
METHODS
published: 10 February 2022

doi: 10.3389/fcomp.2022.777728

Frontiers in Computer Science | www.frontiersin.org 1 February 2022 | Volume 4 | Article 777728

Edited by:

Marcello Pelillo,

Ca’ Foscari University of Venice, Italy

Reviewed by:

Xinggang Wang,

Huazhong University of Science and

Technology, China

Csaba Beleznai,

Austrian Institute of Technology (AIT),

Austria

*Correspondence:

Florian Jug

florian.jug@fht.org

Specialty section:

This article was submitted to

Computer Vision,

a section of the journal

Frontiers in Computer Science

Received: 15 September 2021

Accepted: 13 January 2022

Published: 10 February 2022

Citation:

Arzt M, Deschamps J, Schmied C,

Pietzsch T, Schmidt D, Tomancak P,

Haase R and Jug F (2022) LABKIT:

Labeling and Segmentation Toolkit for

Big Image Data.

Front. Comput. Sci. 4:777728.

doi: 10.3389/fcomp.2022.777728

LABKIT: Labeling and Segmentation
Toolkit for Big Image Data

Matthias Arzt 1,2, Joran Deschamps 1,2,3, Christopher Schmied 3, Tobias Pietzsch 1,2,

Deborah Schmidt 1,2,4, Pavel Tomancak 1,2,5, Robert Haase 1,2,6 and Florian Jug 1,2,3*

1Center for Systems Biology Dresden, Dresden, Germany, 2Max Planck Institute of Molecular Cell Biology and Genetics,

Dresden, Germany, 3 Fondazione Human Technopole, Milan, Italy, 4Max Delbrück Center for Molecular Medicine, Berlin,

Germany, 5 IT4Innovations, VŠB-Technical University of Ostrava, Ostrava, Czechia, 6DFG Cluster of Excellence “Physics of

Life”, TU-Dresden, Dresden, Germany

We present LABKIT, a user-friendly Fiji plugin for the segmentation of microscopy image

data. It offers easy to use manual and automated image segmentation routines that

can be rapidly applied to single- and multi-channel images as well as to timelapse

movies in 2D or 3D. LABKIT is specifically designed to work efficiently on big image

data and enables users of consumer laptops to conveniently work with multiple-terabyte

images. This efficiency is achieved by using ImgLib2 and BigDataViewer as well as a

memory efficient and fast implementation of the random forest based pixel classification

algorithm as the foundation of our software. Optionally we harness the power of graphics

processing units (GPU) to gain additional runtime performance. LABKIT is easy to install

on virtually all laptops and workstations. Additionally, LABKIT is compatible with high

performance computing (HPC) clusters for distributed processing of big image data.

The ability to use pixel classifiers trained in LABKIT via the ImageJ macro language

enables our users to integrate this functionality as a processing step in automated image

processing workflows. Finally, LABKIT comes with rich online resources such as tutorials

and examples that will help users to familiarize themselves with available features and

how to best use LABKIT in a number of practical real-world use-cases.

Keywords: segmentation, labeling, machine learning, random forest, Fiji, open-source

1. INTRODUCTION

In recent years, new and powerful microscopy and sample preparation techniques have emerged,
such as light-sheet (Huisken et al., 2004), super-resolution microscopy (Hell and Wichmann,
1994; Gustafsson, 2000; Betzig et al., 2006; Hess et al., 2006; Rust et al., 2006), modern tissue
clearing (Dodt et al., 2007; Hama et al., 2011), or serial section scanning electron microscopy (Denk
andHorstmann, 2004; Knott et al., 2008) enabling researchers to observe biological tissues and their
underlying cellular and molecular composition and dynamics in unprecedented details. To localize
objects of interest and exploit such rich datasets quantitatively, scientists need to perform image
segmentation, e.g., dividing all pixels in an image into foreground pixels (part of objects of interest)
and background pixels.

The result of such a pixel classification is a binary mask, or a (multi-)label image if more
than one foreground class is needed to discriminate different objects. Masks or label images
enable downstream analysis that extract biologically meaningful semantic quantities, such as the
number of objects in the data, morphological properties of these objects (shape, size, etc.), or

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.777728
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.777728&domain=pdf&date_stamp=2022-02-10
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:florian.jug@fht.org
https://doi.org/10.3389/fcomp.2022.777728
https://www.frontiersin.org/articles/10.3389/fcomp.2022.777728/full

Arzt et al. LABKIT: Labeling and Segmentation Toolkit

tracks of object movements over time. In most practical
applications, image segmentation is not an easy task to solve. It
is often rendered difficult by the sample’s biological variability,
imperfect imaging conditions (e.g., leading to noise, blur, or other
distortions), or simply by the complicated three-dimensional
shape of the objects of interest.

Current research in bio-image segmentation focuses primarily
on developing new deep learning approaches, with more classical
methods currently receiving little attention. Algorithms, such as
StarDist (Schmidt et al., 2018), DenoiSeg (Buchholz et al., 2020),
PatchPerPix (Mais et al., 2020), PlantSeg (Wolny et al., 2020),
CellPose (Stringer et al., 2021), or EmbedSeg (Lalit et al., 2021)
have continuously raised the state-of-the art and outperform
classical methods in quality and accuracy of achieved automated
segmentation. While these approaches are very powerful indeed,
deep learning does require some expert knowledge, dedicated
computational resources not everybody has access to, and
typically large quantities of densely labeled ground-truth data to
train on.

More classical approaches, on the other hand, can also yield
results that enable the required analysis, while often remaining
fast and easy to use on any laptop or workstation. Examples
for such methods range from intensity thresholding and seeded
watershed, to shallow machine learning approaches on manually
chosen or designed features. One crucial property of shallow
techniques, such as random forests (Breiman, 2001), is that they
require orders of magnitude less ground-truth training data than
deep learning based methods. Hence, multiple software tools
pair themwith user-friendly interfaces, e.g., CellProfiler (McQuin
et al., 2018), Ilastik (Berg et al., 2019), QuPath (Bankhead
et al., 2017), and Trainable Weka Segmentation (Arganda-
Carreras et al., 2017). The latter specializes in random forest
classification and is available within Fiji (Schindelin et al., 2012),
a widely-used image analysis and processing platform based on
ImageJ (Schneider et al., 2012) and ImageJ2 (Rueden et al.,
2017). It is, regrettably, not capable of processing very large
datasets due to its excessive demand for CPU memory, leaving
the sizable Fiji community with a lack of user-friendly pixel
classification or segmentation tools that can operate on large
multi-dimensional data.

The required foundations for such a software tool have
in recent years been built by the vibrant research software
engineering community around Fiji and ImageJ2. Specifically,
the problem of handling large multi-dimensional images
has been addressed by a generic and powerful library
called ImgLib2 (Pietzsch et al., 2012). Additionally, a
fast, memory-efficient, and extensible image viewer, the
BigDataViewer (Pietzsch et al., 2015), enables tool developers to
create intuitive and fast data handling interfaces.

