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Objective: Acoustic addressee detection is a challenge that arises in human group

interactions, as well as in interactions with technical systems. The research domain

is relatively new, and no structured review is available. Especially due to the recent

growth of usage of voice assistants, this topic received increased attention. To allow

a natural interaction on the same level as human interactions, many studies focused on

the acoustic analyses of speech. The aim of this survey is to give an overview on the

different studies and compare them in terms of utilized features, datasets, as well as

classification architectures, which has so far been not conducted.

Methods: The survey followed the Preferred Reporting Items for Systematic reviews

and Meta-Analysis (PRISMA) guidelines. We included all studies which were analyzing

acoustic and/or acoustic characteristics of speech utterances to automatically detect

the addressee. For each study, we describe the used dataset, feature set, classification

architecture, performance, and other relevant findings.

Results: 1,581 studies were screened, of which 23 studies met the inclusion criteria.

The majority of studies utilized German or English speech corpora. Twenty-six percent of

the studies were tested on in-house datasets, where only limited information is available.

Nearly 40% of the studies employed hand-crafted feature sets, the other studies mostly

rely on Interspeech ComParE 2013 feature set or Log-FilterBank Energy and Log Energy

of Short-Time Fourier Transform features. 12 out of 23 studies used deep-learning

approaches, the other 11 studies used classical machine learning methods. Nine out

of 23 studies furthermore employed a classifier fusion.

Conclusion: Speech-based automatic addressee detection is a relatively new research

domain. Especially by using vast amounts of material or sophisticated models,

device-directed speech is distinguished from non-device-directed speech. Furthermore,

a clear distinction between in-house datasets and pre-existing ones can be drawn and

a clear trend toward pre-defined larger feature sets (with partly used feature selection

methods) is apparent.

Keywords: addressee detection, machine learning, speech-based, multimodal, human computer interaction,

systematic review, PRISMA
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1. INTRODUCTION

The general structure of human-machine interaction is based on
an easy interface between a human user and a technical system
capable of interpreting the commands and information given
during an interaction (Sinha et al., 2010). This was traditionally in
the form of mechanical switches, like a keyboard, which allowed
to convey formerly designated commands to be conferred. The
development of more advanced systems leads to the desire to
implement more natural user interfaces, allowing for human-like
interactions (Biundo andWendemuth, 2016), ideally without the
need to train a user in the knowledge of predefined command
lines and instead employing the natural way of speaking as used
during a human-human conversation (Siegert et al., 2021).

Additionally, the market for commercial voice assistants
has rapidly grown in recent years (Osborne, 2016; Kleinberg,
2018; Kinsella, 2020), mostly because of the ease of use of this
technology. Nowadays, this technology has become one of the
mainstay products for private household use, with well-known
examples like Alexa, Siri, or Cortana from Amazon, Apple, or
Microsoft, respectively.

One of the main reasons for this growth is the given
naturalness and simplicity of speaking as a form of
communication, in contrast to the use of additional external
periphery. Simplicity means that the use of a smartphone
with an assistant system does not differ substantially from
controlling a smart home application. In this sense, a natural
interaction is characterized by the understanding (recognition
with corresponding feedback) of human expressions and
the engagement of people into a dialog, while allowing
them to interact seamlessly with each other and the technical
environment (Valli, 2007; Baraldi et al., 2009). Furthermore, users
don’t need to use additional devices or learn any instructions, as
the interaction respects typical human communication.

To further improve the naturalness of the interaction, not
only improvements in the far-field of speech-to-text interpreter
and speech understanding models are needed, but also the
ability of a system to discern the addressed interaction partner.
In this context, it should be noted that the question of
how conversational partners in human-human interaction are
addressed has drawn the attention of many researchers (Busso
et al., 2007; Gilmartin et al., 2018). Apart from specifying the
desirable addressees explicitly by their names or by gaze, implicit
acoustic markers are used to emphasize the addressee (Ouchi and
Tsuboi, 2016). The latter method is especially useful with regard
to special addressees, like hard-of-hearing people (Everts, 2004),
elderly people, or children (Garvey and Berninger, 1981; Casillas
and Frank, 2017). In the case where the addressee may have some
problems of understanding, the normal manner of speech is often
self-modified by the speaker.

This modification in the way of speaking is furthermore
prevalent in multi-agent environments, which include
environments where several users share a technical system,
such as smart homes, as well as the opposite situation, where
several technical systems are working in the same environment
as a human user, such as smart factories (van Turnhout et al.,
2005; Vinyals et al., 2012). A situation where both situations

may occur simultaneously is of course also possible. Given the
ongoing idea of more natural and closely integrated human-
machine environments, be it assistant systems, smart home
applications, or smart factories, the requirement for such systems
to distinguish between system-aimed utterance and independent
human-human or even personal exclamation is also growing,
to allow for further natural interactions between humans and
technical systems (Siegert and Krüger, 2018).

In contrast, the currently preferred interaction initiation
regarding voice-based systems is solved in quite an unnatural
manner: to detect if a system is addressed, the system is
acoustically screening its surroundings waiting for an activation
word. The user has to utter the activation word at the beginning
of nearly every interaction and wait for the (delayed) activation
of the speech-based assistant before starting the request.

Additionally, this method is still error-prone, as the speech-
based assistant may not be activated when the wake-word
has been said. Sometimes, even worse, it is activated due to
a misunderstood acoustically similar phrase (Schönherr et al.,
2020; Siegert, 2021), or a phrase utterance (e.g., when the wake-
word has been said, but no interaction with the system was
intended by the user due to the usage of the wake-word in a
different context) (Liptak, 2017; Horcher, 2018).

One main research direction in improving the
addressee detection concentrates on the improvement
of wake-word detection engines by involving a context-
dependent wake-word verification (Wu et al., 2018).
But it has already been shown that this method has
some weaknesses for phonetically similar utterances
(Vaidya et al., 2015; Kumar et al., 2018; Zhang et al., 2019).

This issue is not only disadvantageous due to the adverse usage
of the voice assistant, but is also seen as a privacy threat (Chung
et al., 2017; Malkin et al., 2019; Dubois et al., 2020), as it leads to
unintended recordings during personal interactions. Therefore,
voice assistants should be able to perform an addressee detection
by themselves, to identify device-directed speech, without the
need for an explicit user initiative and more preferably also
based on the already gathered utterances. Furthermore, the
addressee detection should rely more on acoustic (e.g., prosodic
and/or phonetic) information than on a keyword or wake-
word detection.

From 2009 onwards, the concept of an automatic speech-
based addressee detection system became more prevalent. An
increasing number of studies were published, contributing
to the field of acoustic-based addressee detection. Especially
fueled by the emergence of the first commercially successful
smart speakers with Apple Siri in 2011 and Amazon Alexa
in 2013. In this regard, the development of natural, secure,
and reliable addressee detection methods became imminent.
Especially with an increasing employment of integrated human-
machine environments, in which systems interpret important
information and then communicate their interpretations directly
with human observers (Durana et al., 2021; Lăzăroiu et al.,
2021), the demand will even raise in the future. As errors in
these situations may directly impact the resulting decisions,
this could lead to subsequent errors of high impact. Already
the interpretation and analysis, as well as the direct control
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of human-machine interactions, in economic, healthcare, or
transportation relevant environments is dependent on smart
processes based on machine-learning and cognitive architectures
(Dojchinovski et al., 2019; Gruzauskas et al., 2020; Mahajan
et al., 2021; Valaskova et al., 2021; Sri Suvetha et al., 2022).
As these methods are employed to reduce the possibilities and
impact of economic crisis, an erroneous implementation could
be devastating.

1.1. The Early Area of Addressee Detection
But before starting to define the aims and methods of this
survey, we will briefly review the beginnings of acoustic addressee
detection and present research that has focused on the analysis
and characterization of the speech signal to distinguish human-
directed speech from device-directed speech.

The underlying difficulty of addressee detection tasks and
their problems in a technical system was understood at the
beginning of the feasible development of voice-controlled
interfaces. The earliest publications (Oppermann et al., 2001;
Siepmann et al., 2001), postulated the problems which may arise
when a human speaker interacts with a technical system and the
system is not able to distinguish between device-directed speech
and other utterances. It provided one of the first foundations for
the latter research areas. The distinction then was primary toward
on- and off-talk. On-talk included in this case all the speech
supposed for the system to interpret, while off-talk contains the
otherwise spoken parts. This covers not only speech directed
at other human participants, but also sudden exclamations, like
swearing, reading out loud, or even thinking out loud.

Based on the general behavior during human interaction,
another aspect of addressee detection was found in the
measurement of gaze giving immediately high and stable
addressee information. In Takemae et al. (2004), for example,
there was a classification result of roughly 89% in Accuracy
(ACC). This could be seen as one of the reasons for the
relatively slow and late search for speech-based addressee
detectors. This line of research culminated in 2006 into the
two directly preliminary developments concerning automated
human-human-machine addressee detection. On the one hand,
the first gaze-based automated addressee detector was as
presented (e.g., in Takemae and Ozawa, 2006). In parallel to
this development, there were also in combination with the
evolving research in human-human-machine interaction initial
analyses of the addressee behavior using human observers
(see Lunsford and Oviatt, 2006). The authors provided one
of the first estimations on the human classifying ability for
different modalities (audio, video, text) and their importance.
They concluded that the speaker’s and peer’s gaze (visual), as
well as intonation (acoustic) and, as the authors call it, dialog
style (lexical), are most important for the correct judgment.
Furthermore, Lunsford and Oviatt (2006) indicated that the
annotation was significantly faster based on the audio-only
information than on the audio-visual information. Similar
conclusions were drawn in Takemae and Ozawa (2006) and
Jovanovic et al. (2006) where acoustic and context information
was used.

