairet et al. (2008)

propose Mapping Ecore-OWL, a textual mapping language

that defines correspondences between EMF objects and RDF

resources. The approach generates ATL transformations that

enable the use of RDF resources as EMF objects and the

serialization of EMF objects in RDF resources. While the last

two solutions provide mapping languages and semi-automatic

approaches for the generation of model transformations, in

contrast to our work, they do not provide support for Ecore-

based DSMLs.

8 https://eclipse.googlesource.com/emf/org.eclipse.emf/+/R2_8_3/

plugins/org.eclipse.emf.mapping.ecore2ecore/

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://eclipse.googlesource.com/emf/org.eclipse.emf/+/R2_8_3/plugins/org.eclipse.emf.mapping.ecore2ecore/
https://eclipse.googlesource.com/emf/org.eclipse.emf/+/R2_8_3/plugins/org.eclipse.emf.mapping.ecore2ecore/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

4. Proposed solution

Consider the model of our solution depicted in Figure 1.

Depending on what the involved pair of DSMLs represents, we

focus on two different scenarios:

1. DSMLA and DSMLB represent two notations of the

same language (e.g., graphical and textual UML-RT state-

machines), then the generatedM2M transformations provide

synchronization across different notations of the same

language.

2. DSMLA and DSMLB are disjoint, then the generated M2M

transformations provide synchronization across different

notations of different languages.

Our approach was designed and implemented with open-

source technologies in the Eclipse Modeling Framework (EMF)9

ecosystem and can thereby be leveraged by any EMF-based tool,

as for the RTist case. More specifically, we provide a semi-

automatic approach where developers are relieved from writing

model synchronization transformations, and, instead, focus

their efforts in describing how they want concepts across DSMLs

to be mapped using a specifically defined mapping modeling

language. There are two main contributions to our approach,

since to generate synchronization transformations, the user first

needs to be given the means to define the relationships between

concepts from both notations, and second the user needs to be

given the means to generate synchronization transformations

based on the defined relationships. Therefore, given a pair of

DSMLs, DSMLA and DSMLB, defined in terms of Ecore, our

first contribution (C1), is an Ecore-based Mapping Modeling

Language (MML), which gives the user the ability to simply

model mapping rules between the two DSMLs. Mapping models

constitute the only manual input required for the approach to

generate synchronization transformations; thereby, it is crucial

that the information in these models is correctly captured and

unambiguous. For our second contribution (C2), Higher-Order

Transformations (HOTs) implemented using Xtend10 take as

input the instantiatedmappingmodels that capture themapping

rules and use DSMLA and DSMLB to resolve the references of

themapped elements and generate synchronizationmechanisms

between the two DSMLs in terms of two unidirectional model

transformations conforming to the QVT operational (QVTo)

language.11 In the remainder of this section, we provide details

on the definition of MML and HOTs together with a rationale

behind the choices made in the process and details on how we

implemented them. The complete implementation can be found

in our GitHub repository12).

9 https://www.eclipse.org/modeling/emf/

10 https://www.eclipse.org/xtend/

11 https://wiki.eclipse.org/QVTo

12 https://github.com/MLJworkspace/BlendedModellingSolution

4.1. Mapping modeling language

We refer to a mapping language as a structured and

formalizedmeans for the specification of mapping rules between

two or more DSMLs. The definition of the mapping language

is given in terms of a metamodel; thus, it can also be

defined as the correspondence of elements between arbitrary

metamodels (Lopes et al., 2006). A mapping language provides a

fundamental input to correctly synchronize models conforming

to different DSMLs, as explicit mapping rules link multiple

DSMLs deterministically. In our specific case, mapping rules

in those models drive the HOTs to properly generate model

transformations conforming to QVTo. The mapped DSMLs

shall conform to the Ecore meta-metamodel and may represent

two different notations of a same language, as in our UML-RT

state-machines use-case.

Although more intuitive and easier to interact with than

complex model transformations, MML is still intended for

users with meta-modeling knowledge. Understanding of the

meta-modeling concepts and structure is essential to properly

describe how concepts between DSMLs are intended to be

mapped. Definition of mapping rules instead of manually

writing model transformations is particularly useful for domain

experts with no specific knowledge of model transformation

languages, but also for developers who can benefit from a semi-

automatic, more accurate, and less cumbersome approach for

establishing synchronization mechanisms. Practically, domain

knowledge is the only required input. Also maintenance of

the generated model transformations in response to evolving

DSMLs or requirements can be performed by domain experts,

since adjustments only need to be made at the level of the

mapping models, while HOTs would use them to regenerate

model transformations. That is to say that developers are not

expected to manually edit generated model transformations at

any point in the process.

As part of our effort in defining MML, we conducted an

analysis to identify the input required to correctly generate

model transformations. Considering that one of the main goals

of this study was to minimize the amount of manual input

required from the user, we first identified the maximum set

of information that could be automatically retrieved from

DSMLs (DSMLA and DSMLB). For instance, the mapping

rule type (i.e., abstract or non-abstract) is calculated based on

whether the source element is abstract or not. Moreover,

disjunctive/disjuncted mapping rules and inheriting/inherited

mapping rules are automatically generated by examining the

hierarchical structure of the involved metamodels. The user is

also relieved from invoking the corresponding mapping rules

as they can also be retrieved automatically. The assignment

operator is automatically generated in the case of mono-valued

attributes or properties (i.e., :=), while in the case of multi-valued

elements the user must manually define it based on whether the

goal is to add elements to the collection (i.e., +=) or to reinitialize

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/xtend/
https://wiki.eclipse.org/QVTo
https://github.com/MLJworkspace/BlendedModellingSolution
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

FIGURE 1

Semi-automatic synchronization infrastructure.

the collection with the element, dropping all previous elements

(i.e., :=). Navigation operators (. and ->) are also automatically

generated by assessing whether the source is a single element

or a collection of elements. In addition, navigation paths are

also automatically generated when they involve containment

references or when there is a single non-containment reference

between two EClasses. The remaining information would have

to be manually provided by the user. Based on this, we defined

the concepts to be included in the MML metamodel.

Once identified the concepts that MML should include, the

last step was to implement it, focusing on abstracting away the

implementation—specific details (e.g., syntax and semantics) of

model transformation languages, and allowing the user to focus

exclusively on the specification of mapping rules. To comply to

our overall settings, we implemented the MML in a blended

modeling fashion, allowing the user to interact with MML

via both textual and tree-based editors. Blending for MML is

useful, since it combines the strength of text for syntax-agnostic

editing operations, such as copy and paste, search and replace,

auto-complete features, and a good integration with widely

used versioning and configuration tools, with clear structural

overview features typical of tree-based editors.

We assume that MML users have experience with at least

one object-oriented programming (OOP) language; therefore,

several syntactical features of MML are similar to those of

OOP languages. In addition to that, users have an advantage if

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

they have some knowledge of the Object Constraint Language13

(OCL), since in certain cases mapping rules require the

specification of conditions for the correct navigation of elements

and for the expression of the so-called “guards” in the generated

transformations.

MML is developed using the Xtext language workbench.14

Xtext relies on EMF and it generates an Ecore model that

represents the abstract syntax tree (AST), lexer, parser, and the

corresponding Java code. In Figure 2 we describe the MML

metamodel defined as an Ecore model, and in the following we

detail the metaconcepts of MML.