Here, we present an image labeling and segmentation
tool called LABKIT. It combines the power of ImgLib2 and
BigDataViewer with a new implementation of random forest
pixel classification. LABKIT features a user-friendly interface
allowing for rapid scribble labeling, training, and interactive
curation of the segmented image. LABKIT also allows users
to fully manually label pixels or voxels in the loaded images.
It can be easily installed in Fiji, and directly called from its

macro programming language. LABKIT additionally features
GPU acceleration using CLIJ (Haase et al., 2020), and can be
used on high performance computing (HPC) clusters thanks to
a command-line interface.

2. IMAGE SEGMENTATION WITH LABKIT

LABKIT’s user interface is built around the
BigDataViewer (Pietzsch et al., 2015), which allows interactive
exploration of image volumes of any size and dimension on
consumer computing hardware (Figures 1A,B). Beyond the
common BigDataViewer features, users have access to a set of
simple drawing tools to manually paint or correct existing labels
on image pixels in 2D and voxels in 3D. Importantly, the raw
data is never modified by any such actions. Pixel and voxel labels
are grouped by classes in individual layers (e.g., background,
nucleus or organelle). Each class is represented by a modifiable
color, and can be used to annotate different types of objects and
structures of interest in the image.

Thanks to the intuitive interface design, users can efficiently
segment their images by manually drawing dense labels on
the entire image (Figure 1C). Labels that are generated with
the drawing tools can directly be saved as images or exported
to Fiji for downstream processing. Dense manual labelings
of complete images or volumes created with LABKIT can be
used to manually segment objects, as was done previously to
mask particles in cryo-electron tomograms of Chlamydomonas
(Jordan and Pigino, 2019).

However, this process is very time consuming and doesn’t
scale well to large data. LABKIT is therefore often used to densely
and manually label a subset of the image data, which is then
used as ground-truth for supervised deep learning approaches.
Published examples include the generation of ground-truth
training data for a mouse and a Platyneris dataset in order to
segment cell nuclei with EmbedSeg (Lalit et al., 2021). LABKIT
is also suggested as a tool of choice for ground-truth generation
by other deep learning methods (Schmidt et al., 2018; Buchholz
et al., 2020; Horlava et al., 2020). Still, manually generating
sufficient amount of ground-truth training labels for existing
deep learning methods remains a cumbersome and tedious task.

In order to create a high quality segmentation while
maintaining low user input, LABKIT features a random
forest (Breiman, 2001) based pixel classification algorithm, with
all feature computations optimized for quick runtimes. Instead
of annotating entire objects, a random forest is trained on a
few pixel labeling per class only. These sparse manual labels,
or scribbles (see Figure 1D, left), are directly drawn by users
over the image. Naturally, scribbles must be drawn on pixels
representative of each class. Once trained, the random forest
classifier enables the generation of a segmentation (dense pixel
classification, see Figure 1D). Two or more classes can be
used to distinguish foreground objects from background pixels.
Figures 2A,B showcase examples of a single foreground and
background classes. If desired, out of focus objects can even
be discarded, for example by making such pixels part of the
background class (Figure 2B, arrowheads). For more complex

Frontiers in Computer Science | www.frontiersin.org 2 February 2022 | Volume 4 | Article 777728

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Arzt et al. LABKIT: Labeling and Segmentation Toolkit

FIGURE 1 | LABKIT allows easy manual labeling and automatic segmentation of large image volumes: (A) Maximum intensity projection of a single time point from a

∼1 TB timelapse of a developing Parhyale embryo imaged live with lightsheet microscopy. (B) LABKIT’s user interface is based on BigDataViewer and allows visualizing

and interacting with large volumes of image data. A slice of the developing Parhyale embryo is shown. (C) Users can label large datasets with dense manual

annotations using LABKIT’s drawing interface. (D) A core feature of LABKIT is the rapid segmentation of large image data using sparse manual labels (scribbles)

combined with random forest pixel classification to automatically produce the final segmentation. Scale bars 100 µm (A), 50 µm (B), and 25 µm (C,D).

segmentation tasks that need to discriminate various visible
structures (e.g., nucleus vs. cytoplasm vs. background) or cell
types (as in Figure 2C), two or more foreground classes can be
used (Figure 2D).

As opposed to deep learning algorithms, random forests
are typically trained in a matter of seconds. Drawing scribbles
and computing the segmentation can therefore conveniently be
iterated due to the efficient parallelization we have implemented,
leading to live segmentation. Live results are computed and
displayed only on the currently visualized image slice in
BigDataViewer to increase the interactivity. Hence, the effect
of additional scribbles (sparse labels) is instantly visible and
users can stop once the automated output of the pixel classifier
reaches sufficient quality. This iterative workflow makes working
with LABKIT very efficient, even when truly large image data
are being processed. BigDataViewer’s bookmarking feature can
additionally be used to quickly jump between previously defined
image regions, thereby allowing validating the quality of the
pixel classifier on multiple areas. Since we use ImgLib’s caching
infrastructure, all image blocks that have once been computed are
kept in memory and switching between bookmarks or browsing
between parts of a huge volume is fast and visually pleasing.
Once sufficiently trained, the classifier can be saved for later
use in interactive LABKIT sessions or in Fiji/ImageJ macros.
The entire dataset can be directly segmented and the results
saved to disk. Recently, sparse labeling combined with random

forest pixel classification in LABKIT was used to segment mice
epidermal cells (Bornes et al., 2021), as well as mRNA foci in
neurons (Arshadi et al., 2021).

Once the image is fully segmented, the generated
segmentation masks can be transferred to label layers and
the drawing tools can now be used to curate them. The goal of
curation is to resolve the remaining errors made by the trained
pixel classifier, such as drawing missing parts, filling holes,
erasing mislabeling and deleting spurious blobs (Figure 3). Label
curation is performed until the curated segmentation is deemed
satisfactory for downstream processing or analysis. LABKIT can
also be used to curate segmentation results obtained by other
methods that are not available within LABKIT, including deep
learning based methods (Jain et al., 2020).

Automated segmentation with LABKIT and the possibility
to quickly curate any automated segmentation result make
LABKIT a powerful tool that can considerably shorten the time
required to generate ground-truth data for training deep learning
approaches. For example, we compared automatic and manual
segmentation with LABKIT on a rather small subset of images
(N=26, see one example in Figure 4A) made publicly available by
the 218 Data Science Bowl (Caicedo et al., 2019). We segmented
all images within 5 min by iterative scribbling and automated
segmentation (see Figure 4B). While many images consisted
of homogeneous nuclei and led to high quality results, images
with heterogeneous nuclei resulted in segmentation errors (see

Frontiers in Computer Science | www.frontiersin.org 3 February 2022 | Volume 4 | Article 777728

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Arzt et al. LABKIT: Labeling and Segmentation Toolkit