1.2. Definition of Aims and Questions for
Survey
To the best of our knowledge, there is no review conducted
so far regarding addressee detection in general and acoustic-
based addressee detection in particular, which motivates the
following survey as the first survey on this emerging topic.
Only a few articles comprise a longer review-style state-of-the-art
section (cf. Le Maitre and Chetouani, 2013; Siegert et al., 2021),
but are neither comprehensive nor discuss the different aspects
of an addressee-detection system (data, features, classification
architecture, performance) in a comparative manner. By having
a longitudinal look at the developments in this research field,
it can be shown whether there are particularities that deviate
from the general development in related machine learning topics.
Therefore, the aim of this review is to identify all relevant studies
on acoustic-based addressee detection and discuss similarities
and differences in terms of the aforementioned aspects. A
further objective of the survey is to identify both promising
approaches for future improvements of acoustic-based addressee
detection systems as well as gaps in the current research that
have to be filled in order to reach natural seamless interaction
initiations with technical systems. From these discussions so far,
the following aims emerge for this survey. 1) Identify relevant
studies that perform an addressee detection based on acoustic
information. 2) Compare them regarding datasets, feature sets,
and classification architectures. 3) Identify shared methods and
important trends.

Although the emerging use of voice assistants encouraged the
research on addressee detection, this research is not limited to the
use case of voice assistants.

The remainder of this article is structured as follows: In
Section 2, we present the structured review guidelines and our
criteria. Section 3 presents the procedure to identify the resulting
23 studies and indicated findings regarding used keywords
and important conferences. Afterwards, Section 4 discusses the
content of the identified studies regarding the research timeline,
utilized datasets, features, and classification architectures as well
as comparing performance results on studies working on the
same datasets. The survey is then concluded in Section 6 giving a
final summary and an outlook for future research trends.

2. METHODS

We followed the Preferred Reporting Items for Systematic
reviews and Meta-Analysis (PRISMA) guidelines (Moher et al.,
2009) to identify the relevant studies based on eligibility criteria.

2.1. Eligibility Criteria and Literature Search
This survey aims to identify articles that include computational
methods for the addressee detection based on or with the primary
support of voice characteristics.

The literature search includes all articles that use
computational methods based on acoustic characteristics to
perform an automatic decision if the utterance was directed
toward a technical system or toward a human being. Therefore,
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TABLE 1 | Search parameters used in this survey.

Search term wake-word, wake word, addressee-detection, addressee

detection, system-directed, system directed, device-directed,

device directed, off-talk, off talk, machine-directed, machine

directed, computer-directed, computer directed

Filter term speech

IEEExplore (“Document Title”:Search term) OR (“Abstract”:Search term)

OR (“Author Keywords”:Search term) AND (“Full Text &

Metadata”:Filter term)

Scopus [TITLE-ABS-KEY (Search term) AND ALL (Filter term)]

ACM Digital

Library

[(Publication Title: Search term) OR (Keywords: Search term)

AND (Keywords: Filter term)]

ISCA Archive Search term

it is unnecessary if other additional modalities are used as well
(e.g., gaze, lexical information, or dialogue state).

We excluded studies that a) do not distinguish between
human-directed and device-directed speech, b) do not base their
decision on acoustic speech characteristics, c) do not perform
automatic detection (e.g., analyze human decisions), only or
(only) do feature comparisons, d) describe acoustic (speech)
enhancement methods, e) do rely on lexical (i.e., Automatic
Speech Recognition (ASR)-features) or dialog-level features,
only, f) only present the task description of an evaluation
challenge, g) are position or opinion papers, h) only present
or discuss a dataset/corpora for addressee detection, and i) are
unpublished or published as non-peer-reviewed material.

As search engines, we used IEEExplore, ACM Digital Library
as well as Scopus, as they cover related journals and conference
proceedings. Additionally, we searched the ISCA Archive1, as it
includes all conferences, workshops, and symposia hosted by the
ISCA from 1987 up to today. Not all of these publications are
indexed in the aforementioned indexing services. In contrast to
the more elaborated keyword-based search, ISCA Archive only
offers a title search.

Regarding the search-term definition, several terms are
common to describe the problem of addressee detection, as
the field of addressee detection has gained a greater amount
of interest together with the increased use of voice assistants.
Therefore, we used several search terms with an additional
constraint, see Table 1. The initial search ran from the 8th of July
2021 until the 16th of July 2021 and was repeated on September,
10th accompanied by the screening of the ISCA Archive, to also
include the recent Interspeech 2021 papers.

2.2. Data Extraction
The screening was performed by the two first authors (I.S. and
N.W.), by reading the title and abstract as well as the experimental
design section. From each study, the used datasets, utilized
features, applied classification models, the highest performance
or statistical significance, type of validation or test set, and other
relevant findings were collected.

1International Speech Communication Association (ISCA), https://www.isca-
speech.org/archive/#bypaper.

3. RESULTS

A total of 88 studies were assessed for eligibility, after sorting
out duplicate records (n = 145), records clearly identifiable as
unsuitable by the title (n= 1,342), and records not retrievable (n
= 6), see Figure 1. These records were then assessed for eligibility
regarding the exclusion criteria. The following exclusions
apply: Description of an acoustic keyword-spotting/wake-word
detection without using acoustic information (reason 1, n= 35),
no acoustic information is used (reason 2, n = 10), no results
reported, as only extended abstract or position paper (reason 3,
n = 7), no device-directedness, an only decision between human
speakers (reason 4 n= 5), no automatic decision applied (reason
5, n= 7), and an only description of a database (reason 6, n= 1).
Finally, a total of 23 studies were included in the literature survey.

3.1. Identified Terms in Title and Keywords
As already stated in Section 2, there exist many terms used
in literature to describe studies related to automatic addressee
detection. The keywords used were addressee detection (n =

8), off-talk (n = 5), addressability (n = 1), focus of attention
(n = 1), see Figure 2. Furthermore, we also analyzed the title
regarding addressee detection.Most of the records use “addressee
detection” (n = 12), “device-directed” (n = 4), or off-talk
(detection) (n = 3) as a phrase in the title. Two studies rely on
“system-directed/system-addressed,” respectively.

Some records also use a paraphrased description, for example,
“talking to a system and oneself,” “self-talk discrimination,” “talk
or not to talk with a computer,” or “wake-word-independent
verification” (n = 5). Two records use a rather general title. This
fact has already been seen in the variety of used search terms for
this survey, and explains the large difference between identified
records and finally included studies.

4. DISCUSSION

4.1. Time Development
To give the reader a visual overview of the chronological order,
the 23 identified studies are depicted along a timeline in Figure 3.

Groundbreaking work was presented in Batliner et al. (2009),
where the authors described a speech-based addressee detection
system in its entirety. They specifically distinguished on-talk
(system-directed interactions) from off-talk (i.e., interactions
toward one-self or other (human) participants).

In Shriberg et al. (2012), a continuation and application of the
idea of a system that only listens when a user tries to interact
with it was published in 2012. The authors compared different
modalities, especially between pure prosodic and lexical features,
or a combination of both sets.

A similar approach was taken in Vinyals et al. (2012), where
general learning models were researched for streams, including
the detection of addressees and speakers. In contrast to a
pure speech-based classifier, the system there was optimized
for a multimodal approach and included acoustic features only
in conjunction with microphone array beams, vision, dialog,
situation, turn-taking, and understanding.
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FIGURE 1 | PRISMA flow diagram of study inclusion and exclusion criteria for the systematic review, the detailed reasons are given in the text.

A successor study of Shriberg et al. (2012) was presented
in Shriberg et al. (2013), in which further aspects of temporal
and spectral features were included in the detection process.
Otherwise, the methods and classifier architectures remained
the same.

In the same year, a further practical application was tested by
Le Maitre and Chetouani (2013), where the primary application
was a medical robot in a multiuser environment.

In 2015, two publications, Tsai et al. (2015a) and Tsai
et al. (2015b), reported insights on a multimodal and multiuser
human interface. Besides typical multimodal features, like
acoustic, visual, and lexical data, the authors used dialogue
state and beamforming information in addition. Importantly,
these studies highlighted that energy-based acoustic features
tend to be the most important ones for the distinction of
the addressee during an interaction based on their data.
Significant care was taken to measure the influence of each
used feature set and to devise the optimal combination
of them.

Hayakawa et al. (2016a) utilized, for the first time, larger
prosodic-acoustic feature sets.

A further development, in the use of prosodic-acoustic
features, was made in 2017, where the idea was presented to
employ a meta classifier (Akhtiamov et al., 2017a,c). Importantly,

the used features were all extracted from speech without an
additional visual component this time.

