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We tackle the task of cross-domain visual geo-localization, where the goal is to geo-

localize a given query image against a database of geo-tagged images, in the case where

the query and the database belong to different visual domains. In particular, at training

time, we consider having access to only few unlabeled queries from the target domain. To

adapt our deep neural network to the database distribution, we rely on a 2-fold domain

adaptation technique, based on a hybrid generative-discriminative approach. To further

enhance the architecture, and to ensure robustness across domains, we employ a novel

attention layer that can easily be plugged into existing architectures. Through a large

number of experiments, we show that this adaptive-attentive approach makes the model

robust to large domain shifts, such as unseen cities or weather conditions. Finally, we

propose a new large-scale dataset for cross-domain visual geo-localization, called SVOX.

Keywords: domain adaptation (DA), domain generalization, visual place recognition (VPR), few-shot domain

adaptation, visual geolocalization

1. INTRODUCTION

Visual Geo-localization (VG) is defined as the task of coarsely localizing an image taken from a
known environment on the basis of its visual content (Arandjelovic et al., 2018). Such an ability
is relevant for numerous applications, either as a self-standing function or in conjunction with
additional processing steps for more accurate localization methods (Pion et al., 2020). Examples of
these applications include assistive devices (Cheng et al., 2020), autonomous robots and vehicles
(Cummins and Newman, 2008; Milford and Wyeth, 2012; McManus et al., 2014; Tomita et al.,
2021), the cataloging of archival imagery (Aubry et al., 2014), and augmented reality (Middelberg
et al., 2014).

From a methodological perspective, VG is commonly approached as an image retrieval problem
where the single image to be localized (query) is matched to a large collection of images (database)
that are tagged with geographical information (usually GPS coordinates and, if available, compass
measurements) (He et al., 2015; Kim et al., 2017; Noh et al., 2017; Arandjelovic et al., 2018; Lou et al.,
2018; Nakka and Salzmann, 2018;Wang et al., 2019; Cao et al., 2020). The intuition of this approach
is that, by retrieving images that depict the same scene as the query and from approximately the
same viewpoint, their geo-tags can be taken as hypotheses of the query’s location. A crucial part
of this process is how to represent the images for the retrieval, i.e., how to extract descriptors that
are informative of the location of the images. All the recent state-of-the-art VG methods perform
the description step using deep learning techniques (Masone and Caputo, 2021; Zhang et al., 2021)
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which, combined with the increasing availability of data for VG
(Sünderhauf et al., 2013; Chen et al., 2017a; Maddern et al.,
2017; Arandjelovic et al., 2018; Sattler et al., 2018; Torii et al.,
2018; Warburg et al., 2020), have led to remarkable results in
comparison to non-learned methods. However, these methods
perform well when they are tested with queries that come from
the same distribution as the training data, but they may not
translate well to queries that come from unseen domains. The
domain shift problem, which is ubiquitous across deep learning
tasks, is particularly important in VG because the appearance
of a place naturally and cyclically changes over time, even
when viewed from the same perspective. In fact, a scene may
appear drastically different due to changes in weather conditions
(e.g., rainy/sunny), illumination (e.g., day/night cycle), and
season (e.g., summer/winter), as shown in the example depicted
in Figure 1. Indeed, several studies have shown that these
appearance shifts can significantly harm the geo-localization
results (Sattler et al., 2018; Zaffar et al., 2019).

So far, the domain shift problem in VG due to environmental
changes has been addressed indirectly, either by robustifying
the learned visual descriptors (Garg et al., 2018a; Oertel et al.,
2020; Peng et al., 2021a,b) or with ad-hoc solutions for specific
cases (Garg et al., 2018b). Yet, only a few studies have explicitly
addressed the problem of visual geo-localization as a task across
domains, minimizing the domain discrepancy with an adversarial
training (Porav et al., 2018; Anoosheh et al., 2019; Hu et al., 2021)
or a multi-kernel MaximumMean Discrepancy loss (Wang et al.,
2019). These previous studies require a non-negligible number of
images from the target domain—at least a few hundred—in order
to train the model. Considering that the process of collecting
images is expensive, it would be advisable to reduce the number
of required target images in order to make the VG models more
scalable and easier to deploy. In light of these considerations,
we propose the first few-shot domain adaptation architecture
for VG. The two variants of our method, named AdAGeo and
AdAGeo-Lite, combine three main ideas:

• A domain-driven data augmentationmodule that transfers the
style from few unlabeled target domain images to the labeled
training queries in the source domain. This effectively creates
a set of pseudo-target labeled images that can be used for
training.