FIGURE 2 | Semantic segmentation of microscopy images with LABKIT’s pixel classification: (A) Maximum intensity projection of a confocal stack showing HeLa cells

expressing C1-GFP (left), next to the sparse labeling (scribbles, center) and resulting cell segmentation (right). (B) Bright field microscopy image of E.coli, sparse
labeling discriminating cells and background and the resulting segmentation. Arrowheads show that segmentation of out-of-focus objects can be reduced by

including pixels of such objects in the background class. (C) Fixed mouse liver tissue section stained with immunofluorescence and imaged in multiple channels with a

spinning disk confocal microscope, showing Hepatocyte nuclei stained with antibody against HNF-4α a transcription factor expressed in hepatocytes, hepatocyte

cytoplasm (autofluorescence) and all nuclei stained with DAPI. (D) Labeling and resulting segmentation of the liver tissue section shown in (A), segmenting Hepatocyte

cytoplasm (green), Hepatocyte nuclei (blue), nuclei of non-parenchymal cells (yellow) and sinusoids (magenta). Scale bars 20 µm (A), (C), and 5 µm (B).

arrows in Figure 4B). Such errors include spurious instances
that do not correlate with any object in the original image,
instances that correspond to the fusion of multiple instances,

instances with holes, or even instances that split in two. Such
errors are obviously undesirable and negatively impact the overall
average precision score (AP = 0.72, see Methods for the metrics

Frontiers in Computer Science | www.frontiersin.org 4 February 2022 | Volume 4 | Article 777728

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Arzt et al. LABKIT: Labeling and Segmentation Toolkit

FIGURE 3 | LABKIT labeling tools used for curation: labels generated by

manual dense labeling or automatic segmentation can be efficiently curated

with drawing, filling, erasing, or deletion of entire objects. Scale bar 10 µm.

definition). As described above, all such segmentation errors
can easily be corrected within LABKIT, either by adding sparse
labels corresponding to typical areas with errors, done during
the iterative process, or when they persist by manually curating
the residual errors in the final automated results (Figure 4C).
Curating all 26 images took an additional 10 min and raised the
corresponding average precision to 0.76, a score very close to the
inter-observer distance (AP = 0.78), as shown in Figures 4C,D.
In contrast, manually segmenting all images required more than
an hour (Figure 4D), which is four times longer than scribble-
based pixel classification with LABKIT, followed by full curation
of the results to obtain images of comparable quality.

Hence, whenever LABKIT automated segmentation is by itself
not sufficient, manually curating the results yields ground-truth
data that can be used to train a deep learning method, leading to
higher segmentation quality with less labeling effort.

3. LABKIT PIXEL CLASSIFIER

LABKIT provides a pixel classification algorithm for automatic
segmentation. The algorithm uses a random forest to classify each
pixel independently into user-defined classes (e.g., foreground
and background). Random Forests (Breiman, 2001) are widely
used supervised machine learning methods, and as such must
be trained on a given body of ground-truth labels (pre-
classified example pixels). In LABKIT, the random forest
classifier is trained on manually labeled pixels (scribbles), an
approach similar to ilastik (Berg et al., 2019) or Trainable
Weka Segmentation (Arganda-Carreras et al., 2017). As opposed
to most implementations, LABKIT’s classifier is specifically
optimized to be able to handle very large image data.

In a first step, we compute a feature vector for each labeled
pixel. This is achieved by applying a configurable set of filters
to the given image or images. To this end LABKIT offers a
set of image filters commonly used in image analysis, such
as Gaussian, difference of Gaussians or Laplacian filters. Each
selected filter creates an output image that emphasizes different
features of a given input image. Filter responses for each pixel
are then added to their feature vector. The final feature vectors
of all labeled pixels are paired with their respective ground-truth

FIGURE 4 | Comparing automatic and manual ground-truth generation with

LABKIT: (A) Fluorescence image of nuclei (out of 26 images) extracted from the

2018 Data Science Bowl (Caicedo et al., 2019). (B) Results from LABKIT

automated segmentation of (A) after extracting connected components and

giving each instance a unique pixel value. The arrows point to various

segmentation errors. On the top right corner, the total time necessary to obtain

the corresponding segmentation of all 26 images (including labeling) is

indicated. Below the timing is the average precision (see Methods) as

compared to a dense manual labeling performed by another observer.

(C) Curation of (B) with same post-processing. The arrows point to the

corrected errors mentioned in (B). The timing information includes (B).

(D) Dense manual labeling of (A) and the same post-processing as in (B). No

scale bar was available for the images.

classes, together constituting the training set. This data is then
used to train the random forest, consisting of 100 decision trees,
using the FastRF library (Supek, 2015).

After training, the random forest classifier can predict pixel
classes directly from the feature vector of any given pixel. Hence,
in a final step, we apply the random forest to the feature vectors of
all pixels in the entire body of data, thereby effectively computing
the desired semantic segmentation.

Since computing feature vectors and final random forest
predictions consume by far the most computational resources, it
was crucial to optimize their runtime. To this end, we process
image chunks in parallel, with the chunked memory handling
being supported by ImgLib2 (Pietzsch et al., 2012). Additionally,
we implementedOpenCL kernels, allowing us to benefit from fast
GPU computations (Haase et al., 2020).

4. LIMITATIONS OF THE PIXEL
CLASSIFICATION

The simplicity of the pixel classification algorithm ensures
efficiency, but also exposes it to certain limitations and potential

Frontiers in Computer Science | www.frontiersin.org 5 February 2022 | Volume 4 | Article 777728

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Arzt et al. LABKIT: Labeling and Segmentation Toolkit

FIGURE 5 | Pixel classification failure modes: (A) Image of a contractile vacuole pore in paramecium caudatum acquired with transmission electron microscopy (left),

in which inner pore (blue), cytoplasm (green) and background (magenta) were labeled with scribbles (center). LABKIT’s classifier fails to distinguish background and

inner pore classes (right). Image provided by Richard Allen (Cell Image Library, 38894). (B) Mitotic spindle of a Ptk2 cell expressing GFP-tubulin imaged in wide-field

fluorescence (left). Left and right halves of the mitotic spindle are labeled in different classes (blue and green, respectively), while background is labeled in magenta

(center). LABKIT’s classifier is incapable of discriminating similar structures (right). Image provided by Sophie Dumont and Timothy J. Mitchison (Cell Image Library,

6568). (C) Bright field image of C. elegans (left), labeled with two classes (center): foreground (green) and background (magenta). After applying connected

components analysis to the classification result, contiguous worms belong to the same object (right). Image provided by Fred Ausubel (Broad Bioimage Benchmark

Collection, BBBC010). Scale bars (A) 500 nm, (B) 10 µm, and (C) 500 µm.

failure modes. This mainly comes from the fact that the filter
kernels used to compute the feature vector have limited sizes.
With the default settings in LABKIT, filters respond mostly
to a 16x16 window (2D), meaning that decision about the
class of a given pixel is based on filter responses in a small
neighborhood. A direct consequence is illustrated in Figure 5A,
where LABKIT was used to segment the image of a vacuole
pore in paramecium caudatum (left panel) using three classes:
inner pore (central panel, in blue), vacuole (in green) and
background (in magenta). Because inner pore and background
pixels have similar texture, the classifier cannot tell them apart
and assigns background pixels to the inner pore class, and vice
versa.