In 2018 and 2019 the research into addressee detection split
into several applications and objectives. As an improvement
to the previous approach, in 2018 the use of Deep Learning
architectures was firstly utilized by Pugachev et al. (2018).
Additionally, the relevance of utilizing feature level fusion to
incorporate ASR-confidence was closer inspected by Akhtiamov
and Palkov (2018). This was necessary, as acoustic features are
more complex to train than the semantic or gaze detection
methods, but allowing for the independence of domain and
language not given by the other two modalities.

In Mallidi et al. (2018) and Huang et al. (2019) the distinction
between device-directed and background speech was employed.
Also, this research proved that a further subdivision of classifiers
for different dialogue types provided much better results than a
shared general classifier. In contrast, Norouzian et al. (2019) did
not distinguish different sub-groups for the dialogue type and
concentrated on the improvement of an attention mechanism.
Furthermore, while the presented references so far all used
acoustic features independent of wake-words, this is the first
approach that specifically posed the idea to remove wake-words
altogether from the used dataset. In Akhtiamov et al. (2019) the
previous approaches by these authors, such as Akhtiamov et al.
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FIGURE 2 | Word clouds as illustration of the used author keywords in the identified studies.

FIGURE 3 | Timeline of the 23 identified studies, studies using deep learning are highlighted.

(2017a) and Akhtiamov and Palkov (2018) were extended with
similarmethods to before, but were employed onmultiple diverse
corpora, with the aim to establish a general baseline for further
research in this area.

The year 2020 saw a further broadening of important aspects
regarding the addressee detection problem. First, with greater
importance on true wake-word independence. In Akhtiamov
et al. (2020) the classification process was improved by employing
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TABLE 2 | Overview of utilized in-house data, sorted by number (#) of utterances.

Year Study Data characteristics Language # utterances DD/HD ratio

2013 Le Maitre and

Chetouani (2013)

Wizard-of-Oz human-robot interactions French 516 223:293

2020 Ahuja et al. (2020) multichannel audio recordings English 11.5k N/A

2019 Norouzian et al. (2019) D1: Interactions with virtual assistant N/A 105k 61k:44k

2019 Norouzian et al. (2019) D2: As D1 plus background speech, open microphone recordings, non-speech noise N/A 134k 7k:127k

2018 Mallidi et al. (2018) natural interactions with voice-controlled far-field devices N/A 400k 238k:162k

2019 Huang et al. (2019) N/A N/A 324k N/A

2019 Tong et al. (2021) natural interactions with voice-controlled far-field devices N/A 6M 4M:2M

2020 Wang et al. (2020) true/false wake-words N/A “millions” N/A

Furthermore, datasets from academic research are highlighted. DD, device-directed; HD, human-directed; N/A no information available.

an ensemble classifier, consisting of several classification tasks
that are combined in a late fusion approach, which allows
combining the strength of the differentmethods into one singular
system. Second, with a heightened sense of privacy by changing a
system to ignore information that is not directed to the device
either by using features with a limited use to detect what has
been said (Baumann and Siegert, 2020) or by extending a wake-
word detection system by an acoustic feature classification to
improve the security of such a system from false activations
(Wang et al., 2020).

Regarding practical applications, Tong et al. (2021) used a
combination of thementioned systems directly during streaming.
This work is a continuation of Mallidi et al. (2018) and Huang
et al. (2019). In the recent study from 2020, the development went
on to use a single input Convolutional Neural Network (CNN)
system to exchange the usual feature pre-selection for a system
side training process.

A different approach was presented by Ahuja et al. (2020).
The authors proposed, similar to gaze detection, to detect the
orientation of the speaker. For this, they employed a detection
of arrival method, called Direction of Voice (DoV) based on the
voice frequency distribution and the crispness, or strength of
contrast, of the first wavefront (Ahuja et al., 2020) for details.

In 2021 there was further development into the area of a truly
wake-word independent addressee detection system. In Siegert
et al. (2021), a system was presented that used a Continuous
Learning Framework (CLF) to improve the detection of a specific
addressee within the usage of the technical system. By using
partial overfitting toward a specific user, better results were
archived than with other state-of-the-art methods.

Siegert and Krüger (2021) investigated feature differences
between human-directed and device-directed speech, based on
self-reported and external reported measures, and afterwards
deployed an automatic decision system based on these results.
Based on these differences, an automatic system was designed,
specifically without wake-word dependency.

In summary, the 23 studies identified all aim to provide
acoustic recognition of device-directed utterances, but none
of the studies use wake words as features. Wake words as
part of the training data set are only used in Huang et al.
(2019), the extension of a wake-word detection system by

an acoustic-based detection of device-directed utterances is
described in Wang et al. (2020).

4.2. Datasets
The datasets used in the reported studies of this survey can be
distinguished into two groups. The first group of studies used
in-house datasets, that may or may not be publicly available,
see Table 2 for an overview. The second group of studies, used
externally available datasets collected within scientific studies,
individually published as datasets and available for (academic)
research, see Table 3 for an overview.

4.2.1. In-house Datasets
Among the first group of in-house datasets, the relatively large
collections by Nuance and Amazon are especially noteworthy.
The size varies between 105 and 134 k utterances for the study by
Nuance (Norouzian et al., 2019) and 240 k, 324 k, 6 m utterances,
for the studies by Amazon (Mallidi et al., 2018; Huang et al.,
2019; Tong et al., 2021). They consist of recordings with virtual
assistants or “voice-controlled far-field devices.”

They can further include background speech, open
microphone recordings, and some non-speech noise. The
labels are pre-defined as device-directed or non-device-directed
speech. Further details (recording setup, language, speakers,
period of recording) are not given.

The other two in-house datasets are recorded within an
academic setting, and, as such, of much smaller sample size
(Le Maitre and Chetouani, 2013; Ahuja et al., 2020).

Ahuja et al. (2020) recorded their own dataset during the
evaluation of their system. It contains 11,520 multichannel
English audio recordings of roughly 350 min in length.
Recordings of three speakers at polar positions around the device
were taken. Le Maitre and Chetouani (2013) recorded an in-
house dataset of 543 utterances from eight French-speaking
participants during a study on patient-robot interactions. The
robot was controlled by a human operator. Each utterance
was between 1 and 2.5 s long and labeled into self-talk (293
samples), system-directed speech (223 samples), and unknown
(27 samples). In this case, self-talk included also the inter-human-
directed utterances.
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TABLE 3 | Overview of utilized existing datasets.

Name + Reference Study Language # utterances DD/HD ratio

HB-CHAAC (Casillas et al., 2017) Akhtiamov et al., 2019 English 10.8k 6.5k:4.3k

ILMT-s2s corpus (Hayakawa et al., 2016b) Hayakawa et al., 2016a English 3.6k 1.2k:2.4k

SmartWeb (Batliner et al., 2009) Batliner et al., 2009 German N/A 48.8:51.2%

SmartWeb_acted (Batliner et al., 2009) Batliner et al., 2009 German N/A 33.3:66.7%

“Conversational Browser” (Heck et al., 2013) Shriberg et al., 2012, Shriberg et al., 2013 English 5.5k 2.1k:3.4k

“Trivia-Question Game” (Bohus and Horvitz,

2010)

Vinyals et al., 2012, Tsai et al., 2015b, Tsai et al., 2015a English 4k N/A

RBC (Siegert et al., 2019) Akhtiamov et al., 2020 Baumann and Siegert, 2020 Siegert

et al., 2021

German 2.3k 1.5k:0.8k

VACC (Siegert et al., 2018) Akhtiamov et al., 2019 Akhtiamov et al., 2020 Siegert et al.,

2021 Siegert and Krüger, 2021

German 5.6k 3.8k:1.8k

SVC (Batliner et al., 2006) Batliner et al., 2009 Akhtiamov et al., 2017a Akhtiamov et al.,

2017c Akhtiamov and Palkov, 2018 Pugachev et al., 2018

Akhtiamov et al., 2019 Akhtiamov et al., 2020

German 2.5k 1.4k:1.1k

DD, device-directed; HD, human-directed.

4.2.2. Existing Datasets
Within the second group of studies, that rely on existing datasets,
we distinguished between datasets used in several studies and
used only occasionally and datasets.

A dataset, used already in very early studies of automatic
acoustic-based addressee detection and in recent studies as well,
is the Smart Web Video Corpus (SVC) (Batliner et al., 2006).
This dataset was used in seven of the identified studies of this
review. This dataset contains 4 h of spontaneous conversations
involving 99 German-speaking participants (36 male, 63 female)
interacting either with aWizard-of-Oz (WOZ)-simulated mobile
SDS or with a confederate. The participants’ age ranges from 15
to 64 years. As context, a visit to the FootballWorld Cup 2006 was
used. The user was asking questions of different categories (world
cup schedule and statistics, transport, sightseeing, and also open-
domain questions), and discussing the obtained information
with a confederate, who never talked to the SDS directly. The
voice assistant was implemented with a mobile phone as the
carrier, similar to a real-world application. The recordings were
conducted in public places and, therefore, contain considerable
background noise.