• A domain adaptation module that aligns the features extracted
by the model on the source and target images, making them
invariant (to some extent) to the domain shift.

• An attention module based on class-specific activation maps
that induce the model to focus on the elements in the scene
that are most informative and stable across domains (e.g.,
buildings).

Given the lack of large-scale cross-domain visual geo-localization
datasets, we also build and publicly release the first dataset of
such kind, to foster future research in the field. This dataset,
named Street View Oxford (SVOX), has been built by collecting
images of the city of Oxford from Google Street View, as a
source domain (database and training queries). Instead, the target
domain queries are taken fromOxford RobotCar (Maddern et al.,

2017), which contains images from multiple weather conditions
(snow, rain, sun, night, and overcast).

Through extensive experiments, we demonstrate that
our solution exceeds the current state-of-the-art visual geo-
localization methods across domains and that the three core
ideas of the architecture (domain-driven data augmentation,
attention, domain adaptation) provide orthogonal increments to
the performance.

This article extends the study presented in Berton et al.
(2021b) with several contributions:

• It replaces the domain-driven data augmentation solution
adopted in Berton et al. (2021b), which was inspired by
Cohen and Wolf (2019) and used two parallel autoencoders
to learn a bi-directional mapping between source and target
domain. Instead, we resort to a non-learnable style transfer
module based on a Fourier transform (Yang and Soatto, 2020).
This new domain-driven data augmentation module, which
constitutes the main novelty in AdAGeo-Lite with respect to
AdAGeo, not only removes the need for the two-step training
procedure used in Berton et al. (2021b), greatly simplifies the
pipeline, but it also produces geo-localization results that are
either comparable or better than those reported in Berton et al.
(2021b).

• It includes an extended suite of experiments, aimed at
assessing the performance of our solution when deployed to
a target domain of which only few unlabeled queries were
seen during training (domain adaptation) and when deployed
to completely different cities and domains unseen during
training (domain generalization).

2. RELATED WORKS

Visual Geo-Localization Across Domains
The task of visual geo-localization, also known by the name
Visual Place Recognition (Lowry et al., 2016), is a long
lasting topic of research, originally using handcrafted features
to perform the retrieval (Murillo and Kosecka, 2009; Johns
and Guang-Zhong, 2011; Sünderhauf and Protzel, 2011; Kim
et al., 2015), and more recently combining deep convolutional
neural networks as feature extractors with trainable aggregation
modules (Gordo et al., 2017; Arandjelovic et al., 2018) or
pooling layers (Radenovic et al., 2019) to produce global
image descriptors. The success of learning based methods in
visual geo-localization is tightly connected to the availability
of increasingly large and diverse datasets for the task (Chen
et al., 2017a; Maddern et al., 2017; Warburg et al., 2020).
At the same time, these recent datasets that include diverse
meteorologic/illumination conditions have exposed the lack
of robustness of VG methods with respect to environmental
changes. The problem of cross-domain VG has mostly been
addressed indirectly and with a limited scope, with approaches
that are based on heuristics (e.g., selecting features corresponding
toman-made structures Naseer et al., 2017), on regions of interest
(Chen et al., 2017b), on additional semantic information (Peng
et al., 2021a,b), use attention to focus on robust structures (Kim
et al., 2017; Noh et al., 2017; Lou et al., 2018; Nakka and
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FIGURE 1 | The appearance of a place viewed from the same perspective can drastically change in different environmental conditions. (A) Image from the city of

Oxford taken from Google StreetView. (B–F) Images taken from of the Oxford RobotCar dataset (Maddern et al., 2017), that show the same place as in A but in

different conditions, i.e., snow, rain, sun, night and overcast, respectively.

FIGURE 2 | (A) Area of the city of Oxford covered by SVOX and RobotCar (Maddern et al., 2017) datasets, respectively. (B–D) pairs of images collected from Google

StreeetView Time Machine, which view the same places but in different years, demonstrating how long-term temporal variations lter the appearance of a place.