The MappingModel serves as the root

of the metamodel and is a tuple <name,

Rules*,SourceMetamodels*,TargetMetamodels*,

MainSourceMetamodel>, where name is a unique name

for MappingModel, Rules* is a possibly empty set of

elements of type MappingRule, SourceMetamodels*
and TargetMetamodels* are sets of elements of types

SourceMetamodel and TargetMetamodel respectively,

with at least one element each. MainSourceMetamodel

is a single element of type SourceMetamodel that in the

case of multiple SourceMetamodels is required to indicate

the SourceMetamodel to be used at the entry point of the

transformation to be generated.

The MappingRule is a tuple <name, operator,

condition, comment, source, helperLiteral,

target, ChildRules*, ChildHelpers*> where

name is a unique name for MappingRule, and operator

represents the type of operator between mappings (i.e.,

assignment, addition). This is required when it comes to

Collections to determine whether the user intends to append

an element to the Collection or to reinitialize the Collection

by deleting all previous elements and adding the new one.

condition supports the definition of a condition that can be

interpreted in different ways depending on the type of source

and target elements of the mapping rule (i.e., mapping guard

for EClasses and OCL filter for EReferences and EAttributes).

comment supports the definition of comments to the mapping

rule which can help the user keep track of the piece of

generated code with the corresponding mapping rule. source

and target are optional elements of type EObject that

represent the source and target elements of the MappingRule.

helperLiteral is used for EEnumLiterals and is

included since EcoreQualifiedNameProvider does

not support EEnumLiterals, thus they are not indexed.

To surpass this limitation, we need two references; one

to the EEnum and the other to the EEnumLiteral. Thus,

source or target will be used to reference EEnum

and helperLiteral to reference EEnumLiteral.

ChildRules* is a possibly empty set of elements of type

13 https://wiki.eclipse.org/OCL

14 https://www.eclipse.org/Xtext/

MappingRule, while ChildHelpers* is a possibly empty

set of elements of type HelperStatement.

SourceMetamodel and TargetMetamodel represent

the DSMLs that will be involved in the transformation and

inherit all members of Metamodel. A Metamodel is a tuple

<name, model>, where name is a unique model name and

model is the EPackage representing the root element of a

particular metamodel involved in the mapping.

A HelperStatement is a tuple <statement,

ChildRules*, ChildHelpers*> where statement

is a unique element that allows the user to define statements;

for the moment, we support OCL and QVTo statements.

ChildRules* is a possibly empty set of elements of type

MappingRule, while ChildHelpers* is a possibly empty

set of elements of type HelperStatement.

Operator is an enumeration with two mutually exclusive

possible values, being: assignment, used when a single input

element in the source model is mapped to a single output

element in the target model, or when a non-empty set of input

elements in the source model are mapped to a non-empty set of

output elements in the target model by re-initializing the set of

output elements, and addition, used when a non-empty set of

input elements in the source model are transformed into a non-

empty set of output elements in the target model by adding to

the set of output elements.

After defining the metaconcepts of MML, we leverage

the features provided by Xtext in combination with EMF

to automatically generate textual and tree-based editors.

Afterwards, we customize them to provide a more user-friendly

and precise scoping as well as more intuitive labeling of the

mapped model elements. More specifically, we specialize the

MappingRuleItemProvider class, to limit the scope for

elements source, target and EEnumLiteral. Limiting

the scope, especially for the source and target plays a

significant role in reducing the likelihood of errors on the part

of the user. For instance, the customization of scoping limits

the user into defining child mapping rules (i.e., mapping rules

that link EReferences, EAttributes, and EEnums) only

if there exists a navigation path from the source and target

element (i.e.,EClass) of themainmapping rule to thesource

and target of the child mapping rule. Moreover, we specialize

the ItemLabelProvider class, to provide intuitive labeling,

similar to qualified names. This is particularly useful in the tree-

based editor for distinguishing between different metaelements

that may have the same name. Moreover, we specialize the

Formatter class to customize indentation, line breaks, white

spaces, etc., to improve the readability of MML textual models.

4.2. Higher-order transformation

The automatic generation of model transformations for

synchronization purposes is achieved by means of HOTs.

According to their definition (Tisi et al., 2009), HOTs are

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://wiki.eclipse.org/OCL
https://www.eclipse.org/Xtext/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

FIGURE 2

MML metamodel in Ecore. *Unbounded upperbound for cardinalities.

particular model transformations that generate, in turn,

model transformations. In our case, HOTs are defined at

meta-metalevel using the Xtend language and automatically

generate unidirectional model transformations in QVTo for

synchronization purposes. The synchronization infrastructure

generated by the HOTs consists of two unidirectional model

transformations. As depicted in Figure 1, starting from

two DSMLs, DSMLA and DSMLB, and two sets of high-

level mapping rules between them defined in two mapping

models, one per direction (i.e., DSMLA_2_DSMLB and

DSMLB_2_DSMLA, the HOTs generate two unidirectional

QVTo transformations that, when executed, take a model

instance of one DSML, DSMLA and DSMLB respectively,

and transform it into a model instance of the other DSML,

DSMLB and DSMLA respectively. Each mapping rule defined

in the mapping models is transformed into one or more

mapping operations in the generated QVTo transformations.

The choice of QVTo as target transformation language was

due to its suitability for both in-place and out-of-place, as well

as endogenous and exogenous transformations, and for its

imperative programming fashion, which is particularly suitable

for automatic generation of complex algorithms. Moreover, we

opted for multiple unidirectional transformations rather than

bidirectional transformations to simplify the maintainability of

the generated transformations and their manageability in the

target modeling tool ecosystem.

The HOTs are implemented in Xtend, a flexible dialect of

Java, which compiles into readable Java 8 compatible source code

and is particularly suitable for the generation of pretty-printed

textual artifacts. The remainder of this section is structured

in paragraphs corresponding to the different metaconcepts of

MML tomaximize readability. There, we describe how theHOTs

combine the input specified by the user in the mapping models

with the information automatically extracted from the mapped

DSMLs in order to generate the model transformations for

synchronization.

Mapping Model: MappingModel is the root element of

the mapping language and represents the starting point for

traversing a mapping model. The user assigns a name to

it, which is then used to generate the name of the model

transformation. If there is more than one SourceMetamodel,

the user must select the MainSourceMetamodel, which

represents the metamodel that is used as the entry point of

the model transformation. Alternatively, in the case of only

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

one SourceMetamodel, the latter is automatically selected as

MainSourceMetamodel.

Metamodels: The information extracted from Source-

Metamodel and TargetMetamodel is used to generate

the modeltype, and transformation signature of

the model transformations. The user loads the DSMLs and

selects the EPackages to be mapped that will be used as the

source and target of the model transformation. The HOTs

automatically retrieve the name and nsURI of the EPackages to

generate the modeltype, identify the direction of the model

transformation, as specified in the mapping model, and generate

parts of the transformation signature according to the following

pattern:

in «SourcePackageName»Model :

«SourcePackageName»,

out «TargetPackageName»Model :

«TargetPackageName»

Mapping Rule: The mapping rules can be grouped based on

the EObject that contains them as follows.

1. MappingRules are contained in MappingModel and we

refer to them as immediate mapping rules. source and

target of these mappings are objects of type EClass.

2. MappingRules are contained in other MappingRules or

HelperStatements and we refer to them as child mapping

rules. source and target of these mappings are objects of

type EReference, EAttribute, or EEnum.

The mapping rules in the first category are used to generate

the mapping declaration, whereas those in the second are

utilized to generate the body of the mapping operations. In the

following, we detail the implementation of the features that

apply to each category.