Another dataset used in several studies is the Voice Assistant
Conversation Corpus (VACC) (Siegert et al., 2018). VACC
consists of recordings of conversations between a participant,
a confederate speaker, and Amazon’s ALEXA as a recent
commercial voice assistant. This dataset contains 17 h of
recordings with 27 German-speaking participants (13 male, 14
female), the age ranges from 20 to 32 years. The participants
either have to make appointments with the human confederate
speaker or had to answer questions of a quiz, using the voice
assistant for support. The recordings took place in a quiet, living
room-like surrounding and thus are of high quality.

The Restaurant Booking Corpus (RBC) (Siegert et al.,
2019) was used in three identified studies. This dataset was
explicitly designed to eliminate certain factors influencing the
dialog complexity and therefore the addressee behavior of
the participant. RBC comprises 90 telephone dialogues of 30

German-speaking students (10 male, 20 female) interacting with
either one out of two different technical dialogue systems or
with a human interlocutor. The participants’ age ranges from
18 to 31 years. The task was to reserve three tables at three
different restaurants for four persons under certain constraints
(late dinner time for 1 day, sitting outside, reachable with the
public transport system, availability of vegetarian food, receiving
directions to the restaurant).

A dataset captured at Microsoft-Research recorded several
groups of two participants and a dialogue system, which resulting
dataset is denoted as the “Trivia-Question Game” (Bohus and
Horvitz, 2010). The scenario involves groups of two to three
people playing a trivia question gamewith a computer agent. This
dataset consists of a total of 148 interactions, separated into 89
two-party and 59 three-party examples, all in English. In total,
there were 4,605 spoken utterances detected by the system, which
were manually annotated with source and addressee information.

Another dataset, also collected by researchers at Microsoft is
the “Conversational Browser” (Heck et al., 2013). The Browser
was installed visibly as a large TV screen about 5 feet (1.52
meters) away from the seated participants, which were roughly 3
feet (0.91 meters) away from each other. Using a set of predefined
commands, participants could start a new interaction, pause, stop
listening, or “wake up” the system. The full corpus comprised 6.3
h of English speech recordings and was taken from 17 different
groupings of 13 unique speakers. The sessions ranged from 5 to
40 min. The speech was captured by a Kinect microphone; end
pointing and recognition used an off-the-shelf recognizer.

Batliner et al. (2009) presented two additional databases,
SmartWeb_acted and SmartWeb_spont. The prompted speech
utterances in SmartWeb_acted are intended to research which
classification rates can be achieved and to show the differences
to real data. The content of the acted data is based on the same
scenario as the SVC corpus. This dataset comprises 17 German
speakers, the gender distribution is unclear. It contains pre-
formulated sentences toward a fictive system and fictive dialog
partners and speakers were given detailed instructions on how
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to pronounce On-Talk and Off-Talk. This set has a total amount
of 1.7 h of recordings. In SmartWeb_spont, 0.8 h of data from
28 German speakers have been utilized. In this public scenario,
the user can get information on specific points of interest, e.g.,
hotels, restaurants, or cinemas. The system is employed as aWOZ
experiment and non-prompted, spontaneous speech utterances
are gathered.

A dataset only used in one of the identified studies (cf.
Hayakawa et al., 2016a) is the ILMT-s2s corpus (Hayakawa et al.,
2016b). It represents a multimodal interlingual Map Task Corpus
collected at Trinity College, Dublin. In total 15 dialogues (9.5 h)
were collected during the map task setting where the instruction
giver and the instruction follower speak different languages
(English and Portuguese) and aremediated by a speech-to-speech
translation system used. The corpus, containing English speech,
comprises different data streams: audio and video recordings of
the subjects, as well as heart rate skin conductance, blood volume
pressure, and electroencephalography signals of one subject in
each dialogue. Afterwards, manual annotation was conducted
according to different schemes, including On-Talk and Off-Talk
(self and other). This differentiation into On-Talk (talking to
the translation system and thus, in consequence, to the other
user, 2,439 utterances) and Not-talking to that system (1,189
samples) is then used in the reported addressee detection studies
by Hayakawa et al. (2016a).

Another dataset, only used in one of the identified studies
(Akhtiamov et al., 2019) and not directly intended for human
vs. device addressee detection, is the HomeBank Child-Adult

Addressee Corpus (HB-CHAAC) (Casillas et al., 2017). This
dataset was part of the INTERSPEECH 2017 Computational
Paralinguistic Challenge: Addressee, Cold & Snoring (Schuller
et al., 2017) and comprises 10,861 manually annotated speech
utterances of parents, interacting with each other and their
children (0–20 months), in their home. To capture the speech
signal, a LENA audio recorder, worn by the children in
specialized clothing, was used2. This dataset was used in
Akhtiamov et al. (2019) together with two datasets comprising
human-directed and device-directed utterances (SVC and
VACC), with the authors’ assumption that device-directed speech
is prosodically similar to children-directed speech present in
HB-CHAAC. However, studies suggest that the pitch range
between speech directed at children and speech directed toward
computers differs (smaller for computers, larger for children)
(Mayo et al., 2012). This observation is also supported by the
experiments of Akhtiamov et al. (2019), as the incorporation
of HB-CHAAC does not improve the recognition performance
and the authors state that in cross-corpus experiments the
neural networks tend to ignore the information from the HB-
CHAAC data.

4.2.3. Studies Including Several Datasets
Some identified studies in this review also used multiple
datasets, either in terms of increasing the amount

2We are aware that the task of distinguishing child vs. adult addressee is not the
same as human vs. device addressee, but for the sake of completeness we intended
to mention this dataset.

of training material or testing the generalizability of
trained models.

Norouzian et al. (2019) are using two datasets in terms
of cross-corpus tests, specifically two in-house sets, with and
without an open-mic setup in a noisy environment. The models
trained onD1 are afterwards tested onD2. With their final model
architecture, comprising a CNN layer and a Long Short-Term
Memory (LSTM) layer with attention, the decrease in Equal Error
Rate (EER) is only about 0.63% absolute, and the generalizability
is reportedly high.

Some studies, conducted in 2019 and 2020 by Akhtiamov
et al. and Siegert et al., combined several datasets to increase
the amount of training material. They utilized SVC, VACC, and
RBC as well as mixup data augmentation (Zhang et al., 2018).
For using RBC as a test set, one of the best performances of
60.90% Unweighted Average Recall (UAR) was achieved, when
using VACC data together with RBC data with an end-to-end
(e2e) speech processingmodel (Akhtiamov et al., 2019). But using
a more complex meta-model, that makes use of different models
to combine different layers of information, gives a slightly better
performance of 62.80 UAR (Akhtiamov et al., 2019, 2020; Siegert
et al., 2021).

Additionally, some studies also investigated cross-corpus
experiments using SVC and VACC (Akhtiamov et al., 2019) and
in combination with RBC (Akhtiamov et al., 2020). The authors
used all of these three datasets for testing and training. Regarding
their experiments, they revealed a clear similarity between VACC
and SVC.

4.2.4. Summary–The Struggle of Availability and

Amount of Material
Foremost, it is noteworthy that all studies, except Batliner et al.
(2009), fully relied on realistic data from the beginning and did
not just use acted data. Only a minority of academic studies used
an in-house dataset, which allows other researchers to reproduce
the results and test further approaches for improvement.
Furthermore, these datasets are quite small and designed for a
specific purpose, impeding the transfer to other domains.

Due to the rise of commercial voice assistants, efforts by
industrial research also increases in this area, often using their
own in-house data collections. In contrast to the academic
in-house data, these sets comprise orders of magnitude more
language material. Unfortunately, industrial approaches are
not tested against public available corpora and there is a
comparatively low amount of open and public available data. As
commercial datasets also often contain personal identification
information, a free exchange between these two sources is
seldom possible.

Studies using corpora regarding automatic speech-based
addressee detection rely on English and German datasets, all
recorded to either study human-human-computer interaction
in general or are specifically designed to analyze the addressee
behavior in group settings, with one technical counterpart. In
contrast to the previously mentioned in-house datasets, they
comprise much less material.

Regarding the identified studies and although several
datasets are employed, it can be stated that the variations
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TABLE 4 | Overview of utilized features/feature sets for each identified study.

