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The technological advancements in today’s healthcare sector have given rise to many

innovations for disease prediction. Diabetes mellitus is one of the diseases that has been

growing rapidly among people of different age groups; there are various reasons and

causes involved. All these reasons are considered as different attributes for this study.

To predict type-2 diabetes mellitus disease, various machine learning algorithms can

be used. The objective of using the algorithm is to construct a predictive model to

critically predict whether a person is affected by diabetes. The classifiers taken are logistic

regression, XGBoost, gradient boosting, decision trees, ExtraTrees, random forest, and

light gradient boosting machine (LGBM). The dataset used is PIMA Indian Dataset

sourced from UC Irvine Repository. The performance of these algorithms is compared

in reference to the accuracy obtained. The results obtained from these classifiers show

that the LGBM classifier has the highest accuracy of 95.20% in comparison with the

other algorithms.
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INTRODUCTION

Diabetes mellitus (DM) is considered as a chronic disease that has been affecting people of all age
groups. The exact cause of the disease is still unknown. However, some of the factors or causes
include age, family history, other relative diseases, pregnancy, fluctuating glucose levels, blood
pressure, etc. (Dash et al., 2019). Diabetes is a disease that can be controlled under medication;
however, a complete cure through medicines is not possible as of today. Diabetes can belong to one
of the four broad categories, such as type-1, type-2, gestational diabetes, or prediabetes (Nibareke
and Laassiri, 2020). There are some sub-types classified under these four categories as well. “Type-1
diabetes” is also known as “insulin-dependent diabetes,” which occurs when the insulin release cell
is damaged and unable to produce insulin (Martinsson et al., 2020). In “type-2” diabetes, adequate
amount of insulin is not produced in the body (Wang et al., 2015). This commonly happens at an
average above age of 40 years. The “gestational diabetes (GDM)” occurs mostly during pregnancy.
The last one among the main four categories, “prediabetes,” occurs when the blood sugar level is
higher than normal but not as high as type-2 diabetes (Mujumdar and Vaidehi, 2019).

In the recent years, many researchers are using the concept of machine learning to predict the
DM disease. Some of the commonly used algorithms include logistic regression (LR), XGBoost
(XGB), gradient boosting (GB), decision trees (DTs), ExtraTrees, random forest (RF), and light
gradient boosting machine (LGBM). Each classifier has its own advantages over the other classifiers
(Prabha et al., 2021). However, the classifier that gives the highest accuracy is determined
in implementation.
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This study is divided into different sections as follows: Section
Related Works represents the related works in DM. Section
Theoretical Concepts of the Classifiers determines the theoretical
concepts of the various algorithms used. Section Results and
Discussion determines the architecture and implementation of
the classifiers. Section Conclusion and Future Work explains the
conclusions and future works of the study.

RELATED WORKS

The following researchers have used the concept of machine
learning for predicting DM disease.

Khaleel and Al-Bakry (2021) have created a model to detect
whether a person is affected with DM disease. The concept of
machine learning (ML) is used for the detection procedures. The
PIMA dataset is used for the study. The algorithms used are
LR, Naive bayes (NB), and K-nearest neighbour (KNN). The
accuracy obtained are 94, 79, and 69% from these algorithms.
The measures such as precision, recall, and F-measure are
taken into consideration and LR is considered to produce the
highest accuracy.

Ahmed et al. (2021) have used ML algorithms, namely, DT,
KNN, NB, RF, GB, LR, and support vector machine (SVM)
for predicting DM. Preprocessing techniques, such as label–
encoding–normalization, are used to increase the accuracy. Two
different datasets are used. One dataset provides the highest
accuracy for SVM with 80.26% and for the second dataset, the
highest accuracy is given by DT and RF with 96.81%.

Maniruzzaman et al. (2018) have used theML technique based
on risk-stratification is developed, optimized and evaluated.
Features are optimized using six feature selection techniques.
Then PIMA Indian diabetes dataset (PIDD) is used. The
10 different classifiers are used. Both RF selection and RF
classification techniques yield an accuracy of 92.26%.

Kumari et al. (2021) have used two datasets including PIDD
and breast cancer dataset, which were taken from the UC Irvine
(UCI) Repository. Three ML classifiers are used for prediction.
They are RF, LR, and Naive Bayes. The accuracy obtained is the
highest for both datasets with a percentage of 79.08% for PIMA
data and 97.27% for breast cancer data using soft voting classifier.

Tigga and Garg (2020) have developed a prediction model
for DM disease. A dataset was collected for the study consisting
of 952 instances and 18 attributes. The PIMA dataset was also
used. The machine learning classifiers used are RF, LR, KNN,
SVM, NB, and DT. The accuracy obtained was the highest for
RF with a percentage of 94.10% for collected data and 75% for
PIMA dataset.

Diwani and Sam (2014) have developed a prediction model
using 10-fold-cross-validation on the training and testing data.
The Waikato environment for knowledge analysis tool has been
used along with Naive Bayes and DTs algorithm. The accuracy
obtained is the highest for Naive Bayes with 76.30%.

Butt et al. (2021) have proposed a machine learning
based approach for early-stage identification, classification, and
prediction of diabetes disease. The PIMA Indian dataset has been
used. The classifiers used are RF, multilayer perceptron (MLP)
and LR. The accuracy obtained is highest for MLP with 87.26%.

THEORETICAL CONCEPTS OF THE
CLASSIFIERS

The various classifiers that are used is explained in the
following sub-sections.