4.2.1. Immediate mapping rules

Mapping operation name: The name of the

mapping operation is automatically generated

as: «sourceElementName»2«targetElementName».

This not only reduces the amount of manual effort from the

user, but it also increases readability, as the naming follows a

specific standard pattern and is rather intuitive. Moreover, to

minimize the risk of errors when mapping elements with the

same name, source and target elements are printed using fully

qualified names (i.e., modelName::elementName), thanks

to our customized model editors.

Mapping operation type: The generated mapping operations

can be abstract or non-abstract. Abstract mapping operations

are used when the target of the mapping operation is

abstract. This information is automatically extracted from

the target DSML; hence, it does not require user input.

Before printing a mapping rule, the HOTs determine whether

the target element of the mapping rule is an abstract or

non-abstract EClass. In the case of an abstract EClass, the

mapping operation is printed as abstract according to the

following pattern: Abstract«sourceElementName»2-

«targetElementName».

Conditions: For immediate mapping operations, the source

and target elements are EClasses, therefore conditions that

are manually defined by the user are automatically generated

as when clauses that are evaluated to determine in which

circumstances the mapping operation should be executed.

Inheritance: The concept of inheritance allows reuse of

mapping operations under the condition that the signature of

the inherited mapping conforms to the one of the inheriting

mapping. The source and target of any potential inherited

mapping rule must be supertypes of, or identical to, the source or

target of the inheriting mapping rule. The HOTs iterate through

each of the immediate mapping rules in the mapping model

and determine whether the mapping operation under analysis

inherits from any of the iterated mapping rules. If it does,

after the transformation signature and the inherits keyword, the

names of the inherited mapping rules are printed (in the case

of multiple inherited mapping rules, they are separated by a

comma).

Disjunction: Invocation of a disjunct mapping operation

results in an assessment of disjunct candidate mapping

operations. To determine whether a mapping operation is

disjunctive and, if so, to identify the disjunct candidates,

the HOTs iterate through all the immediate mapping rules

of the mapping model and identify those where the source

and target are identical or subtypes of the source and

target of the potentially disjunctive mapping rule. If these

mapping rules exist, the analyzed mapping rule is considered

disjunctive and is named according to the following pattern:

«sourceElementName»2«targetElementName»

Disjunct.

After printing the signature of the mapping operation and

the disjuncts keyword, the HOTs print the identified disjunct

candidates. A mapping can be both abstract and disjunctive. The

user needs to define the mapping rule only once in the mapping

model and the HOTs will generate two rules: one abstract and

one disjunctive, since QVTo does not allow to combine them

into one.

4.2.2. Child mapping rules

There are three different possible scenarios for child

mapping rules, depending on the values of the source and target

attributes.

SC1: source!=null and target!=null

SC2: source==null and target!=null

SC3: source!=null and target==null

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

In SC1 a non-empty set of input elements in the source

model are transformed into a non-empty set of output elements

in the target model. In SC2 a non-empty set of output elements

are added to the target model. In SC3 a non-empty set of input

elements in the source model facilitates the navigation of model

elements in the generated transformations. This is used for

complex and possibly ambiguous navigation cases, such as the

one depicted in Figure 3, where on the left-side is illustrated an

excerpt from the source metamodel and on the right side an

excerpt from the target metamodel.

Consider that the user defines an immediate mapping rule

Organization2Company as detailed in Figure 4. The user

then wants to map the value of the name attribute of Person

in the source metamodel, to the managerName attribute of

Company in the target metamodel, by defining the mapping

rule name2managerName. The correct navigation path in

this case would be self.department.ma-nager.name,

where self = Organization. To navigate to the name

attribute, starting from Organization, there is, in fact,

also another path; self.department.secretary.name.

However, this navigation path is not considered correct, as

it would map the name of a Person that is a secretary in

Department to managerName in Company. Therefore,

the information to navigate to name attribute via manager

reference is to be decided by the user, as the HOTs cannot

automatically determine which path to take. Therefore, the user

needs to define an additional mapping rule manager2null

that will guide the HOTs in generating the expected model

transformation. Being that manager is not an immediate

reference of Organization HOTs must automatically

generate the navigation path from Organization to

manager. For that reason, we implement a recursive Depth-

First Search (DFS) algorithm, which starts at the root node (i.e.,

Organization) and explores as far as possible along each

EClass, before backtracking (unless it finds the target).

Invoking rule: In QVTo, mapping operations are run with

an explicit rule-invocation style, which initiates execution from

an entry mapping operation generally found in the main

function, and invokes the other mapping operations in a nested

manner. The entry mapping operation that should be invoked is

automatically determined.

OCL expressions: For sub-mapping operations, derived

from child mapping rules, where the source and target elements

are EReferences or EAttributes, condition attributes of the

mapping rules are used to specify OCL expressions.

Navigation operators: The HOTs determine the navigation

operator based on whether the source of the mapping rule is

a single object or a collection of objects (i.e., by checking the

upperBound). A single object is navigated using the dot (.)

operator, whereas collections of objects are navigated using the

arrow (->) operator.

HelperStatement: It is intended to facilitate the definition

of complex mappings requiring the use of for loops,

while loops, or if/else conditional statements.

HelperStatements are contained in MappingRules

(i.e., immediate mapping rules) similarly to how they are

defined in mapping operations in QVTo transformations.

Moreover, they may contain other HelperStatements

and MappingRules that are generated within the loop or

statement defined by HelperStatement.

5. Validation and use cases

The proposed approach and reference implementation have

been validated by means of two use cases and model-to-text

testing. During this process, the implementation of our solution

was validated in multiple testing phases and the results of

each phase were analyzed and used, when needed, to tune the

implementation. In Section 5.1 we provide details on the two

use cases in isolation and then conduct a comparison between

the two, while in Section 5.2 we provide the details of the model-

to-text test cases. Lastly, in Section 5.3 we provide an example of

our industrial use case.

5.1. Use cases

The first use case refers to the UML-RT language, more

specifically the subset for modeling state-machines, where

DSMLA and DSMLB represent the graphical and textual

notation of the UML-RT language. The second use case concerns

two disjoint DSMLs, one for describing and manipulating

calendars, while the other for describing and manipulating

organizational structures. Both use cases encompass scenarios

entailed by our solution.

5.1.1. UML-RT use case

UML-RT is a real-time profile that aims to simplify

the ever increasing complexity of the software architecture

specification for real-time embedded systems. UML-RT enables

both structure modeling and behavior modeling of real-time

systems. This use case focuses on the behavioral part which

is represented using state-machine diagrams. Considering that

both DSMLA and DSMLB represent two different notations of

the UML-RT language, they contain similar concepts. As a result

of textual concrete syntax requirements aimed at maximizing

usability and reducing learning curves, the different DSMLs for

different notations are required. In fact, the DSML associated

with the textual notation has evolved to fit the needs of various

customers, so we have been able to also support the co-evolution

of model transformation in response to DSML changes. In the

following, we provide more details on the mapping models and

generated QVTo transformations.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

FIGURE 3

Ambiguous navigation.

FIGURE 4

Ambiguous navigation mapping rules.

TheTextual2Graphicalmapping contains a total of 71

mapping rules, of which 66 (93%) of them fall under SC1, one

under SC2 (1.4%), and four under SC3 (5.6%). Eight mapping

rules contain conditions, of which seven are in the form

of guards, as they are applied to mapping rules that link two

EClasses, while one is in the form of an OCL filter. This mapping

model generates a total of 29 main mapping operations in the

output QVTo transformation from a total of 25 mapping rules

that link EClasses. The four additional mapping operations are

the result of the abstract and disjunctivemappings that

are automatically calculated from the HOTs.