Year Study Utilized feature/Feature set Size*

2013 Le Maitre and Chetouani, 2013 F0 (8), energy (8), rhythm (3) 19

2012 Shriberg et al., 2012 energy peak related (10), speech activity (4), energy contour (7) 21

2020 Ahuja et al., 2020 high-low band ratio (9), crispness of first wavefront (23) 32

2013 Shriberg et al., 2013 Energy contour (7), voice quality and spectral tilt (3), delta energy at voicing onsets/offsets (14) 24

2020 Baumann and Siegert, 2020 MFCC (13), FFV (13), phonetic segment network (10) 36

2015 Tsai et al., 2015b energy (21), energy change (24), temporal shape of speech energy contour (2) 47

2015 Tsai et al., 2015a energy (21), energy change (24), temporal shape of speech energy contour (2) 47

2020 Wang et al., 2020 LFBE 64

2018 Mallidi et al., 2018 LFBE, 1-best ASR-hypothesis, ASR decoder features (3) 68

2009 Batliner et al., 2009 duration, energy, Fundamental Frequency (F0), pauses, jitter, and shimmer 100

2012 Vinyals et al., 2012 amplitude, average log energy per utterance/at different regions of the utterance 128

2020 Tong et al., 2021 log-STFT256 256

2019 Huang et al., 2019 LFBE (64), log-STFT256, ASR decoder (4) 260

2021 Siegert and Krüger, 2021 emobase (988) 988

2017 Akhtiamov et al., 2017c ComParE via recursive feature elimination 1,000

2017 Akhtiamov et al., 2017a ComParE via recursive feature elimination 1,000

2018 Akhtiamov and Palkov, 2018 ComParE via recursive feature elimination 1,000

2016 Hayakawa et al., 2016a ComParE via recursive feature elimination 6,256

2018 Pugachev et al., 2018 ComParE 6,373

2019 Akhtiamov et al., 2019 ComParE, e2e 6,373

2019 Norouzian et al., 2019 Log mel-filterbank (45), ComParE 6,373

2021 Siegert et al., 2021 emobase (988), ComParE (6,373), ASR-confidence (1), e2e 6,373

2020 Akhtiamov et al., 2020 ComParE (6,373), ASR-confidence (1), e2e 6,374

Sorted according to the largest number of features used. Studies using widely known feature sets are highlighted. *Size stands for the number of features used.

regarding speaker characteristics (age, gender, region, race)
and language characteristics (language, dialect, slang) is too
limited. Thus, additional research is needed to investigate the
performance of addressee detection regarding broader variations.
Further research is needed, especially regarding under-resourced
languages (Besacier et al., 2014) and, as recent discussions
have shown, regarding all types of social and racial disparities
(Koenecke et al., 2020; Martin and Tang, 2020).

4.3. Features
Regarding the identified studies in this survey, the utilized
features can be distinguished into two groups: I) smaller hand-
crafted feature sets and II) widely known (larger) feature sets.
Especially the early studies, done before 2016 (Shriberg et al.,
2012; Vinyals et al., 2012; Le Maitre and Chetouani, 2013;
Tsai et al., 2015b), used manually selected features, as the
discriminative power of specific features was unknown and the
use of smaller feature sets helped in the training phase, seeTable 4
for a broad overview. Regarding an in-depth understanding of
the mentioned features, the reader is referred to the Springer
Handbook of Speech Processing (Benesty et al., 2008) and the
openSMILE book (Eyben et al., 2013).

4.3.1. Studies Using Hand-Crafted Feature Sets
In Batliner et al. (2009) the most prevalent (speech) features
were duration, energy, pitch (i.e., F0), pauses, jitter, and

shimmer3. These raw features are described in several derivatives
including, for example, temporal developments, and absolute
or mean values. In total, this study used 100 acoustic
features. The primarily used features in Shriberg et al.
(2012) were energy and speaking rate, extracted at the level
of a Kinect segment4. Also included were peak-dependent
features, auch as peak count, rate, and several distance
measurements between each peak. Additionally, the set contains
speaking rate and duration information, as well as waveform
duration and length information based on speech activity
information5. Another used prosodic-acoustic feature set was
energy contours, these consisted of Mel-Frequency Cepstral
Coefficients (MFCCs) which various sliding windows as well as
the first five Discrete Cosine Transform (DCT) basis functions.
Importantly, all acoustic features were chosen to be word,
context, and speaker-independent.

3Jitter and shimmer represent variations on the fundamental frequency. Jitter
refers to irregularities in the fundamental frequency or period of a speech signal,
mainly because of lack of control of vocal fold vibration. Shimmer refers to the
superposition of the fundamental frequency of a speech signal with a noise, so that
irregularities occur in the amplitude due to reduction of glottic resistance andmass
lesions in the vocal fold (Haji et al., 1986).
4A segment according to the authors is a complete utterance as detected by the
Kinect with an “off-the-shelf ” recognizer.
5 Shriberg et al. (2012) computed these features from the time-alignment of the
word recognition output within the region that triggered speech activity detection,
without making reference to the identity of the recognized words.
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In addition to the features from Shriberg et al. (2012), such
as energy contour, further information was gained in Shriberg
et al. (2013) from voice quality and spectral tilt characteristics.
This was done because of a perceived higher “vocal effort” during
device-directed speech. This same effort was also detected by the
delta values of energy during the onset and offset of the voicing.

Based on similar earlier approaches, Le Maitre and Chetouani
(2013) also used F0 as well as the typical energy-based
features. Both sets contained the temporal derivations in
addition to the values based on segments (i.e., maximum,
minimum, mean, standard deviation, interquartile range, mean
absolute deviation, and quantiles), which led to 16-dimensional
vectors. Additionally, rhythmic features were extracted by using
perceptual filters searching for prominent events. With these the
mean frequency, entropy and barycenter were determined.

The features used in Tsai et al. (2015a,b) were taken from
a variety of sources, these were the acoustic, ASR, system,
visual and beamforming sets. Specifically, the acoustic features
were combined from energy features (i.e., energy levels), during
different time segments of an utterance. Derived from this were
the energy change features and the general energy shape contour.
The similar-sized visual feature set consisted of movement,
face orientation, and physical distance between the participants.
The additional features were the general dialogue state, the
beamforming direction, and the lexical features, such as n-grams
and speech recognition. In total 117 features are available, with
47 of them from the acoustic family.

The experiments in Baumann and Siegert (2020) reduced
the used feature set to MFCCs as well as Fundamental
Frequency Variations (FFVs). This was partially done because
the extractable information from these features does not allow
for an easy reconstruction of the spoken message, improving the
security and privacy of the approach.

4.3.2. Studies Using Widely Known Feature Sets
Features used in Akhtiamov et al. (2017a,c) and Akhtiamov
and Palkov (2018) could be distinguished into parsed speech,
acoustic features, and textual content, which could be further
distinguished into the syntactical and lexical analysis. The
acoustic speech analysis was based on the former generated
knowledge of general louder and more rhythmical speech
patterns in the case of device-directed speech, which aims to
make the speech by the human speaker easier to understand
for a technical system. To cover a broad set of possible
characteristics, Akhtiamov et al. (2017a,c) and Akhtiamov and
Palkov (2018) have chosen the Interspeech ComParE 2013
(ComParE) feature set (Schuller et al., 2013). It provides 6373
different features containing for example basis energy, spectral,
voicing related descriptors, and the often employed MFCC
features. Additionally, descriptors such as logarithmic harmonic-
to-noise ratios, spectral harmonicity, and psychoacoustics-
related spectral sharpness were included. To reduce the
redundancy and improve the classifier result, the authors
employed a recursive feature elimination model, for gaining
more significant information. With the help of a Support Vector
Machine (SVM), the relative weight of each feature was defined
and sorted by its importance, details on the exact procedure on

how to perform this feature selection are given in Akhtiamov
et al. (2017c). One thousand features were chosen based on this.
The text analysis comprises, for example, recognition confidence,
number of recognized words, and utterance length as well as
part-of-speech n-gram.

Pugachev et al. (2018) compared both strategies and used both
the total number of 6,373 features of ComParE and a reduced set
of 1,000 features utilizing the above-explained approach.

The same total feature set was also used in Hayakawa et al.
(2016a). K-Means was used to define themost important features,
which lead to a small reduction from 6,373 to 6,356 features.
In Akhtiamov et al. (2019), the baseline generating publication,
the ComParE feature set was used as well, in conjunction with a
recursive feature elimination. This showed a complicated aspect
of the addressee detection, as each examined dataset generated
another set of representative features. Specifically, the study
identified 450 relevant features for VACC, 2020 for SVC, and 400
for HB-CHAAC. The essential greater size for SVC is attributed
to the Wizard-of-Oz design of the dataset. Furthermore, only
28 identical features were identified among all three datasets6.
When only comparing VACC and SVC, which are designed
with the same target classes, this rises to 172 similar features.
In Akhtiamov et al. (2020) where a meta-classifier approach is
used, again the ComParE feature set is used, together with the
ASR information and the spectrogram representation for the
e2e approach.

In addition to the previously mentioned feature sets, Siegert
et al. (2021) also used Opensmile’s emobase (emobase) set
comprising 988 features. This set contains similar features to the
automatically reduced ComParE feature set, emobase is also used
in Siegert and Krüger (2021).

In Norouzian et al. (2019), a spectrogram image of the log-mel
filterbank features is employed, to train a CNN architecture. This
reduces the necessary preparation steps, as the data does not need
to be prepared beforehand. The parallel introduced utterance-
level model uses the typical ComParE feature set, with a total
number of 6,373 features.

Wang et al. (2020) used CNNs for their experiment, too. To
therefore enable a visual representation, the authors have utilized
Log-FilterBank Energy (LFBE) features, extracted before and after
the use of a wake-word.

In Mallidi et al. (2018), LFBE as acoustic embeddings are
utilized together with the 1-best hypothesis from the ASR
decoder and additional features from the ASR decoder (e.g.,
trellis, Viterbi costs). LFBE, as well as ASR decoder features, are
also used in Huang et al. (2019). Additionally, the authors also
chose features representing the Log Energy of Short-Time Fourier
Transform (log-STFT256).