All filters used to calculate the feature vectors are designed
to be translation and rotation invariant. Hence, the algorithm
classifies two objects the same way regardless of their position or
orientation in the image. While this is a sensible assumption for
most applications on microscopy data, users should certainly be
aware of this. One potential problem is showcased in Figure 5B,
which shows a mitotic spindle in fluorescence microscopy (left)
and an attempt at assigning each half of the mitotic spindle to a
different class (central panel). Although both sides of the mitotic
spindle are spatially distinct and in different orientations, the
classifier fails at discriminating them (Figure 5B, right).

Furthermore, contiguous objects cannot be separated by the
random forest classifier. This is illustrated in Figure 5C, which

Frontiers in Computer Science | www.frontiersin.org 6 February 2022 | Volume 4 | Article 777728

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Arzt et al. LABKIT: Labeling and Segmentation Toolkit

TABLE 1 | Benchmarking computation speed while segmenting a large biological image on various hardware: the experiment was performed on a laptop with and

without GPU acceleration, and on different numbers of CPU and GPU cluster nodes.

Hardware GPU Run time Speed-up Throughput in gigapixel

Laptop No 4 h 23 min 00 s 1 3.05 / h = 0.05 / min

Laptop Yes 35 min 12 s 7.5 0.38 / min

1 CPU cluster node No 1 h 08 min 10 s 1 0.20 / min

10 CPU cluster nodes No 6 min 15 s 10.9 2.14 / min

50 CPU cluster nodes No 1 min 35 s 43.1 8.45 / min

1 GPU cluster node Yes (2) 8 min 23 s 1 1.60 / min

10 GPU cluster nodes Yes (2) 1 min 03 s 7.9 12.74 / min

In each category, the speed-up is calculated in comparison to the slower entry. Numbers in between parenthesis in the GPU column indicate the number of GPU per cluster node.

shows C. elegans worms imaged in bright-field microscopy
(left panel). While the classifier can correctly distinguish the
worms body from the background, a connected component
analysis applied to the classification result (Figure 5C, right)
leads to multiple worms being fused within the same connected
component. In order to obtain instance segmentation from
such images, manual curation or post-processing, such as
watershed, is necessary to separate the connected objects into
different instances.

Finally it is also important to know that trained random forest
classifier cannot easily be trained on sets of very diverse images.
Deep learning approaches such as Cellpose (Stringer et al., 2021),
in contrast, show much greater potential to generalize well even
when trained on a large and diverse body of microscopy data.

Nonetheless, LABKIT can be used to segment a wide range of
images fast and at high quality. This is true as long as objects are
visibly separated from one another and can be distinguished by
the filter responses LABKIT computes per pixel.

5. SOFTWARE AND WORKFLOW
INTEGRATION

LABKIT’s automatic segmentation is not limited to the dataset
it was trained on. Because the trained classifier can be saved
for later use, it can be applied to similar new images. While
ensuring reproducibility of the results, it also helps maintaining
consistency in the image segmentation. Manually loading both
images and trained classifier in LABKIT for multiple sets of
images is a repetitive task ill-suited for an automated workflow.
Therefore, to simplify the integration into existing workflows
in Fiji, LABKIT can be easily called from the ImageJ macro
language. For instance, a simple macro script can open multiple
datasets and segment each of them using a trained classifier.

Image segmentation can be further accelerated by running
the process on GPUs thanks to CLIJ (Haase et al., 2020).
Once CLIJ is properly set up, GPU acceleration is available
for LABKIT in both graphical interface and macro commands.
GPU processing is particularly beneficial in the case of large
images, for which it allows shortening the lengthy segmentation

tasks. Performing GPU-accelerated segmentation in LABKIT is a
matter of activating a checkbox, and does not present additional
complexity to users.

Some images, however, are far too large to be processed
on a consumer machine in a reasonable amount of time,
if they can be stored at all on such a computer. For such
data, modern workflows resort to the use of HPC clusters,
which are purposely built for high computing performances
with large available memory. LABKIT offers a command line
tool (Arzt, 2021a) allowing advanced users to segment images on
HPC clusters.

The capability of extending LABKIT and re-using
its components is illustrated by integration with the
commercial Imaris software (Oxford Instruments, UK) via
the recently released ImgLib2-Imaris compatibility bridge.
In this context, LABKIT operates directly on datasets that
are transparently shared (without duplication) between
Imaris and ImgLib2 (Pietzsch et al., 2012). These datasets
can be arbitrarily large, as both Imaris and ImgLib2
implement sophisticated caching schemes. In the same
fashion, output segmentation masks are transparently
shared with the running Imaris application, making
additional file import/export steps unnecessary. Importantly,
this functionality can also be triggered and controlled
directly from Imaris to integrate it into streamlined object
segmentation workflows.

6. PERFORMANCE OF LABKIT

In order to process large images on consumer computers,
software packages must be able to load the data in memory,
process it and save the results, all within the constraints of
the machine. In LABKIT, this is achieved by reading only the
portions of the image that are displayed to the user, thanks
to the use of the HDF5 format (Folk et al., 2011) and the
BigDataViewer (Pietzsch et al., 2015). The image is further
processed in chunks using ImgLib2 (Pietzsch et al., 2012).
As a result, LABKIT is capable of processing arbitrarily large

Frontiers in Computer Science | www.frontiersin.org 7 February 2022 | Volume 4 | Article 777728

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Arzt et al. LABKIT: Labeling and Segmentation Toolkit

images and is compatible with GPU acceleration and distributed
computation on HPC clusters.

To illustrate this, we segmented a 13.4 gigapixel image (482 x
935 x 495 x 60 pixels, 25 GB) on a single laptop computer, with
and without GPU, and with different nodes of an HPC cluster
(see Table 1). The image was extracted and 2x down-sampled
from the Fluo-N3DL-TRIF dataset made available for the Cell
Tracking Challenge (Maška et al., 2014; Ulman et al., 2017; Jain
et al., 2020) benchmark competition. Running the segmentation
on the laptop using GPU acceleration sped up the computation
by 7.5 fold, illustrating the benefit of harnessing GPU power
for processing large images. While running computation on an
HPC cluster comes with overhead, increasing the number of CPU
nodes shortens the computation dramatically, reaching a 40-
fold improvement from 1 CPU node to 50. Finally, GPU nodes
on an HPC allow for more parallelization of the computation
and therefore even higher computational speed-up on the
segmentation task, with 10 GPU nodes processing the data in
slightly over a minute.

Furthermore, we trained and optimized a classifier on the
Fluo-N3DL-TRIF dataset (original sampling), the largest dataset
of the Cell Tracking Challenge (training dataset of size 320
GB, evaluation dataset of size 467 GB), and submitted it for
evaluation against undisclosed ground-truth. The segmentation
of both training and evaluation datasets was performed on an
HPC cluster. LABKIT pixel classification ranked as the highest
performing segmentation method on this dataset for all three
evaluation metrics (OPCSB, SEG and DET) (CTC, 2021). More
specifically, LABKIT segmentation obtained the following scores:
OPCSB = 0.895 (0.886 for the second highest scoring entry),
SEG = 0.793 (0.776) and DET = 0.997 (0.997), performing
better than the other entries, including classical (bandpass
segmentation) or deep learning (convolution neural network)
algorithms. As opposed to the deep learning algorithm to which it
was compared, Labkit only used a few hundred pixels as ground-
truth, distributed throughout a small fraction of the training
dataset (7 frames). Finally, LABKIT’s classifier was simply trained
through the LABKIT graphical interface, illustrating its ease
of use.