The Graphical2Textual mapping contains a total of

61 mapping rules, of which 56 (91.8%) fall under SC1, five

under SC2 (8.2%), and no mapping rule falls under SC3. 14

mapping rules contain conditions, of which seven are in

the form of guards, as they are applied to mapping rules that

link two EClasses, while the other are in the form of OCL

filters. This mapping model generates a total of 26 mapping

operations in the output QVTo transformation from a total of 22

mapping rules that link EClasses. The same reasoning as in the

case of Textual2Graphical mapping applies for the four

additional mapping operations.

Making a comparison between the two mapping models, we

notice that the most significant differences are with regard to

SC2 and SC3. While in the Textual2Graphical mapping

model only 1.4% of the mapping rules fall under SC2 (i.e. are

used for adding a non-empty set of elements in the output

model), in the Graphical2Textual mapping model 8.2%

of the mapping rules fall under SC2. This is a consequence

of the fact that the DSML representing the textual notation

contains more concepts that are either not present in the DSML

representing the graphical notation (e.g., TransitionBody)

or are more specialized (e.g., InitialTransition). The

high number of mapping rules that contain conditions in

the Graphical2Textual mapping model compared to

the Textual2Graphical one is another indicator of

the specialization of concepts. With regard to SC3, we

notice that while the Graphical2Textual mapping model

has no mapping rules falling under this category, in the

Textual2Graphical mapping model 5.6% of the mapping

rules are used to facilitate the navigation of elements in the

textual model that cannot be directly accessed.

5.1.2. Calendar and organization use case

The second use case relates to two disjoint DSMLs where one

is used to describe a meeting calendar for an organization, while

the other is used to describe the organization. An organization

consists of personnel that can have different availability

(e.g., available or on vacation) and is divided into multiple

departments. Each department is responsible for multiple

projects, which in turn consist of multiple work packages

and external partners. Each work package has a status (e.g.,

active or non-active) and consists of multiple tasks for which

external partners and/or organization personnel are in charge.

A calendar can be split into multiple divisions, where each

division consists of active meetings, non-active meetings, and

personnel that is not participating in any meeting. Active and

non-active meetings consist of a group of participants composed

of internal, external, and non-available participants, and an

agenda composed of multiple tasks. These are two semantically

and syntactically disjoint DSMLs, thus the definition of mapping

links might not be as intuitive as for the first use case. They

are related to one another, as depending on the status of work

packages in the model representing the organization and people

in charge, meetings are automatically created in the calendar.

There is a similar relation for the reverse transformation. In the

following, we provide more details on the mapping models and

generated QVTo transformations.

The Calendar2Organization mapping model

contains a total of 50 mapping rules, of which 45 (90%) fall

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

under SC1, one under SC2 (2%) and four under SC3 (8%).

Eight mapping rules contain conditions and they are all

in the form of OCL filters. Furthermore, this mapping model

introduces the use of HelperStatements in the form of

for loops and if conditional statements. This mapping model

generates a total of 12 mapping operations in the output QVTo

transformation from a total of 11 mapping rules that link

EClasses.

The Organization2Calendar mapping model

contains a total of 40 mapping rules, of which 36 (90%) fall

under SC1, two under SC2 (5%) and two under SC3 (5%).

Ten mapping rules contain conditions, of which seven

are in the form of guards as they are applied to mapping

rules that link two EClasses, while three are in the form of

OCL filters. Furthermore, this mapping model introduces the

use of HelperStatements in the form of if conditional

statements. This mapping model generates a total of 12 mapping

operations in the output QVTo transformation from a total of

11 mapping rules that link EClasses.

Making a comparison between the two mapping models, we

notice that the number of mapping rules that fall under SC1 is

equal in both. It is important to note that the twoDSMLs contain

an approximately equal number of elements (i.e., Organization

contains 35 elements, while Calendar contains 39 elements) and

an equal number of EClasses; thus, they are of relatively similar

sizes, which deeply affects the distribution of mapping rules

with regard to the three scenarios. Assuming that there is no

loss of information (typically occurs when not all elements of

the involved DSMLs are linked by mapping rules), after the

execution of the forward and backward transformations, in the

case of two DSMLs of significantly different sizes, we believe that

it is likely to have a higher number of mapping rules associated

with SC2 and SC3.

5.1.3. Use case comparison

Comparing the distribution of the mapping rules between

the three scenarios, in the first use case, the number of mapping

rules that fall under SC2 and SC3 is mainly due to the

specialization of concepts, while in the second use case it is

due to semantic and syntactical differences. Despite the fact

that there is no significant difference between the number of

mapping rules falling under SC1 for the first and the second use

case, we still argue that the second use case is more complex than

the first, since while in the UML-RT use case there is a string

similarity between the mapped elements of the involved DSMLs

and similarity in the structure of the DSMLs, in the second use

case such similarities cannot be found. Furthermore, while the

first use case covers only a subset of the concepts of the MML,

the second use case covers all concepts of theMML including the

HelperStatement and helperLiteral, which we could

not validate in the first use case. What adds to the complexity

of the second use case is that, while the mapping models for

the UML-RT use case exhibit a flatter hierarchy (a maximum

of two-level deep-nested hierarchies), the mapping models of

the second use case exhibit a deeper hierarchy, reaching a

maximum of five-level deep-nested hierarchy. This is the case in

the Calendar2Organization mapping model, where the

Division2Department mapping rule is made up of a mix

of two consecutive HelperStatements and three mapping

rules that cover the three scenarios. As a consequence, the

generation of QVTo transformations for the second use case

demonstrating more complex mappings is a stronger indication

of the powerful HOTs.

5.2. Model-to-text testing

Validation was performed based on model-to-text tests

classified by Tiso et al. (2013) as i) conformance tests, ii)

semantic tests, and iii) textual tests. Taking into account the

different types of model-to-text tests, for each mapping model,

we evaluated whether the generated QVTo transformations

matched the expected QVTo transformations. In detail, we

defined transformation test cases <MappingModel_file,

Exp_QVTo_file>, where MappingModel_file

represents the mapping model used to determine the links

between elements of the source and target metamodels,

and Exp_QVTo_file represents the expected QVTo

transformations that we manually defined. For a test case to

pass, the output of the HOTs (generated QVTo transformations)

must match Exp_QVTo_file. In the following, we provide

more details on the different types of model-to-text tests.

5.2.1. Conformance tests

They were used to verify whether the generated

transformations were structured textual artifacts that conformed

to the QVTo language. QVTo has specific rules that specify how

statements can be written, and the set of these rules constitutes

the syntax of the language. Failed conformance tests typically

occur due to possible syntactical mistakes, such as missing

or unbalanced parentheses, missing or unbalanced quotes,

missing colons or semicolons, misspelled variables, and so on.