In Tong et al. (2021) the log-STFT256 features are used as a
visual representation for a CNN classifier, as well. As this research
was a continuation of the former primarily multimodal-based
approach (consisting of ASR, embeddings, and decoder features)

6These features are different functionals of the following low level
descriptors and their deltas: F0final_sma, audSpec Rfilt_sma, mfcc_sma,
pcm_fftMag_spectralRollOff25.0_sma, pcm_fftMag_spec_tralRollOff50.0_sma,
voicingFinalUnclipped_sma.
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this showed a preference for the system to train their own feature
extraction instead.

Furthermore, three studies employed an e2e classification
path, directly working on the acoustic representation
(Akhtiamov et al., 2019, 2020; Siegert et al., 2021).

4.3.3. Summary–General Trends on Feature Sets
Summarizing the section about the different employed features,
it can be stated that the studies follow the overall movement
in acoustic analyzes from hand-crafted, small feature sets, like
loudness, F0, and duration toward more standardized (widely-
known) feature sets with separate trends for both broader
and specialized feature sets. The identified studies from 2009
toward 2013 utilized different hand-crafted features with energy
information as an integral part (Batliner et al., 2009; Shriberg
et al., 2012, 2013; Vinyals et al., 2012; Le Maitre and Chetouani,
2013), with a short resurgence in Tsai et al. (2015a,b). Beginning
with Hayakawa et al. (2016a), the usage of full feature sets became
usual, specifically the ComParE feature set from the Interspeech
2013 challenge (Schuller et al., 2013). This set was employed in
Hayakawa et al. (2016a), Akhtiamov et al. (2017a, 2019, 2020),
Akhtiamov and Palkov (2018), and Pugachev et al. (2018). To
still reduce the necessary computational power, this set was often
optimized, either by feature elimination/selection or by machine
learning pre-training with an attention mechanism. A set of
features comparable to ComParE is emobase, as used partially in
Siegert et al. (2021).

In parallel, with the development of deep learning networks
and specifically CNNs, in Huang et al. (2019), Norouzian et al.
(2019), Ahuja et al. (2020), Wang et al. (2020), and Tong
et al. (2021) LFBE and log-STFT256 features were utilized. This
was partly also because of the feature extraction ability from
visualized data, inert in CNNs. Compared to this, Baumann
and Siegert (2020) specialized features that emphasizes privacy
concerns were employed. The chosen FFV is of limited use
for recognizing what is spoken, as it features only prosodic
information.

A discussion regarding the influence of the number of features
and the type of features on the addressee detection performance
is given in Section 4.4.5.

4.4. Classification Architectures and
Reported Performances
4.4.1. Short Overview of Utilized Performance

Measures
As the identified studies originate from different research
fields, different performance measures are used to report the
classification result. For a more detailed explanation, the reader
is referred to Olson and Delen (2008), Powers (2011), and Siegert
(2015).

In terms of optimizing the recognition system to have equal
performance in falsely accepting a human-directed utterance as
device directed or falsely rejecting a device-directed utterance,
the Equal Error Rate (EER) is used. The lower the EER, the better
the system.

In terms of indicating the correct detection of a class,
the most commonly used evaluation measure is the Accuracy

(ACC). It measures the percentage of correct predictions. Higher
accuracies denote better performance. But this measure provides
no statements about failed classifications, which must be taken
into account to compare the results of different classifications.

Thus, to estimate the effectiveness or completeness of a
classification, the sensitivity (e.g., recall or true positive rate) is
used. It measures the proportion of all samples correctly classified
and the total number of samples in the class. In the case of an
addressee-detection problem, it is usually of interest to measure
the recall of both classes, i.e., device-directed and human-
directed. Therefore, the Unweighted Average Recall (UAR) is
used, by averaging the summarized class-wise recall over the
number of classes. A higher number indicates a better classifier.

Sometimes, it is also important to indicate the ratio of truly
correct samples within the total number of samples classified
as correct, in other terms, to denote that the number of false
classifications is small. This can be expressed by reporting the
precision additionally to the recall. As it is not possible to
optimize all measures simultaneously, combined measures are
used to have a single value judging the quality of a classification.
One commonly used measure is the F-measure. It combines
precision and recall using the harmonic mean.

All of these measures are used for good reasons, but without
the individual recognition results for the single classes or the
recognition scores they cannot be transferred into each other.

4.4.2. Classical Classification Architectures
The mid-2010s studies used classical approaches, especially as
the amount of training material was limited. The employment of
different classical classification architectures within the identified
studies is depicted in Figure 4.

One of the first used classical classifiers for the automated
addressee detection were Linear Discriminant Classifiers used
in Batliner et al. (2009). The authors used a typical leave-
one-speaker out training method. With only acoustic features,
the system achieved an ACC of 74.2% for SVC and 66.8%
for Smartweb. With the addition of part-of-speech features,
the authors achieved an ACC of 74.1 and 68.1%, respectively.
Only considering the acted part of SmartWeb, results of 92.6%
(ACC) were possible when using prosodic speech features with
speaker normalization.

Even with vast multimodal inputs, as in Vinyals et al.
(2012), only an EER of 10.8% and 13.9% were achieved, either
with random forest or maximum entropy architectures. As the
different features were not observed individually a clear influence
is not possible, but it mirrors the other available results from
around this year (e.g., Shriberg et al., 2012, 2013).

The study by Le Maitre and Chetouani (2013) used a variety
of different classifiers: decision trees, k-NN, and SVMs with a
radial basis function. Given the used dataset, a 10-fold cross-
validation was used instead of a leave-one-speaker-out scheme.
The resulting accuracy was comparably low with 55.46% for
decision trees, 58.20% for k-NN, and 71.62% for SVMs. It
depended on its full feature set, as it fell below 60 % when
only one feature aspect was employed, such as only energy,
rhythm, etc.
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FIGURE 4 | Venn Diagram to illustrate the use of different classical classification architectures in the identified studies. Studies in bold employ a meta-classifier.

In the work of Tsai et al. (2015b) Adaboost with tree stumps is
used, which is extended in Tsai et al. (2015a), where specifically
logarithmic regressions, decision trees, random forests, and
Adaboost with tree stumps are utilized. Each of them proved
to be capable of classifying the general addressee detection with
decision trees only reaching around 17% EER while random
forest, logarithmic regression, and Adaboost achieved all-around
14% EER.

Discriminant analysis was used in Hayakawa et al. (2016a).
This method assumes that different cases of on-talk and off-talk
were part of different Gaussian distributions. The averaged F1-
score achievedwith thismethod is 90.85%. The authors employed
further experiments to distinguish on-talk from un-directed off-
talk (e.g., self-talk) and off-talk directed to another person. The
average F1-score, in this case, was only 69.41%, where especially
the un-directed off-talk showed a dramatically low recognition
performance (36.64%). The classifier used in Siegert et al. (2021)
is a continuously trained SVM architecture. By applying a pre-
training step, a relatively simple classifier that is continuously
improved with each further interaction between the system and
the user could be optimized. By using the stepwise adaptation,
the final results of the system were higher than the results from
the more complex meta classifier as used in Akhtiamov et al.
(2020). For the used RBC datasets human listeners achieved
a UAR of 53.57%, a simple linear SVMs achieved 52.02%, the
complex meta-classifier archived 52.70% and the continuous
learning framework outperformed the previous approaches with
85.77% UAR.

4.4.3. Deep Learning Architectures
Beginning with 2018, the increased emergence of larger datasets,
higher-performance algorithms, and the general popularity of
the use of deep learning approaches for addressee detection

FIGURE 5 | Venn Diagram to illustrate the use of different deep-learning

classification architectures in the identified studies. Studies in bold employ

meta-classifier.

also raised. The identified studies making use of deep learning
approaches are depicted in Figure 5.

The first deep learning architecture was then employed
in Pugachev et al. (2018) and consisted of a two hidden
layered, fully-connected feed-forward network. This was
used in conjunction with the reduced dataset of the 2017
experiments (Akhtiamov et al., 2017b,c), using acoustic features
alone. By adopting several sizes of hidden layers and optimization
methods, the classification performance could be tuned for better
performance. The final system showed a UAR of 78% with an
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F1-score of 78% and an ACC of 69%. Furthermore, the authors
also employed a Bidirectional-LSTM (biLSTM) as an additional
method. These provide the ability of a recurrent neural network
with a deep layer architecture, but also require a greater amount
of training data. This resulted in a Deep Neural Network (DNN)
system achieving the best performance with an ACC of 78%,
in comparison to the original SVM with only 70%. The data
dependency of the biLSTM results in a decreased performance
of only 65% ACC. The result was then further examined and
improved by Akhtiamov and Palkov (2018), which worked on
a multimodal approach with a meta classifier architecture. The
system itself allowed the partial usage of only certain feature sets
and achieved a UAR of 80% on the acoustic set only.