7. DISCUSSION AND CONCLUSION

LABKIT is a labeling software tool designed to be intuitive
and simple to use. It features a robust pixel classification
algorithm aimed at segmenting images between multiple classes
with very little manual labeling required. Similar to other
tools of the BigDataViewer family (Pietzsch et al., 2015;
Wolff et al., 2018; Hörl et al., 2019; Tischer et al., 2020),
it integrates seamlessly into the SciJava and Fiji ecosystem.
It can be easily installed through Fiji and incorporated into
established workflows using ImageJ’s macro language. The results
of LABKIT’s segmentation can be further analyzed in Fiji
or exported to other software platforms, such as CellProfiler
(McQuin et al., 2018), QuPath (Bankhead et al., 2017), or
Ilastik (Berg et al., 2019).

Manual labeling, in both 2D and 3D, is also made
easy by LABKIT. Other alternatives exist, among which
QuPath (Bankhead et al., 2017) (2D), napari (napari contributors,
2019) or Paintera (Leite et al., 2021). In particular, Paintera is
specifically tailored to 3D labeling of crowded environment, but
at the cost of a steeper learning curve.

LABKIT is compatible with a wide range of image formats
since image data can be loaded directly from Fiji using Bio-
Formats (Linkert et al., 2010). Nonetheless, in order to fully
benefit from LABKIT optimizations for large images, users
must first convert their terabyte-sized images to a file format
allowing high-speed access to arbitrary located sub-regions of the
image. This strategy is also employed by other software, with
the example of Ilastik (Berg et al., 2019). One such format is
HDF5 (Folk et al., 2011), and LABKIT uses in particular the
BigDataViewer HDF5+XML variant. In Fiji, images can easily
be saved in this format using BigStitcher (Hörl et al., 2019)
or Multiview-Reconstruction (Preibisch et al., 2014; Icha et al.,
2016).

In the Cell Tracking Challenge (Ulman et al., 2017; CTC,
2021), LABKIT segmentation outperformed other entries on a
particular dataset, one being a deep learning approach. This
method was designed as part of a cell segmentation and tracking
pipeline on various images, and it is likely that recent and
specialized deep learning segmentation algorithms, such as
StarDist (Schmidt et al., 2018) or CellPose (Stringer et al., 2021),
would perform overall better (Baltissen et al., 2018; Morone
et al., 2020). Yet, the full potential of deep learning algorithms
is only reached when a sufficient amount of ground-truth data is
available, which is too frequently the limiting factor. Generating
ground-truth data for a deep learning method is a tedious
endeavor without the insurance of a perfect segmentation result.
A safer strategy is therefore to first try shallow learning for
segmentation tasks, before even thinking of moving to deep
learning algorithms. In cases where higher segmentation quality
is truly necessary, curated results from shallow learning can be
used to generate the massive amount of ground-truth required
to train a deep learning algorithm. As seen previously, LABKIT
is useful in all these scenarios since it can be used to manually
generate ground-truth annotations or to segment the images
with shallow learning before curating the results in order to use
them as ground-truth for other learning-based algorithms (see
Figure 6).

In the future, we intend to extend LABKIT’s functionalities
to improve manual and automated segmentation. For instance,
we will add a magic wand tool to select, fill, fuse or delete labels
based on the pixel classification. Furthermore, we aim to add new
segmentation algorithms, such as the deep learning algorithm
DenoiSeg (Buchholz et al., 2020) already available in Fiji. In
recent years, novel interactive deep learning approaches have also
been shown to reduce the need for large amounts of densely
labeled ground-truth data. In general, these approaches combine
deep learning with interactive user guidance, for instance clicks
on the extreme points of objects (Maninis et al., 2018), inside-
outside guidance (Zhang et al., 2020), clicks within objects and
boundaries that are iteratively refined (Luo et al., 2021) and
a combination of clicks and squiggles inside objects (Alemi

Frontiers in Computer Science | www.frontiersin.org 8 February 2022 | Volume 4 | Article 777728

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Arzt et al. LABKIT: Labeling and Segmentation Toolkit

FIGURE 6 | LABKIT’s iterative and interactive segmentation used for ground-truth generation: manual labeling, automatic segmentation and curation in LABKIT enable

easy and rapid image segmentation, whose results can be further processed or used as ground-truth for deep-learning classifiers.

Koohbanani et al., 2020). However, these approaches are not
in widespread use in bio-image analysis and for the most part
implemented in Python. LABKIT could potentially serve as an
easy-to-use platform for such methods by implementing their
labeling strategies in the user interface and interfacing their
framework with Java, thereby making them widely accessible
to the biomedical community. LABKIT source code is open
source and can be found online (Arzt, 2021b), together
with its command-line interface (Arzt, 2021a), tutorials and
documentation (Arzt, 2021c).

8. METHODS

8.1. Timing Instance Segmentation
Generation
The dataset consisted of all 256 x 256 images (N = 26) in
the test sample of StarDist (Schmidt et al., 2018), originally
published as part of the 2018 Data Science Bowl (Caicedo et al.,
2019) (subset of stage1_train, accession number BBBC038, Broad
Bioimage Benchmark Collection). The images were loaded in
LABKIT as a stack and sparsely labeled (scribbles). A classifier
was then trained with the default filter settings: "original image,"
"Gaussian blur," "difference of Gaussians," "Gaussian gradient
magnitude," "Laplacian of Gaussian," and "Hessian eigenvalues,"
with sigma values: 1, 2, 4, and 8. The results were saved
and then manually curated using the brush and eraser tools.
Finally, the same original image stack was densely manually
labeled afresh. The total time required to process all images
was measured using a chronometer for i) LABKIT automated
segmentation, including the sparse manual labeling, ii) the
previous step followed by a curation step and iii) dense manual
labeling. In order to evaluate the segmented images, connected

components were computed (4-connectivity) and given unique
pixel values (instance segmentation). Quality metrics scores
were calculated as the average precision with threshold 0.5 as
defined in StarDist (Schmidt et al., 2018). We used dense manual
labeling performed by another observer as reference images, and
computed the metrics score for the results obtained in i), ii),
and iii). The average metrics over the images were calculated as
a weighted average of each individual image, where the weights
were the number of instances in the reference image.