When a QVTo file for which conformance tests have failed is

opened, the syntax errors are flagged in the file, together with

a message error. The most common message errors in these

cases are: missing “x” to complete scope, “x” expected instead

of “y,” “x” expected after “y,” unrecognized variable(x) and so

on. For instance, in the UML-RT use case, the majority of

mapping rules have as source and target elements with the

same name. However, when the source and target of a mapping

operation have the same name, only the element belonging to

the metamodel that is first defined is taken into account. This

can lead to unrecognized variables in the body or condition of

the mapping operations. An example of a failed conformance

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

test is illustrated in Figure 5. While in the mapping model the

user has defined the source as hclScope/StateMachine

and target as statemach/StateMachine, the first defined

metamodel is statemach in Line 1, thus if we hover over

StateMachine elements in Line 8 we notice that they

are both statemach: StateMachine. When trying

to access the states EReference of the StateMachine

element from the second metamodel (i.e., hclScope) the

variable is unrecognized. Therefore, to avoid such failed

conformance tests, we print the fully qualified name of the

source and target elements as shown in Line 9 in Figure 10.

Failed conformance tests can also be the result of incomplete

or incorrect mapping models defined by the users. For instance

the State2CompositeState mapping rule in Line 11 is

invoked automatically, meaning that the user does not need to

define the mapping rule that should be invoked when assigning

the value of the source element to the target element. The only

requirement is that the State2CompositeState mapping

rule should be created by the user in the mapping model (a

rule that has not been defined in the mapping model cannot

be invoked).The absence of this rule in the mapping model

before executing the HOTs would result in an error, and the

user would have to revisit the mapping model and define the

State2CompositeStatemapping rule.

5.2.2. Semantic tests

They are used to verify whether the generated

transformations adhere to the semantics of the QVTo language.

Failed semantic tests are often due to missing mapping

operations, incorrect hierarchical structure, incorrect type of

mapping operations (abstract/non-abstract), missing/incorrect

inheritance and disjunct candidates, and so on. For instance, our

HOTs are expected to automatically identify whether a mapping

operation inherits another. Mistakes in the implementation

could lead to the HOTs failing to identify inheriting mapping

operations. This would not trigger any syntactical error in the file

and the generated transformations would be executed. However,

the resulting models of the generated transformations would not

be semantically correct. The lack of error messages makes these

types of errors not easy to locate. Another interesting example

would be the one illustrated in Figure 3. While the user expects

the transformation to navigate from Organization to

name via self.department.manager.name, the HOTs

generate the path self.department.secretary.name.

The generated QVTo transformation would be executable and

syntactically correct but semantically wrong. Instead of mapping

the name of a person who holds the role of a manager in the

department to the managerName in a company, it would, in

fact, map the name of a person who holds the role of a secretary

in the department to the managerName in a company. For

that reason we have introduced mapping rules as per SC3 where

source!=null and target==null. These rules aim to

assist the user specify the correct navigation path for accessing

a particular element of the source metamodel, thus avoiding

failed semantic tests. An example of such rule is illustrated in

Figure 4, where the manager2null mapping rule ensures

that the correct navigation path is generated to access the

name of the manager instead of the name of the secretary. It is

common to encounter such a scenario when the navigation path

from one EClass to another includes multiple non-containment

references. For instance, in Figure 3, navigation between EClass

Department and EClass Person can be accomplished

through manager or secretary references.

5.2.3. Textual tests

They are used to verify whether the textual elements

of the generated model transformations have the required

format. Errors discovered through these tests are not identified

through conformance testing. Examples of textual testing

involve checking whether the name of the transformation

is the one inputted by the user or whether the names of

the mapping operations are defined following the defined

template. Furthermore, these tests verify whether the generated

transformations adhere to the QVTo formatter (e.g., new lines,

indents, white spaces).

On a side note, to increase the reliability of our approach,

we complemented the aforementioned tests by manually

defining target models that represent the expected outputs of

the execution of the generated QVTo transformations. We

compared the XML representation of the manually defined

target models and the generated target models using the XML

compare tool.15 As part of this process, it is important to leverage

extensive input models, which conform either to DSMLA or

DSMLB, depending on the direction of the transformation),

that cover as many variations and combinations of concepts as

possible, thus minimizing the likelihood of untested scenarios.

While the generated target models were identical to the

manually defined target models (with the exception of the

line order), it is still a valid concern whether the target

models generated are correct and meet the requirements.

In order to generate correct target models, two conditions

must be met; i) the user must select “correct” mappings

that illustrate the requirements, and ii) the HOTs should

generate the expected QVTo transformations based on the

input data (i.e., involved DSMLs and mapping model). While

we have executed model-to-text test cases to validate the

correctness of the HOTs, there is no guarantee that the

user will select the “correct” mappings that conform to the

requirements. Since mappings reflect the user intentions, we

cannot provide guarantees on their appropriateness, meaning

their reflection of the user’s intentions. However, such a risk

is apparent also on the traditional approach of manually

15 https://extendsclass.com/xml-di�.html

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://extendsclass.com/xml-diff.html
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

FIGURE 5

Example of failed conformance test.

writing model transformations. Furthermore, in addition to

the limitations built in the MML by customizing the scope

provider, the execution of the HOTs in cases where the

mapping model is not correct (e.g., the user is mapping

an EClass to an EReference) will generate an error

message. In summary, in light of the validation results, we

can argue with certain confidence that MML contains all

those concepts needed to specify deterministic unidirectional

mappings between two Ecore-based DSMLs, and mapping

models can then be effectively used to generate well-formed

model transformations.

5.3. Example

In Figure 6 we provide an example of a mapping model

between the excerpts of DSMLA and DSMLB illustrated in

Figures 7, 8. In Figure 9 we illustrate the properties view for three

mapping rules defined in Figure 6, to provide the reader with a

more concrete example of themanual input that is required from

the user in different cases. The requirements for transforming

from DSMLA to DSMLB are as follows:

• StateMachine element in MDSMLA is transformed

to StateMachine element in MDSMLB . Moreover, being

that a StateMachine element in MDSMLB must contain

only one direct CompositeState element, if the

StateMachine element in MDSMLA contains only

one direct State, the latter is transformed to a

CompositeState; alternatively if the StateMachine

element inMDSMLA contains more than one direct State

a new CompositeState element is created inMDSMLB .

• A State element in MDSMLA is transformed to a

SimpleState element in MDSMLB , if the State

element inMDSMLA does not contain any other elements.

• A State element in MDSMLA is transformed to a

CompositeState element in MDSMLB if the State

element inMDSMLA contains at least one element.

To begin with, the user would instantiate a new mapping

model and give it a name (e.g., Textual2Graphical).

Upon loading the metamodels, the user would select

the respective EPackages to define the source and target

metamodels. MainSourceMetamodel is not required

in this particular instance, since there is only one

SourceMetamodel (i.e., DSMLA) that is automatically

assigned as MainSourceMetamodel. Following this, the

user would begin defining mapping rules in accordance

with the requirements. First, the user would map the

root elements of both metamodels, which in our case

are the StateMachine elements. Based on the first

requirements, there are two ways that the user can define

the mapping rule. The first option consists of defining

one single StateMachine2StateMachine and then

using two HelperStatements to specify the conditional

statements. The second option consists of the user defining

two StateMachine2StateMachine mapping rules

and specifying the condition, by using the condition

property of the each mapping rule. While the first option is

more similar to OOP and can be easier for modeling tool

developers, the second option can be more intuitive for domain

experts. Therefore, in this example we detail the second option

where we define two StateMachine2StateMachine

mapping rules. The details of the first mapping rule

StateMachine2StateMachine can be seen in Figure 9.

The user would have to define the source, target, and

condition. The name is automatically generated, while

the operator is set to assign by default. The user would

then define a new child mapping rule (i.e., states2top) and

define the source, target, and condition. Both of these

mapping rules fall under SC1. An interesting mapping rule

falling under SC2, is the null2top, defined as a child mapping

rule for the second StateMachine2StateMachine

mapping rule. The null2top mapping rule creates a new

CompositeState element in MDSMLB , for which there is no

match inMDSMLA .