Logistic Regression
It is a statistics-basedmodel that uses logical function to develop a
binary-dependent variable. The relationship between dependent
and independent variables is estimated based on probabilities
(Diwani and Sam, 2014). The dependent variable is categorical
in this method. Mathematically it is expressed as follows (Kaur
and Chhabra, 2014):

hθ (x) = P(Y = 1|X; theta)

The probability that Y = 1 given X which is given as “theta”

P
(

Y = 1 | X; theta
)

+ P
(

Y = 0 | X; theta
)

= 1

The XGBoost
It is the implementation of gradient boosted DTs that are created
sequentially. An important feature is its weights. Each individual
variable is assigned a particular weight that are given to the DTs
to obtain the results (Butt et al., 2021). The prediction scores of
each individual DT is given by

ŷi =

K
∑

k=1

fkǫF

where the number of trees is denoted by k, the functional space is
given as f , and the possible set available is given as F (Patil et al.,
2019).

Gradient Boosting
Many weak learners are combined into a predictive model
typically in the form of DTs (Sehly andMezher, 2020). It is mainly
used when we want to decrease the bias error. A gradient-descent
technique is chosen to obtain values of the coefficients (Posonia
et al., 2020).

The loss function used is (y1− y1′)2. y1 is the actual value and
y1′ is the final predicted value by this model. So y1′ is replaced
with Gn (X), which represents the actual target (Ke et al., 2017).
It is mathematically expressed as follows:

Gn+1 (X) = Gn (X) + γnH1 (x, en)

L1 =
(

y1− y1
′
)

2

L1 = (Y − Gn (x))2

Decision Trees
It is a supervised-learning algorithm (Islam et al., 2020). It works
with categorical and continuous input and output variables.
It is used to represent whether it belongs to classification or
regression procedures (Chen and Guestrin, 2016). The types
of DTs are as follows: ID3, ID 4.5, CART, and CHAID. The
measures used on DT are as follows: Entropy, Gini index, and
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FIGURE 1 | Architectural design.

standard deviation (Khanam and Foo, 2021). It is mathematically
calculated as follows (Ambigavathi and Sridharan, 2018):

Entropy = −

n1
∑

i1=1

p∗i1log(pi1)

Gini Index = 1−

n1
∑

i1=1

pi1
2

Extra Trees
Extra trees (ETs) are also called as “extremely randomized trees
classifier.” It is a type of “ensemble learning technique” which
combines many decorrelated DTs to result as a single tree
classification (Chen et al., 2017). It differs from RF in a way in
which DTs are built. The entropy is calculated as follows:

Entropy(S1) =

c1
∑

i1=1

−pi1log2pi1

where the number of unique class labels is given as c1, the
proportion of rows with output label is given as pi1 (Sisodia and
Sisodia, 2018).

Then the “information gain” is calculated using the following
formula (Ke et al., 2017):

Gain(S1, A) = Entropy(S1)−
∑

vǫValues(A)

|S1V|

|S1|
Entropy(S1v)

Random Forest
The RF combines the output of multiple DT to reach a single
result. The DT is taken as a base and row sampling as well as

column sampling. The number of base learners is increased and
the variance is decreased or vice versa. For cross-validation, K
can be used. It is considered as an important bagging method
(Mamuda and Sathasivam, 2017).

Random Forest=DT (base learner)+ bagging (Row sampling
with replacement)+ feature
bagging (column sampling)+ aggregation
(mean/median, majority vote)

Light Gradient Boosting Machine
The performance of LGBM is considered to be high-performance
and is represented as “GB framework” based on DT algorithm
(Ahamed and Arya, 2021). It is majorly used for classifying
and ranking. It splits the tree leaf-wise with best-fit. It can be
measured using the data improvement technique and can be
given by calculating the variance after segregating (Zhu et al.,
2020). It can be represented as follows:

Y1 = Base_Tree (X1) − lr1
∗

Tree1 (X1) − lr1∗Tree2 (X1 ) . . . .

System Architecture
The data needed for the study are initially collected and stored
in the database. The dataset PIMA is taken from UCI Repository
for execution. The dataset is then pre-processed using different
exploratory data analysis techniques. The dataset is divided
into “training data” and “testing data.” The various algorithms
mentioned are then compared and the best working algorithm
producing the highest accuracy is taken as the best predictive
model for predicting DM disease. The architectural structure
depicted in Figure 1.
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TABLE 1 | Accuracy percentage.

Dataset Logistic

regression

XGB

classifier

Gradient

boosting

classifier

Decision

tree

Extra trees

classifier

Random

forest

LGBM

PIMA Indian dataset 75.20% 83.30% 94.10% 94.40% 94.60% 94.80% 95.20%

RESULTS AND DISCUSSION

The results and accuracy percentage calculated are given in the
form of a table (Table 1).

The algorithms considered are LR, XGB, GB, DT, ET, RF,
and LGBM. The accuracy obtained is the highest for LGBM
with 95.2%.

CONCLUSION AND FUTURE WORK

These discussions here were considered and we identified
that “LGBM algorithm” worked best for the dataset taken by
producing an accuracy that was higher in comparisons with
the other algorithms. However, in future, different dataset can
be taken and compared with the different classifiers to classify

which algorithm can produce the best result. Also, the parameters
using in LGBM can be further finetuned and an advanced LGBM
algorithm can be used and the prediction accuracy percentage
can be increased.
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