8.2. Speed Benchmark
The dataset was downloaded from the Cell Tracking
Challenge (Ulman et al., 2017) website, and consisted of
the first training dataset of the Fluo-N3DL-TRIF example. The
dataset was down-sampled by a factor 2 in order to reduce its size
and simplify the benchmarking. The dataset was then saved in
the BigDataViewer XML+HDF5 format using BigStitcher (Hörl
et al., 2019). LABKIT was used to draw a few scribbles on both
background and nuclei areas, and to train a random forest
classifier using the default settings. The trained model was then
saved. The LABKIT command line tool was used to run the
benchmark experiment on a Dell XPS 15 laptop (32 MB RAM,
Intel Core i7-6700HQ CPU with 8 cores, GeForce GTX 960M
GPU) and on an HPC cluster, with both CPU (256 GB RAM,
Intel Xeon CPU E5-2680 v3 with 2.5 GHz and 24 cores) and
GPU (512 GB RAM, Intel Xeon CPU E5-2698 v4 with 2.2 GHz
and 40 cores, with two GeForce GTX 1080 GPUs) nodes. The
segmentation results on the HPC were saved in the N5 (Saalfeld,
2017) format to maximize writing speed. Benchmarking included
read/write of image data form disc, optional data transfer to
the GPU, computation of feature images and classification
all together.

Frontiers in Computer Science | www.frontiersin.org 9 February 2022 | Volume 4 | Article 777728

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Arzt et al. LABKIT: Labeling and Segmentation Toolkit

8.3. Cell Tracking Challenge
As in the speed benchmark sample, all Fluo-N3DL-TRIF datasets
(training and evaluation) were converted to BigDataViewer
XML+HDF5 format using the BigStitcher Fiji plugin. This
time, however, no down-sampling was applied to the images.
For training, only frames 0, 1, 10, 20, 40, 50 and 59 from
sequence “01” of the training dataset were used. A few hundred
pixels were labeled as foreground and background. Only nuclei’s
central pixels were labeled as foreground in order to force
the classification algorithm to return segments of smaller size
than the actual nuclei. Thus, segmented nuclei are unlikely to
touch and segmentation errors are minimized. We used the
following filters to train the random forest classifier: "original
image," "Gaussian blur," "Laplacian of Gaussian," and "Hessian
eigenvalues," with sigma values 1, 2, 4, 8, and 16. The filters can
be set in LABKIT’s interface through the parameters menu of
the classifier. The trained classifier was saved and the evaluation
dataset was segmented using the LABKIT command line tool on
an HPC. Since the output of the pixel classification is a binary
mask, we performed a connected component analysis to assign
unique pixel values to the individual segments. Finally, we dilated
the segments to match the size of the nuclei. The dilation was
done in three steps: the first two steps with a three-dimensional
6-neighborhood dilation kernel, then with a 3 x 3 x 3 pixel cube
kernel. The combination of dilation kernels was chosen as to
optimize the SEG score on the training dataset. All metrics scores
were computed by the Cell Tracking Challenge platform.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found here: http://cellimagelibrary.org/images/
38894, accession number CIL:38894, Cell Image Library, http://
cellimagelibrary.org/images/6568, accession number CIL:6568,
Cell Image Library, https://bbbc.broadinstitute.org/BBBC010,
accession number BBBC010, Broad Bioimage Benchmark
Collection, https://bbbc.broadinstitute.org/BBBC038, accession

number BBBC038, Broad Bioimage Benchmark Collection
and http://celltrackingchallenge.net/3d-datasets/, Fluo-N3DL-
TRIF dataset, Cell Tracking Challenge.

AUTHOR CONTRIBUTIONS

FJ, MA, TP, PT, and DS designed the project. MA implemented
the software with help from TP, DS, and RH. MA and
JD performed experiments. MA, JD, CS, and FJ wrote the
manuscript with inputs from all authors.

FUNDING

Funding was provided from the Max-Planck Society under
project code M.IF.A.MOZG8106, the core budget of the
Max-Planck Institute of Molecular Cell Biology and Genetics
(MPI-CBG), the Human Technopole, and the BMBF under
codes 031L0102 (de.NBI) and 01IS18026C (ScaDS2), as well
as by the Deutsche Forschungsgemeinschaft (DFG) under
code JU3110/1-1 (FiSS) and TO563/8-1 (FiSS). PT was
supported by the European Regional Development Fund in
the IT4Innovations national supercomputing center, project
number CZ.02.1.01/0.0/0.0/16_013/0001791 within the Program
Research, Development and Education. RH acknowledges
support by the DFG under Germany’s Excellence Strategy–
EXC2068-Cluster of Excellence Physics of Life of TU Dresden.

ACKNOWLEDGMENTS

We thank Anne Wuttke (Zerial lab, MPI-CBG), Sascha
Kuhn (Nadler lab, MPI-CBG), Maria Luisa Romero Romero
(Toth-Petroczy lab, MPI-CBG), Akanksha Jain & Anastasios
(Tassos) Pavlopoulos (Tomancak, MPI-CBG) for sharing the
experimental data. We also want to thank the Scientific
Computing Facility at MPI-CBG for giving us access to HPC
infrastructure.

REFERENCES

Alemi Koohbanani, N., Jahanifar, M., Zamani Tajadin, N., and Rajpoot,

N. (2020). Nuclick: a deep learning framework for interactive

segmentation of microscopic images. Med. Image Anal. 65:101771.

doi: 10.1016/j.media.2020.101771

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin,

J., Cardona, A., et al. (2017). Trainable weka segmentation: a machine

learning tool for microscopy pixel classification. Bioinformatics 33, 2424–2426.

doi: 10.1093/bioinformatics/btx180

Arshadi, C., Günther, U., Eddison, M., Harrington, K. I. S., and Ferreira, T. A.

(2021). SNT: a unifying toolbox for quantification of neuronal anatomy. Nat.

Methods 18, 374–377. doi: 10.1038/s41592-021-01105-7

Arzt, M. (2021a). Available online at: https://github.com/juglab/labkit-command-

line (accessed December 09, 2021).

Arzt, M. (2021b). Available online at: https://github.com/juglab/labkit-ui (accessed

December 09, 2021).

Arzt, M. (2021c). Available online at: https://imagej.net/plugins/labkit (accessed

December 09, 2021).

Baltissen, D., Wollmann, T., Gunkel, M., Chung, I., Erfle, H., Rippe, K., et al.

(2018). “Comparison of segmentation methods for tissue microscopy images of

glioblastoma cells,” in 2018 IEEE 15th International Symposium on Biomedical

Imaging (ISBI 2018) (Washington, DC: IEEE), 396–399.

Bankhead, P., Loughrey, M. B., Fernández, J. A., Dombrowski, Y., McArt, D. G.,

Dunne, P. D., et al. (2017). Qupath: Open source software for digital pathology

image analysis. Sci. Rep. 7, 1–7. doi: 10.1038/s41598-017-17204-5

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C.,

et al. (2019). Ilastik: interactive machine learning for (bio) image analysis. Nat.

Methods 16, 1226–1232. doi: 10.1038/s41592-019-0582-9

Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino,

J. S., et al. (2006). Imaging intracellular fluorescent proteins at nanometer

resolution. Science 313, 1642–1645. doi: 10.1126/science.1127344

Bornes, L., Windoffer, R., Leube, R. E., Morgner, J., and van Rheenen, J.