In Figure 10 we present a more extensive excerpt of the

Textual2Graphical mapping model for UML-RT state

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

FIGURE 6

Mapping model.

FIGURE 7

DSMLA. *Unbounded upperbound for cardinalities.

FIGURE 8

DSMLB. *Unbounded upperbound for cardinalities.

machines on the left-hand side and an excerpt of the generated

QVTo transformation on the right-hand side. The generated

QVTo transformation is the output of the execution of the HOTs

that take as input DSML, DSMLB, and Textual2Graphical

mapping model. There are a few peculiarities to highlight here.

The first StateMachine2StateMachine mapping

rule generates Lines 12–13. However, being that the

mapping model contains two mapping rules named

StateMachine2StateMachine where sources and

targets are identical, the HOTs generate three mapping

operations, where one of them (Line 9) is a disjunctive mapping

operation that disjuncts the other two (Lines 12 and 19). The

disjunctive mapping operation is invoked on Line 6 and the first

matching candidate (i.e., StateMachine2StateMachine0

or StateMachine2StateMachine1) is selected. HOTs

determine the order in which the disjunctive candidates are

printed based on whether they have a mapping condition.

As can be seen, StateMachine2StateMachine0 on

Line 12 has a mapping condition; thus, it is printed as the

first disjuncted mapping operation on Line 10. To define

the model transformations manually, the users would have

to possess a strong understanding of these details. More

specifically, users would need to understand the syntax

of the model transformation language (i.e., QVTo), the

concept of disjunction (e.g., the order in which the disjunct

candidates appear), and which rules to invoke in particular

situations (e.g., Line 6). Instead, with our solution, the user

is only required to define two mapping rules, specifying the

source, target, and condition attributes. By doing

so, the HOTs would be able to automatically generate model

transformations that conform to the QVTo syntax and

include concepts that the user is not expected to understand.

Consequently, this reduces the amount of effort and expertise

required.

Furthermore, Lines 21–25 detail the generation of

mappings from child mapping rules according to SC2

described in Section 4.2, where source == null and

target == top. The referred EClass of EReference

top, is CompositeState, thus the latter is added to the

target model. Alternatively, Line 16 details the generation

of a mapping from a child mapping rule according

to SC1, where source == name and target ==

name.

On another note, the State2State mapping rule in

the mapping model has been generated as two mapping

operations: AbstractState2State in Line 47, because

the State class in the target metamodel is abstract, and

State2StateDisjunct in Line 44, as in the mapping

model there are two rules (State2SimpleState and

State2CompositeState) that fulfill the conditions to be

disjuncted mapping operations (sources are identical, while

targets are subtypes). Moreover, since SimpleState

and CompositeState extend State in the target

metamodel, the mapping operations in Lines 28 and

38 inherit the abstract mapping operation in Line 47,

having identical sources. The example above further

illustrates the reduced effort and expertise needed, as

it eliminates the need for the user to comprehend the

concepts of abstract mappings, inheritance, and disjunction.

Additionally, HOTs reduce the likelihood of human-errors

by automatically analyzing the involved DSMLs and

mapping models.

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

FIGURE 9

Properties view for the mapping rules defined in Figure 6.

FIGURE 10

Textual to graphical mapping model and generated QVTo transformations for UML-RT state machines.

6. Discussion

In this section we reflect on several aspects of our approach.

We present the design principles that guided our solution,

followed by an analysis of the benefits and an identification of

the limitations and possible solutions.

6.1. Design principles

Three main principles have guided the design of the

proposed solution, as outlined below.

1. Separation of concerns: A strict separation between domain

logic and implementation-specific details reduces complexity

and allows for increased reusability, maintanability and

extensibility of the solution. Moreover, the definition

of domain logic in a separate model (i.e., mapping

model), using a language that provides a higher level of

abstraction than model transformation languages, facilitates

the understanding and solving of problems and ensures

that software developers are not exposed to unnecessary

information.

2. Consideration of user’s intentions: A complete and carefully

written specification of how the DSMLs are mapped to one

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

another forms the basis for producing complete and accurate

model transformations. As a result, it is essential to provide

the developer with the ability to capture his/her intentions in

the form of unambiguous mapping links between elements of

two DSMLs as semantics often needs human understanding

to be correctly managed.

3. Tooling that seamlessly integrates the target audience’s

current tool ecosystem: An essential aspect of successful

software is the ability to seamlessly integrate with the

environment that the target audience already uses. Our

target modeling environment is the well-established Eclipse

Modeling Framework, thereby our approach focuses on

Ecore-based DSMLs and we opted for technologies (Xtend,

QVTo, Xtext, etc.) that integrate seamlessly with the Eclipse

environment.

6.2. Analysis of the benefits

The adoption of a novel approach for the synchronization

infrastructure between multiple notations for blended modeling

can be challenging due to the customers’ uncertainty of

whether the benefits outweight the costs. Our proposed

approach is therefore subjected to a cost-benefit analysis while

simultaneously being compared with traditional approaches.

Firstly, we will discuss the transition costs involved. The

transition costs consist of i) implementation costs and ii)

training costs. Implementation costs are concerned with the

adaptation of an organization’s existing systems to integrate

the proposed approach. Since our tool seamlessly integrates

with EMF tools, we do not incur any costs in this regard.

There is, however, a concern that companies with existing

synchronization infrastructures would have to create the

mapping models from scratch although they already have

the synchronization infrastructure in place. Nevertheless, the

benefits of doing so outweigh the costs in a significant

manner due to the following reasons. First, as metamodels

evolve, the co-evolution of the model transformations can

be facilitated, as the respective changes can be made at a

higher level of abstraction. Moreover, in case DSMLA and

DSMLB would represent two versions of the same language

DSML (e.g., DSMLB is an evolution of DSMLA), the generated

transformations would instead provide model co-evolution.

Further, it enables faster prototyping, allowing for user feedback

prior to releasing a new version of the modeling tool, and

verifying that the requirements of the users are understood

and met. As part of our strategy to further reduce costs,

we intend to use reverse transformations that build mapping

models from model transformations. Training costs are instead

concerned with the time and resources required to learn to

utilize the proposed approach. Many industries are cautious to

adopt new technologies that require a considerable amount of

training and practice before they can be effectively implemented.

Nonetheless, when applications are implemented with a focus

on user experience, training is less complex, faster, and more

effective. Since users are interacting with the MML, we have

minimized the training costs by designing the MML to be as

simple and intuitive as possible. MML exhibits the following

characteristics:

• Encapsulates the minimum set of concepts necessary for

defining deterministic mappings, keeping the language

concise, and avoiding unneeded verbosity.

• Developed with a blended modeling approach to

support textual and tree-based notations, which exhibit

complementary usability features.

• Syntactically similar to object-oriented programming

languages, which pushes down the learning curve for the

average software developer.

• Raises the level of abstraction by allowing the user to focus

on the domain’s logic instead of dealing with lower-level

model transformations.

While users must become familiar with MML and while at

first glance it may appear to be an additional overhead, it is in

fact a one-time effort which proves beneficial in the long run.