InMallidi et al. (2018) two LSTMs are trained to either capture
the acoustic embeddings or the ASR 1-best hypotheses. With this
approach, the authors achieved an EER of 9.3, 10.9, and 20.1%,
for acoustic embeddings, and 1-best embeddings, respectively.
In Huang et al. (2019) a slightly changed approach is used. An
LSTM was trained directly on the frame-wise representation of
the recordings, with the used acoustic embeddings extracted
specifically from the pre-softmax output. With these features,
the effect of the pure decoder was enhanced compared to older
methods by reducing the relative EER to about 29.54% with the
LFBE features and about 32.39% with log-STFT2567. This also
improved the relative ACC by about 6.31 and 6.92%, respectively.
In absolute numbers, the assumed EER is around 3.66% for LFBE
and 3.52% for log-STFT2568.

In Akhtiamov et al. (2019) three different classifiers are tested
against each other. The first, is a typical SVM architecture with
a linear kernel, the second a two stacked LSTM with a global
max pooling, dropout, and softmax layer, and the third is an
end-to-end architecture. Because of architectural differences, the
second classifier receives frame-wise input for the recurrent
capabilities of the LSTM, while the end-to-end classifier receives
its information from the output of a CNN, which in turn feeds
from the original signal. The SVM achieved a UAR of 78.8%, the
LSTM of nearly 90.0%, and the e2e method of 85.3%. Each of
these results was gained on VACC, the compared datasets of SVC
and HB achieved worse results. With a greater emphasis on the
recurrent capabilities, which can continuously feed information
into the system, Baumann and Siegert (2020) used a combination
of a bi-directional (recurrent-) neural network (biRNN) with an
added attention functionality and a hidden layer with softmax
classifier. Additionally, the study provided information on the
general capabilities of a human listener to classify the same data,
which was between 53.5 and 60.6% depending on the language of
the listeners and the samples. The automatic classifier achieved
F1-score results of 65.5% for all features and 63.8 or 63.3% for
FFV orMFCC only, respectively.

The CNN of Wang et al. (2020) consists of two independent
networks of five layers, each either using the information from
before or after the wake-word usage. The results of both are then
fed into a three-layer densely-connected feed-forward network,

7The authors just reported relative improvements in comparison to older papers
of the same group.
8As calculated in this survey by comparing the mentioned references in the paper.

which then feeds the prediction set. This system was not tested
without a wake-word, but improved the capabilities of such a
system without the need for much greater training data.

4.4.4. Classifier Fusion
The classifier fusion has been used in several studies, where
the output of different classifiers, using the same input vectors
or different information streams, are combined using an
additional classification layer or classifier to improve the overall
classification performance (see Lalanne et al., 2009; Glodek et al.,
2015) for an overview of fusion techniques.

One of the earliest works using a classifier fusion approach
are the works of Shriberg et al.. In Shriberg et al. (2012) the
prosodic features were trained with Boosting for the segment-
level features, and Gaussian Mixture Models (GMMs) were used
for the energy features. For the combination of both classifier
outputs, a Linear Logistic Regression (LLR) was then utilized.
Boosting on segment-level features achieved an EER of 16.03%
and GMM with energy features achieved an EER of 13.93%,
the combination using LLR achieved an EER of 12.63%. In
Shriberg et al. (2013) the same classifiers were employed and with
additional features. An EER of 12.50% could be achieved at best
for the LLR fusion.

In Akhtiamov et al. (2017a,c), and Akhtiamov and Palkov
(2018) the idea of a multimodal approach was optimized not
only by adapting the used classifier but also by employing
an adapted meta-classifier on top of the acoustic and textual
classification. This led to several layers of classifiers working
in parallel. The acoustic and textual features were combined
on a feature level before using a linear SVM, while different
SVMs were applied to the textual aspects alone (specifically
the stemming and POS tagger parts). The results were then
combined by a linear SVM meta-classifier. By removing
aspects of this architecture, different parts could be observed
concerning their performance. The authors presented different
parameter tuning and feature selection approaches in the three
papers, where the best performance with only the acoustic
information of 82.2% (UAR) and 82.8% from acoustic and ASR-
information, could be achieved (Akhtiamov et al., 2017a,c).
This single-modality performance could be optimized with other
aspects of the meta-classifier to 92.9% (UAR) using acoustic,
syntactical, and lexical information. In Akhtiamov and Palkov
(2018) some slight optimization in the date representation was
examined, but neither the acoustic-only classifier, achieving
82.0% UAR nor the meta-classifier combining visual, acoustical,
and textual information achieving 92.6% UAR could outperform
the previous results.

A similar meta-classifier is used in Akhtiamov et al. (2020) and
achieved a UAR of 84.9% on the VACC dataset. The classification
system is a combination of a ComParE functionals’ classifier,
using a linear SVM, a ComParE LLD classifier, using a biLSTM
with deep learning feedforward network at the end, an ASR
classifier with Meta-feature extraction, and an e2e classifier
using the visual representation with a CNN feeding into a
biLSTM comparable to the LLD classifier. The results, with their
confidence score, are then concatenated in a linear SVM for the
final prediction.
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TABLE 5 | Comparison of DD/HD recognition performance of selected identified studies, compiled regarding the utilize dataset.

Reference Measurement Value[%] Features, Classifier

“Conversational Browser”

Shriberg et al. (2012) EER 12.63 GMM (energy features), Boosting (energy + speaking rate features), combined with LLR

Shriberg et al. (2013) EER 12.50 GMM and Boosting (energy contour, spectral tilt and delta energy at voicing

onsets/offsets), combined with LLR onsets/offsets (14)

“Trivia-Question Game”

Tsai et al. (2015a) EER 16.39 Adaboost on all 177 features, including 47 acoustic one

Tsai et al. (2015b) EER 13.90 Adaboost on all 177 features, including 47 acoustic one

Vinyals et al. (2012) EER 10.80 Expert random forest model, manually crafted features

SVC

Batliner et al. (2009) ACC 74.20 Linear Discriminant Classifier on 100 prosodic features

Pugachev et al. (2018) UAR 78.00 DNN (1,000 ComParE features)

Akhtiamov and Palkov (2018) UAR 80.00 SVM (1,000 ComParE features with recursive feature elimination and ASR-confidence)

Akhtiamov et al. (2017a,c) UAR 82.20 SVM (1,000 ComParE features with recursive feature elimination)

Akhtiamov et al. (2017a,c) UAR 82.80 SVM (1,000 ComParE features with recursive feature elimination and ASR-based features)

Amazon in-house dataset, using Mallidi et al. (2018) as baseline

Mallidi et al. (2018) EER 10.9 LSTM with acoustic embeddings

Mallidi et al. (2018) EER 5.2 Fully-connected DNN of two LSTMs (acoustic embeddings, and 1-best embeddings) +

ASR decoder features

Huang et al. (2019) EER -35.36% (rel.) LSTM (ASR-decoder and log-STFT256 features) + attention-Pooling

Tong et al. (2021) EER -41.1% (rel.) ResLSTM (log-STFT256 features) + attention aggregation

VACC

Siegert and Krüger (2021) UAR 81.97 SVM (emobase)

Akhtiamov et al. (2019) UAR 90.10 SVM (450 Low-Level-Descriptors (LLDs) of ComParE with recursive feature elimination)

and mixup data augmentation (VACC + SVC)

RBC

Akhtiamov et al. (2020) UAR 62.80 SVM metamodel classifier from linear SVM (1,600 ComParE features with recursive feature

elimination), radial SVM (ASR decoder features), LSTM (128 ComParE-LLDs), and e2e

Baumann and Siegert (2020) F1-score 65.50 biRNN with attention layer (segmental information, MFCCs, and FFV )

Siegert et al. (2021) UAR 85.77 speaker-depended continuous learning framework (emobase)

The architecture used in Norouzian et al. (2019) differs
significantly from the other studies reported in this survey and
employs the capabilities of both CNN and LSTM architectures.
The audio files are transformed into a visual representation of
log-mel filterbanks from the original recording, which is directly
interpreted by a CNN. As the information is framewise fed to this
system, it needs to be aggregated for the full utterance. Therefore,
a biLSTM network is utilized by the authors. Additionally,
there exists an attention layer, which focuses on the important
parts of the extracted information from the architecture to this
point. The final classification is then conducted using a densely
connected feed-forward network. This complex deep learning
network achieved an EER of 16.25% on a real dataset it trained
on and 15.62% on the dataset it was not trained on, which showed
remarkable generalization effects.

In Mallidi et al. (2018) a fully connected feed-forward DNN is
trained to combine the two individual LSTMs classifier capturing
the acoustic embeddings and the ASR 1-best hypotheses.
Additionally, features from the ASR decoder are fed into the
DNN as well. With this approach, the authors achieve a final EER
of 5.2%. The classifier architecture in Tong et al. (2021) consisted
of an adapted ResNet, which also used a CNN for internal layers,

but goes into deeper layered architectures by allowing the data
from each layer to also jump over the convolutional step of each
iteration. This allows for information to remain unchanged in
the system for the latter computational steps. This approach was
then fed into a three-layered LSTM network with an aggregation
layer at the end. The final classification step is then again utilized
by an independent DNN. This resulted in a declared relative
improvement of 8.7% ACC compared to the original model, as
well as a relative reduction of 41.1% EER, in absolute numbers,
this results in an EER of 5.48%.