(2021). Scratch-induced partial skin wounds re-epithelialize by sheets of

independently migrating keratinocytes. Life Sci. Alliance 4, e202000765.

doi: 10.26508/lsa.202000765

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.

doi: 10.1023/A:1010933404324

Frontiers in Computer Science | www.frontiersin.org 10 February 2022 | Volume 4 | Article 777728

http://cellimagelibrary.org/images/38894
http://cellimagelibrary.org/images/38894
http://cellimagelibrary.org/images/6568
http://cellimagelibrary.org/images/6568
https://bbbc.broadinstitute.org/BBBC010
https://bbbc.broadinstitute.org/BBBC038
http://celltrackingchallenge.net/3d-datasets
https://doi.org/10.1016/j.media.2020.101771
https://doi.org/10.1093/bioinformatics/btx180
https://doi.org/10.1038/s41592-021-01105-7
https://github.com/juglab/labkit-command-line
https://github.com/juglab/labkit-command-line
https://github.com/juglab/labkit-ui
https://imagej.net/plugins/labkit
https://doi.org/10.1038/s41598-017-17204-5
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.1126/science.1127344
https://doi.org/10.26508/lsa.202000765
https://doi.org/10.1023/A:1010933404324
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Arzt et al. LABKIT: Labeling and Segmentation Toolkit

Buchholz, T.-O., Prakash, M., Krull, A., and Jug, F. (2020). DenoiSeg:

joint denoising and segmentation. arXiv:2005.02987 [cs]. arXiv: 2005.02987.

doi: 10.1007/978-3-030-66415-2_21

Caicedo, J. C., Goodman, A., Karhohs, K. W., Cimini, B. A., Ackerman,

J., Haghighi, M., et al. (2019). Nucleus segmentation across imaging

experiments: the 2018 data science bowl. Nat. Methods 16, 1247–1253.

doi: 10.1038/s41592-019-0612-7

CTC (2021). Available online at: http://celltrackingchallenge.net/latest-csb-results

(accessed December 09, 2021).

Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron

microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol.

2:e329. doi: 10.1371/journal.pbio.0020329

Dodt, H.-U., Leischner, U., Schierloh, A., Jährling, N., Mauch, C. P.,

Deininger, K., et al. (2007). Ultramicroscopy: three-dimensional visualization

of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336.

doi: 10.1038/nmeth1036

Folk, M., Heber, G., Koziol, Q., Pourmal, E., and Robinson, D. (2011). “An

overview of the hdf5 technology suite and its applications,” in Proceedings of

the EDBT/ICDT 2011 Workshop on Array Databases (Uppsala), 36–47.

Gustafsson, M. G. (2000). Surpassing the lateral resolution limit by a factor

of two using structured illumination microscopy. J. Microsc. 198, 82–87.

doi: 10.1046/j.1365-2818.2000.00710.x

Haase, R., Royer, L. A., Steinbach, P., Schmidt, D., Dibrov, A., Schmidt, U., et al.

(2020). Clij: Gpu-accelerated image processing for everyone. Nat. Methods 17,

5–6. doi: 10.1038/s41592-019-0650-1

Hama, H., Kurokawa, H., Kawano, H., Ando, R., Shimogori, T., Noda, H., et al.

(2011). Scale: a chemical approach for fluorescence imaging and reconstruction

of transparent mouse brain.Nat. Neurosci. 14, 1481–1488. doi: 10.1038/nn.2928

Hell, S. W., and Wichmann, J. (1994). Breaking the diffraction resolution limit by

stimulated emission: stimulated-emission-depletion fluorescence microscopy.

Opt. Lett. 19, 780–782. doi: 10.1364/OL.19.000780

Hess, S. T., Girirajan, T. P., and Mason, M. D. (2006). Ultra-high resolution

imaging by fluorescence photoactivation localization microscopy. Biophys. J.

91, 4258–4272. doi: 10.1529/biophysj.106.091116

Hörl, D., Rusak, F. R., Preusser, F., Tillberg, P., Randel, N., Chhetri,

R. K., et al. (2019). Bigstitcher: reconstructing high-resolution image

datasets of cleared and expanded samples. Nat. Methods 16, 870–874.

doi: 10.1038/s41592-019-0501-0

Horlava, N., Mironenko, A., Niehaus, S., Wagner, S., Roeder, I., and Scherf,

N. (2020). A comparative study of semi- and self-supervised semantic

segmentation of biomedical microscopy data. arXiv:2011.08076 [cs, stat]. arXiv:

2011.08076.

Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., and Stelzer, E. H. (2004). Optical

sectioning deep inside live embryos by selective plane illumination microscopy.

Science 305, 1007–1009. doi: 10.1126/science.1100035

Icha, J., Schmied, C., Sidhaye, J., Tomancak, P., Preibisch, S., and Norden, C.

(2016). Using light sheet fluorescence microscopy to image zebrafish eye

development. J. Vis. Exp. 110:e53966. doi: 10.3791/53966

Jain, A., Ulman, V., Mukherjee, A., Prakash, M., Cuenca, M. B., Pimpale,

L. G., et al. (2020). Regionalized tissue fluidization is required for

epithelial gap closure during insect gastrulation. Nat. Commun. 11, 5604.

doi: 10.1038/s41467-020-19356-x

Jordan, M. A., and Pigino, G. (2019). “Chapter 9-In situ cryo-electron tomography

and subtomogram averaging of intraflagellar transport trains,” in Methods in

Cell Biology, volume 152 of Three-Dimensional Electron Microscopy, eds T.

Müller-Reichert and G. Pigino (Cambridge, MA: Academic Press), 179–195.

Knott, G., Marchman, H., Wall, D., and Lich, B. (2008). Serial section scanning

electron microscopy of adult brain tissue using focused ion beam milling. J.

Neurosci. 28, 2959–2964. doi: 10.1523/JNEUROSCI.3189-07.2008

Lalit, M., Tomancak, P., and Jug, F. (2021). Embedding-based Instance

Segmentation in Microscopy. arXiv:2101.10033 [cs, eess]. arXiv: 2101.10033.

Leite, V., Saalfeld, S., Hanslovsky, P., Hulbert, C., Funke, J., Pietzsch, T., et al.

(2021). Paintera. Zenodo. doi: 10.5281/zenodo.3351562

Linkert, M., Rueden, C. T., Allan, C., Burel, J.-M., Moore, W., Patterson, A., et al.

(2010). Metadata matters: access to image data in the real world. J. Cell Biol.

189, 777–782. doi: 10.1083/jcb.201004104

Luo, X., Wang, G., Song, T., Zhang, J., Aertsen, M., Deprest, J., et al.

(2021). Mideepseg: Minimally interactive segmentation of unseen objects

from medical images using deep learning. Med. Image Anal. 72:102102.

doi: 10.1016/j.media.2021.102102

Mais, L., Hirsch, P., and Kainmueller, D. (2020). “Patchperpix for instance

segmentation,” in Computer Vision-ECCV 2020: 16th European Conference,

Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16 (Glasgow:

Springer), 288–304.

Maninis, K.-K., Caelles, S., Pont-Tuset, J., and Van Gool, L. (2018). “Deep

extreme cut: From extreme points to object segmentation,” in 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (Salt Lake City: IEEE),

616–625.