Compared to model transformations, mapping models require

significantly less input, resulting in lowers effort on the part

of the developer. MML also enables domain experts without

model transformation knowledge to be involved in the definition

of the mapping models, since domain logic is presented in

a format that is easily understood by all stakeholders rather

than embedded in boilerplate model transformations. This

could even reduce the time of development and number of

errors caused by misunderstandings or miscommunications

between domain experts and developers. The approach has

also demonstrated acceptance and practical applicability in

an industrial setting among HCL developers, who used it i)

to define mapping models for generating the synchronization

infrastructure between graphical and textual DSMLs, and ii)

to co-evolve the mapping models and consequently the model

transformation in response to changes in the textual DSML

until the latter was refined to its present form. Moreover,

HCL is currently applying this approach for model co-

evolution/migration purposes. To further decrease the learning

curve and consequently, the training costs, we have contributed

with a tutorial to an established MDE community (ICSA

conference), and we plan on delivering a tutorial at a premier

conference for practitioners and researchers interested in

software architecture. Finally, we plan to contribute more

examples and step-by-step tutorials to the online repository.

As we presented a summary of potential costs and benefits

associated with our approach, we would like to emphasize that

the settings in which an organization operates is an instrumental

factor in this analysis. The size of the involved DSMLs and the

frequency of their evolution, for example, can greatly impact the

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

decision on whether the adoption of the approach is appropriate

for the specific organization. Our first recommendation is

for interested industrial parties to conduct their own cost-

benefit analysis using this example as a guide. In addition, we

recommend a gradual and step-wise adoption of the approach

through the establishment of a multi-functional team staffed

with both domain experts and software developers to investigate

the integration and usability of the approach in their particular

settings through our prototype.

6.3. Limitations and possible solutions

As a result of this research, we have identified a number of

limitations and potential solutions associated with the automatic

generation of the synchronization infrastructure for blended

modeling.

Bi-directionality. Our study focused on the use of

unidirectional mappings (and generated transformations)

instead of bidirectional ones. While our synchronization

approach has the same goal of bidirectional transformations,

there are multiple reasons for which we made this decision.

Unidirectionality facilitates the management and maintenance

of the synchronization infrastructure. Although a bidirectional

approach would have been a theoretically more elegant

solution, we had to adapt to the existing tool ecosystem and the

knowledge base of the tool engineers. We chose a pragmatic

approach, trying to provide engineers with a “tool” (i.e.,

mapping language) as close to their metamodeling and object-

oriented knowledge as possible. Moreover, since the involved

DSMLs could be non-bijective, which is most likely in the case

of two disjoint DSMLs, there is a higher risk of significant

differences between the forward and backward transformations,

leading to transformations being non-invertible (Stevens,

2010). While there could be an opportunity to incorporate the

definition of bidirectional mappings, a proper balance must

be found also with respect to the usability of the tool and the

correctness of the generated model transformation with respect

to the requirements.

Interoperability. Another interesting point relates to the

use of MML as a core artifact for interoperability between

model transformation languages (Jouault and Kurtev, 2007). In

fact, MML is designed with a focus on generalizability; in our

context, this is defined as the ability to use the same mapping

model to drive the generation of model transformations in

multiple model transformation languages. Generalizability is

achieved by ensuring the separation of the domain-logic from

implementation-specific details. The domain logic is included in

the MML, whereas implementation-specific details are specified

in the HOTs, which are specific to a transformation language.

By providing an automatic generation of mapping models from

existing model transformations, the generated mapping models

could be used as input to other HOTs for generating model

transformations conforming to other transformation languages.

Although we cannot exclude that MML could need to be

extended to support specific transformation languages, we are

confident that the eventual changes would be relatively minor

and only related to language-specific details that would require

user input to generate correct transformations.

In-place transformations. In this work we assume that there

exist mapping links between all elements ofDSMLA andDSMLB.

Nevertheless, one of the involved DSMLs (e.g., DSMLA) can

have higher expressiveness than its counterpart (e.g., DSMLB).

In this regard, it should be noted that the existence of mapping

links for all elements cannot be guaranteed, therefore, when

executing the transformation from DSMLA to DSMLB and

then executing the reverse transformation, there is a risk of

information loss.We assume that scenarios with disjoint DSMLs

will generally be more affected by this phenomenon compared

to simpler scenarios. This can be mitigated by leveraging

in-place transformations that can propagate changes to the

target model (which can be the same as the source model),

without reconstructing it from scratch, thereby preventing

information loss.

7. Conclusions

In this paper, we presented our effort toward an

approach for the automatic generation of synchronization

model transformations to support blended modeling in

an industrial setting. The resulting solution entails the

provision of automatic means for the generation of model

synchronization transformations across multiple notations

of the same or different languages. This was accomplished

by first designing and implementing a mapping modeling

language (MML) in terms of an Ecore model. MML is

instantiated in terms of mapping models, which define mapping

relations between elements of two arbitrary Ecore-based

DSMLs. Given the two DSMLs in terms of Ecore models

and two mapping models (one per direction), we provide

a set of higher-order transformations (HOTs) that generate

synchronization model transformations in QVT Operational

between the two DSMLs. The HOTs were implemented

using Xtend.

Depending on what the two DSMLs represent, the generated

transformations support two types of synchronization:

1. The DSMLs represent two notations of the same language

(e.g., graphical and textual UML-RT state-machines), then

the generated transformations provide synchronization

across different notations of the same language.

2. The DSMLs are disjoint, then the generated transformations

provide synchronization across different notations of

different languages.

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

Validation of the solution was performed by leveraging

two use cases that represented the two aforementioned

scenarios: synchronization across different notations of one

language (UML-RT state-machines), and synchronization

across different languages (calendar and organizational

structure use case). In addition to multiple testing

phases, the solution applied to UML-RT was deemed

very promising by the engineers and tool architects

at HCL.

Several directions for future increments of this research

and engineering effort have been identified. One direction

is to tune the HOTs and leverage the proposed MML for

the generation of co-evolution transformations to provide

automated support for model co-evolution in response to

metamodel evolution. Another interesting direction is related

to the use of MML for interoperability between model

transformation languages. In fact, we plan to provide automatic

generation of mapping models from existing synchronization

transformations. The generated mapping models can then be

used as input to other HOTs for generating synchronization

transformations conforming to other transformation languages

than QVTo.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found below: https://github.

com/MLJworkspace/BlendedModellingSolution.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Funding

This work was supported by Vinnova through the ITEA

BUMBLE project (rn. 18006).

Conflict of interest

MMwas employed by the company HCL Technologies.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Addazi, L., and Ciccozzi, F. (2021). Blended graphical and textual modelling for
uml profiles: a proof-of-concept implementation and experiment. J. Syst. Software
175, 110912. doi: 10.1016/j.jss.2021.110912

Atkinson, C., and Gerbig, R. (2016). Flexible deep modeling with MelanEE.
Modellierung 2016-Workshopband.

Bézivin, J. (2005). On the unification power of models. Software Syst. Model. 4,
171–188. doi: 10.1007/s10270-005-0079-0

Blouin, A., Beaudoux, O., and Loiseau, S. (2008). “Malan: a mapping language
for the data manipulation,” in Proceedings of the Eighth ACM Symposium on
Document Engineering (São Paulo), 66–75.

Charfi, A., Schmidt, A., and Spriestersbach, A. (2009). “A hybrid graphical and
textual notation and editor for uml actions,” in European Conference on Model
Driven Architecture-Foundations and Applications (Eschede: Springer),237–252.