4.4.5. Performance Comparison
Although the reported performance among all studies cannot
be compared directly, due to the usage of different validation
schemes (leave-one-speaker-out vs. cross-validation) and
different evaluation measures (EER, ACC, F1-score, UAR), a
general trend in the performance can be drawn from the reported
results of the identified studies. Therefore, in Table 5 selected
studies employing the same datasets (and the same evaluation
measure), are depicted. This allows a comparison of promising
approaches as well as a forecast for future trends. Especially, the
outstanding results of Akhtiamov and Palkov (2018), Tong et al.
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(2021) on existing data and in-house data, respectively, show
that the prosodic addressee detection already achieves very good
results. Noteworthy are also the results presented in Siegert et al.
(2021), using a specialized dataset of identical human-human
and human-device utterances with nearly similar prosody, as
it can be expected for future voice assistants having natural
interaction abilities (Biundo and Wendemuth, 2016).

The comparison of the performances across the different
datasets further allows answering the question to which extent
the number of features, the types of features, and the model
architecture influence the performance. Especially for the earlier
studies of Shriberg et al., it is apparent that the selection of
proper feature types contributes considerably to the recognition
performance (Shriberg et al., 2013). Although, larger feature sets
are utilized in the latter studies, also the use of sophisticated
model architectures contributes to the improvement of the
performance. In comparison to Batliner et al. (2009), where 100
features and a Linear Discriminant Classifier is used, later studies
on the same dataset using SVMs with 1,000 features archive an
improvement of more than 10% absolute (e.g., Akhtiamov et al.,
2017b; Pugachev et al., 2018). The influence of a sophisticated
model architecture on the classification performance can be seen
in Baumann and Siegert (2020) where a biRNN with attention
layer outperforms a metamodel of linear models despite the
fact that the metamodel used much more features (Akhtiamov
et al., 2020). Additionally, the selection of specific feature
types seems to have a substantial influence. Thus, it is still
unclear whether optimized feature (selection) or sophisticated
model architectures are more promising to further improve the
performance and, as it can also be seen in the studies of this
survey, both approaches are used in parallel.

4.4.6. Summary–The Evolution of Machine Learning

Methods
Regarding the presented studies, it can be stated that the
use of the different classification systems went parallel to the
development of machine learning methods. The early studies
were using varying classical methods, for example, Bayesian
Networks (Takemae and Ozawa, 2006), Linear Discriminant
Classifiers (Batliner et al., 2009; Hayakawa et al., 2016a), or
Random Forests (Vinyals et al., 2012). Later on, the usage of
SVM appeared as a baseline for many applications, beginning
(Le Maitre and Chetouani, 2013). Furthermore, several studies
employed an SVM as a meta-classifier (e.g., Akhtiamov et al.,
2017c, 2020; Akhtiamov and Palkov, 2018). Recently, beginning
with Akhtiamov et al. (2017c) many systems also employed
LSTMs as a recurrent component in their classification process,
often in addition to CNNs or combined several classifiers with
a final densely/fully connected network (e.g., Norouzian et al.,
2019; Wang et al., 2020; Tong et al., 2021).

5. FUTURE APPROACHES

5.1. Limitations
Given the enormous variations in the description of the topic of
addressee detection using terms like “device-directed” or “talking
to machines” in this review, some further keywords could get

missed, although the keyword was searched in the title and
the abstract. As the resulting studies were then screened by
reading only the title and/or abstract, studies where the speech
description was not the main focus, may have been missed if
“speech” or related terms were not in the title or abstract.

5.2. Generalization
Even though various feature sets and models are used and
have shown their eligibility for one specific dataset, it is yet
unclear if they will generalize to a new speaker that varies
in age, geography, socio-economic level, and recording setup.
Especially regarding the latter issue, several studies analyzed
the performance regarding prosodic-affective recognition across
different acoustic conditions as well as acoustic compression
(Siegert et al., 2016; Gottschalk et al., 2020; Siegert and Niebuhr,
2021).

It can be assumed that at least the models by Mallidi et al.
(2018), Huang et al. (2019), and Tong et al. (2021) are more
broadly positioned due to the great amount of data utilized,
but as nearly nothing is known about this data this will remain
speculative. Furthermore, it can at least be assumed that the users
of these voice-controlled far-field devices are selective to specific
types of users (McLean and Osei-Frimpong, 2019; Koenecke
et al., 2020).

5.3. Multimodal Learning
Even though this review focuses on speech, many studies
provided multimodal classifiers trained on prosodic-acoustic and
lexical/semantic data. Where applicable, these different results
were reported as well for comparison to unimodal models.

5.4. Multi-User Setting
Due to the setup of distinguishing human-directed speech from
device-directed speech, most of the data comes from amulti-user
setting, where the user of the voice assistant is talking to both
the technical system and another human being. Unfortunately,
not in all studies, the setups are as clear, like settings where
the interaction toward the technical system and toward the
interlocutor is happening independently at two different points
in time is possible. Furthermore, not much is known about the
human interlocutors in most of the data sets, thus it remains
unclear if and how they could influence the speech behavior of
the users.

6. CONCLUSION

The large number of similar search terms that were used to
identify the relevant studies, together with the large variability
in index terms used by the authors of the studies, shows that
this research area is very complex and has been addressed
from multiple directions. After removing duplicate records
and excluding mismatching studies, a total of 23 studies were
reviewed which report on automatic addressee detection from
speech using acoustic information. Most of the identified studies
are not older than 10 years, showing the actuality of this emerging
topic. The survey depicted a continuous development of the
methods in the area of machine learning applications in terms
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of datasets, features as well as classifier architectures. These three
categories were also used alongside this survey.

Regarding the utilized datasets, we concluded that the
availability of high-quality data was a crucial issue in the
beginning. Today, on the one hand, huge datasets are utilized
at least as in-house data (e.g., Norouzian et al., 2019; Tong
et al., 2021), but without a public availability. On the other hand,
specialized datasets inside and outside laboratory settings were
recorded and distributed (e.g., Bohus and Horvitz, 2009; Siegert
et al., 2018). These datasets are widely used in different identified
studies (e.g., Tsai et al., 2015b; Baumann and Siegert, 2020). One
dataset, that was already recorded in 2006 and still used as a
reference, and therefore can be seen as a baseline dataset, is
the SVC (Batliner et al., 2006). Furthermore, more studies used
multiple datasets either for data augmentation or cross-corpora
experiments to improve generalization and a broader application.
Afterwards, we identified the same trends in feature sets and
for the classification architectures as for speech-based machine
learning in general (Ververidis and Kotropoulos, 2006; Nassif
et al., 2019). The first identified studies utilized hand-crafted,
rather small feature sets and classical classification architectures
(Batliner et al., 2009; Shriberg et al., 2012).While the latter studies
rely on more standardized (widely-known) and larger feature
sets, specifically the ComParE feature set from the Interspeech
2013 challenge (Schuller et al., 2013) in combination with SVM
as a more sophisticated classifier (e.g., Akhtiamov et al., 2017b;
Akhtiamov and Palkov, 2018). Some studies further utilize
feature elimination methods to gain specialized features (e.g.,
Hayakawa et al., 2016a; Akhtiamov and Palkov, 2018) or apply
newly developed feature descriptions, such as FFVs (Baumann
and Siegert, 2020). Through the parallel increased use of deep
learning networks, on the one hand, special features such as LFBE
or log-STFT256 were utilized in conjunction with CNNs (Mallidi
et al., 2018) and LSTMs (Huang et al., 2019).

As an offshoot of the on and off-talk detection of the
first voice-controlled system, it developed into an independent
research idea of separating device and human-directed speech.
With the current increasing use of assistant systems, there was
also an increase in new systems capable of removing the wake-
word-dependency and similar external activation signals, without
leading to a system prone to false activations. Thereby, the ease
of use of actual voice assistants can be further simplified. The
advantage of purely acoustic addressee detection can then be
exploited in particular in multi-user interactions. The assistant

in such a setting is then also able to recognize who (from
the group) addressed the assistant in which situation without
actively listening to every word we speak in its proximity. This
is especially helpful to transform the use of voice assistants
from relatively trivial activities such as collecting information,
listening to music, or sending messages or calls to cases where
voice assistants conduct larger dialogs and support the user to
a greater extent. For example, to help patients communicate
with their caregivers (Shu, 2019) or with remote diagnosis
(Futurist, 2021). Another area of application are tutoring systems
in educational contexts (Callaghan et al., 2019; Winkler et al.,
2019) or for language acquisition systems. Furthermore, acoustic
address recognition can also contribute to increased privacy and
trust in voice assistants byminimizing false activations (Wienrich
et al., 2021; Kisser and Siegert, 2022).

What is apparent from the different identified studies is the
lack of proper benchmark data which is publicly available and
of sufficient size. This is needed to on the one hand further
improve the classification performance and on the other hand
to overcome the limitations of current research with respect
to possible data bias (Cramer et al., 2018; Koenecke et al.,
2020). Therefore, we encourage creating open data sets, if
possible through competitions, as they have shown to be highly
productive in other settings.
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