Maška, M., Ulman, V., Svoboda, D., Matula, P., Matula, P., Ederra, C., et al. (2014).

A benchmark for comparison of cell tracking algorithms. Bioinformatics 30,

1609–1617. doi: 10.1093/bioinformatics/btu080

McQuin, C., Goodman, A., Chernyshev, V., Kamentsky, L., Cimini, B. A., Karhohs,

K. W., et al. (2018). Cellprofiler 3.0: Next-generation image processing for

biology. PLoS Biol. 16:e2005970. doi: 10.1371/journal.pbio.2005970

Morone, D., Marazza, A., Bergmann, T. J., and Molinari, M. (2020). Deep

learning approach for quantification of organelles and misfolded polypeptide

delivery within degradative compartments. Mol. Biol.Cell. 31, 1512–1524.

doi: 10.1091/mbc.E20-04-0269

Napari Contributors (2019). napari: A Multi-Dimensional Image Viewer For

Python. Zenodo. doi: 10.5281/zenodo.3555620

Pietzsch, T., Preibisch, S., Tomančák, P., and Saalfeld, S. (2012). Imglib2–

generic image processing in java. Bioinformatics 28, 3009–3011.

doi: 10.1093/bioinformatics/bts543

Pietzsch, T., Saalfeld, S., Preibisch, S., and Tomancak, P. (2015). Bigdataviewer:

visualization and processing for large image data sets. Nat. Methods 12,

481–483. doi: 10.1038/nmeth.3392

Preibisch, S., Amat, F., Stamataki, E., Sarov, M., Singer, R. H., Myers, E., et al.

(2014). Efficient Bayesian-based multiview deconvolution. Nat. Methods 11,

645–648. doi: 10.1038/nmeth.2929

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E.

T., et al. (2017). Imagej2: imagej for the next generation of scientific image data.

BMC Bioinformatics 18:529. doi: 10.1186/s12859-017-1934-z

Rust, M. J., Bates, M., and Zhuang, X. (2006). Sub-diffraction-limit imaging by

stochastic optical reconstructionmicroscopy (storm).Nat. Methods 3, 793–796.

doi: 10.1038/nmeth929

Saalfeld, S. (2017). Available online at: https://github.com/saalfeldlab/n5 (accessed

December 17, 2021).

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,

et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat

Methods. 9, 676–682. doi: 10.1038/nmeth.2019

Schmidt, U., Weigert, M., Broaddus, C., and Myers, G. (2018). “Cell detection

with star-convex polygons,” in International Conference on Medical Image

Computing and Computer-Assisted Intervention (Berlin; Heidelberg: Springer),

265–273.

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). Nih image to imagej:

25 years of image analysis. Nat. Methods 9, 671–675. doi: 10.1038/nmeth.2089

Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M. (2021). Cellpose: a

generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106.

doi: 10.1038/s41592-020-01018-x

Supek, F. (2015). Available online at: https://code.google.com/archive/p/fast-

random-forest/ (accessed December 09, 2021).

Tischer, C., Ravindran, A., Reither, S., Pepperkok, R., and Norlin, N. (2020).

Bigdataprocessor2: a free and open-source fiji plugin for inspection and

processing of tb sized image data. bioRxiv. doi: 10.1101/2020.09.23.244095

Ulman, V., Maška, M., Magnusson, K. E., Ronneberger, O., Haubold, C., Harder,

N., et al. (2017). An objective comparison of cell-tracking algorithms. Nat.

Methods 14, 1141–1152. doi: 10.1038/nmeth.4473

Wolff, C., Tinevez, J.-Y., Pietzsch, T., Stamataki, E., Harich, B., Guignard, L., et al.

(2018). Multi-view light-sheet imaging and tracking with the mamut software

reveals the cell lineage of a direct developing arthropod limb. Elif. 7:e34410.

doi: 10.7554/eLife.34410

Wolny, A., Cerrone, L., Vijayan, A., Tofanelli, R., Barro, A. V., Louveaux, M.,

et al. (2020). Accurate and versatile 3d segmentation of plant tissues at cellular

resolution. Elife 9:e57613. doi: 10.7554/eLife.57613

Zhang, S., Liew, J. H., Wei, Y., Wei, S., and Zhao, Y. (2020). “Interactive

object segmentation with inside-outside guidance,” in 2020 IEEE/CVF

Frontiers in Computer Science | www.frontiersin.org 11 February 2022 | Volume 4 | Article 777728

https://doi.org/10.1007/978-3-030-66415-2_21
https://doi.org/10.1038/s41592-019-0612-7
http://celltrackingchallenge.net/latest-csb-results
https://doi.org/10.1371/journal.pbio.0020329
https://doi.org/10.1038/nmeth1036
https://doi.org/10.1046/j.1365-2818.2000.00710.x
https://doi.org/10.1038/s41592-019-0650-1
https://doi.org/10.1038/nn.2928
https://doi.org/10.1364/OL.19.000780
https://doi.org/10.1529/biophysj.106.091116
https://doi.org/10.1038/s41592-019-0501-0
https://doi.org/10.1126/science.1100035
https://doi.org/10.3791/53966
https://doi.org/10.1038/s41467-020-19356-x
https://doi.org/10.1523/JNEUROSCI.3189-07.2008
https://doi.org/10.5281/zenodo.3351562
https://doi.org/10.1083/jcb.201004104
https://doi.org/10.1016/j.media.2021.102102
https://doi.org/10.1093/bioinformatics/btu080
https://doi.org/10.1371/journal.pbio.2005970
https://doi.org/10.1091/mbc.E20-04-0269
https://doi.org/10.5281/zenodo.3555620
https://doi.org/10.1093/bioinformatics/bts543
https://doi.org/10.1038/nmeth.3392
https://doi.org/10.1038/nmeth.2929
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1038/nmeth929
https://github.com/saalfeldlab/n5
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1038/s41592-020-01018-x
https://code.google.com/archive/p/fast-random-forest/
https://code.google.com/archive/p/fast-random-forest/
https://doi.org/10.1101/2020.09.23.244095
https://doi.org/10.1038/nmeth.4473
https://doi.org/10.7554/eLife.34410
https://doi.org/10.7554/eLife.57613
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Arzt et al. LABKIT: Labeling and Segmentation Toolkit

Conference on Computer Vision and Pattern Recognition (CVPR),

12231–12241.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Arzt, Deschamps, Schmied, Pietzsch, Schmidt, Tomancak, Haase

and Jug. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Computer Science | www.frontiersin.org 12 February 2022 | Volume 4 | Article 777728

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

	LABKIT: Labeling and Segmentation Toolkit for Big Image Data
	1. Introduction
	2. Image Segmentation With LABKIT
	3. LABKIT Pixel Classifier
	4. Limitations of the Pixel Classification
	5. Software and Workflow Integration
	6. Performance of LABKIT
	7. Discussion and Conclusion
	8. Methods
	8.1. Timing Instance Segmentation Generation
	8.2. Speed Benchmark
	8.3. Cell Tracking Challenge

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