Cicchetti, A., Ciccozzi, F., and Pierantonio, A. (2019). Multi-view approaches
for software and system modelling: a systematic literature review. Software Syst.
Model. 18, 3207–3233. doi: 10.1007/s10270-018-00713-w

Ciccozzi, F., Tichy, M., Vangheluwe, H., and Weyns, D. (2019). “Blended
modelling-what, why and how,” inMPM4CPS Workshop (Munich).

David, I., Latifaj, M., Pietron, J., Zhang, W., Ciccozzi, F., Malavolta, I.,
et al. (2022). Blended modeling in commercial and open-source model-driven
software engineering tools: a systematic study. Software Syst. Model. Appear.
doi: 10.1007/s10270-022-01010-3

Didonet Del Fabro, M., and Valduriez, P. (2009). Towards the efficient
development of model transformations using model weaving and matching
transformations. Software Syst. Model. 8, 305–324. doi: 10.1007/s10270-008-0094-z

Diskin, Z., Gómez, A., and Cabot, J. (2017). “Traceability mappings as a
fundamental instrument in model transformations,” in International Conference on
Fundamental Approaches to Software Engineering (Uppsala: Springer), 247–263.

Emery, D., and Hilliard, R. (2009). “Every architecture description needs a
framework: expressing architecture frameworks using ISO/IEC 42010,” in 2009
Joint Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture (Cambridge: IEEE), 31–40.

Hillairet, G., Bertrand, F., and Lafaye, J. Y. (2008). “Bridging emf applications
and rdf data sources,” in Proceedings of the 4th International Workshop on Semantic
Web Enabled Software Engineering SWESE (Karlsruhe).

Hutchinson, J., Whittle, J., Rouncefield, M., and Kristoffersen, S. (2011).
“Empirical assessment of mde in industry,” in Proceedings of the 33rd International
Conference on Software Engineering (Waikiki, HI), 471–480.

Jouault, F., and Kurtev, I. (2007). On the interoperability of model-
to-model transformation languages. Sci. Comput. Program. 68, 114–137.
doi: 10.1016/j.scico.2007.05.005

Kern, H., Stefan, F., Dimitrieski, V., and Čeliković, M. (2014). “Mapping-based
exchange of models between meta-modeling tools,” in Proceedings of the 14th
Workshop on Domain-Specific Modeling (Portland, OR), 29–34.

Frontiers inComputer Science 20 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://github.com/MLJworkspace/BlendedModellingSolution
https://github.com/MLJworkspace/BlendedModellingSolution
https://doi.org/10.1016/j.jss.2021.110912
https://doi.org/10.1007/s10270-005-0079-0
https://doi.org/10.1007/s10270-018-00713-w
https://doi.org/10.1007/s10270-022-01010-3
https://doi.org/10.1007/s10270-008-0094-z
https://doi.org/10.1016/j.scico.2007.05.005
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Latifaj et al. 10.3389/fcomp.2022.1008062

Latifaj, M., Ciccozzi, F., Anwar, M. W., and Mohlin, M. (2022). “Blended
graphical and textual modelling of uml-rt state-machines: an industrial
experience,” in Accepted in ECSA Post-Proceedings (Berlin: Springer).

Latifaj, M., Ciccozzi, F., Mohlin, M., and Posse, E. (2021). “Towards automated
support for blended modelling of uml-rt embedded software architectures,” in 15th
European Conference on Software Architecture ECSA 2021, 13 Sep 2021, Virtual
(originally Växjö), Sweden.

Lazăr, C.-L. (2011). Integrating alf editor with eclipse uml editors. Studia
Univers. Babes Bolyai Inform. 56, 27–32. doi: 10.5038/1937-8602.56.2.1

Lethbridge, T. C., Forward, A., Badreddin, O., Brestovansky, D., Garzon, M.,
Aljamaan, H., et al. (2021). Umple: model-driven development for open source and
education. Sci. Comput. Program. 208, 102665. doi: 10.1016/j.scico.2021.102665

Lilius, J., and Paltor, I. P. (1999). “vUML: a tool for verifying umlmodels,” in 14th
IEEE International Conference on Automated Software Engineering (Cocoa Beach,
FL: IEEE), 255–258.

Lopes, D., Hammoudi, S., Bézivin, J., and Jouault, F. (2006). “Mapping
specification in mda: from theory to practice,” in Interoperability of Enterprise
Software and Applications (Berlin: Springer), 253–264.

Maro, S., Steghöfer, J.-P., Anjorin, A., Tichy, M., and Gelin, L. (2015). “On
integrating graphical and textual editors for a uml profile based domain specific
language: an industrial experience,” in Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering (Pittsburg, CA), 1–12.

Persson, M., Törngren, M., Qamar, A., Westman, J., Biehl, M., Tripakis, S., et
al. (2013). “A characterization of integrated multi-view modeling in the context

of embedded and cyber-physical systems,” in Proceedings of the International
Conference on Embedded Software, EMSOFT 2013, Vol. 10 (Montreal, QC: IEEE),
1–10.

Ráth, I., Ökrös, A., and Varró, D. (2010). Synchronization of abstract and
concrete syntax in domain-specific modeling languages. Software Syst. Model. 9,
453–471. doi: 10.1007/s10270-009-0122-7

Ries, B., Capozucca, A., and Guelfi, N. (2018). “Messir: a text-first DSL-based
approach for UML requirements engineering (tool demo),” in Proceedings of the
11th ACM SIGPLAN International Conference on Software Language Engineering,
SLE 2018 (Boston, MA: ACM), 103–107.

Scheidgen, M. (2008). “Textual modelling embedded into graphical modelling,”
in European Conference on Model Driven Architecture-Foundations and
Applications (Berlin: Springer), 153–168.

Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M. (2008). EMF: Eclipse
Modeling Framework. London: Pearson Education.

Stevens, P. (2010). Bidirectional model transformations in qvt: semantic
issues and open questions. Software Syst. Model. 9, 7–20. doi: 10.1007/s10270-00
8-0109-9

Tisi, M., Jouault, F., Fraternali, P., Ceri, S., and Bézivin, J. (2009). “On
the use of higher-order model transformations,” in European Conference on
Model Driven Architecture-Foundations and Applications (Eschede: Springer),
18–33.

Tiso, A., Reggio, G., and Leotta, M. (2013). “A method for testing model to text
transformations,” in AMT©MoDELS (Miami, FL).

Frontiers inComputer Science 21 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1008062
https://doi.org/10.5038/1937-8602.56.2.1
https://doi.org/10.1016/j.scico.2021.102665
https://doi.org/10.1007/s10270-009-0122-7
https://doi.org/10.1007/s10270-008-0109-9
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Higher-order transformations for the generation of synchronization infrastructures in blended modeling
	1. Introduction
	1.1. Blended modeling
	1.2. Our contribution
	1.3. Paper organization

	2. Industrial setting, core problem, and expected benefits 
	3. Related work
	3.1. Blending graphical and textual editors
	3.2. Model weaving

	4. Proposed solution
	4.1. Mapping modeling language
	4.2. Higher-order transformation
	4.2.1. Immediate mapping rules
	4.2.2. Child mapping rules


	5. Validation and use cases
	5.1. Use cases
	5.1.1. UML-RT use case
	5.1.2. Calendar and organization use case
	5.1.3. Use case comparison

	5.2. Model-to-text testing
	5.2.1. Conformance tests
	5.2.2. Semantic tests
	5.2.3. Textual tests

	5.3. Example

	6. Discussion
	6.1. Design principles
	6.2. Analysis of the benefits
	6.3. Limitations and possible solutions

	7. Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