Salzmann, 2018; Zhu et al., 2018), or are tailored for a specific
domain shift (e.g., day/night Garg et al., 2018b; Torii et al., 2018).

Only few previous studies have explicitly tackled the
appearance shift in VG as a domain adaptation problem. In
particular, Porav et al. (2018) and Anoosheh et al. (2019) both use
GANs to replace the query with a synthetic image that depicts
the same scene but with the appearance of the source domain.
These methods not only require hundreds or more target images,

but they may also require a small portion of target images to be
aligned with source images (Anoosheh et al., 2019). The authors
ofWang et al. (2019) instead useMK-MMD (Gretton et al., 2012)
for domain adaptation and allow the localization of old grayscale
photos against a gallery of present-day images. Both source and
target datasets are not available at the time of this writing.
Hu et al. (2021) instead use adversarial training to address a
synthetic-to-real shift, which arises because their architecture
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requires depth and pixel-wise semantic labels which are not
readily available in VG datasets with real world images. While
these prior studies use either a generative approach or a domain
adaptation method, we combine both paradigms and show that
they provide complementary improvements. Moreover, unlike
previous methods, AdAGeo and AdAGeo-Lite are truly few-shot
domain adaptation solutions that require as few as 5 unlabeled
and not aligned images from the target domain to produce
convincing results.

Domain Adaptation
Unsupervised domain adaptation attempts to reduce the shift
between the source and target distribution of the data by relying
only on labeled source data and unlabeled target data. There
are two typical approaches that are used for unsupervised
domain adaptation in computer vision. The first approach is
based on learning a style-transfer transformation to map images
from one domain to the other. The cross-domain mapping is
usually learned through GANs, as in Hong et al. (2018), Huang
et al. (2018), or autoencoders (Shang et al., 2017). Zhu et al.
(2017) propose to use a cycle-consistency constraint to learn
a meaningful translation, which has since been used in several
tasks (Benaim and Wolf, 2017; Hoffman et al., 2018; Russo et al.,
2018; Fu et al., 2019). Recently, it has also been shown that a
simple non-learned alignment of the low-level statistics between
the source and target distributions can improve performance in
UDA (Yang and Soatto, 2020).

The second approach is based on learning domain-invariant
features from the data, building on the idea that a good cross-
domain representation contains no discriminative information
about the origin (i.e., domain) of the input. This approach
was introduced by Ganin and Lempitsky (2015), where a
domain discriminator network and the gradient reversal layer
(GRL) forces the feature extractor to produce domain-invariant
representations. This method found successful applications in
many tasks, such as object detection (Ganin and Lempitsky,
2015), semantic segmentation (Bolte et al., 2019), and video
classification (Chen et al., 2019). As an alternative, Xu et al. (2019)
shows that features with larger norms are more transferable
across domains and propose to increasingly enlarge the norms
of the embedding during training.

In this study, we integrate both kinds of approaches in a
unique pipeline that only needs few samples from the target
domain.

3. DATASET

In order to address the cross-domain VG problem, we need
a dataset that supports different domains between database
(source) and queries (target). In recent years, there have been few
VG datasets that include multiple ambient conditions (weather,
seasons, lighting) (Sünderhauf et al., 2013; Chen et al., 2017a;
Maddern et al., 2017; Arandjelovic et al., 2018; Sattler et al., 2018;
Warburg et al., 2020). However, we find that each of these datasets
comes with some limitations: Tokyo 24/7 (Arandjelovic et al.,
2018) has a limited number of domains, and few queries; Oxford
RobotCar (Maddern et al., 2017) spans a limited geographical

TABLE 1 | Sizes of SVOX dataset and Oxford RobotCar (Maddern et al., 2017)

from 5 different scenarios.

SVOX RobotCar

Gallery Queries Snow Rain Sun Night Overcast

Train 22,232 11,294 750 714 712 702 705

Val 17,226 14,698 - - - - -

Test 17,166 14,278 937 870 854 823 872

area; Mapillary SLS (Warburg et al., 2020) is a collection of
sequences, and does not densely cover a given area; Nordland
(Sünderhauf et al., 2013) is built from sequences collected by
a train-mounted car, with very little urban scenery. To fill the
void for a multi-domain dataset that densely covers a large urban
environment, we propose the Street ViewOxford (SVOX) dataset
which encloses the whole city of Oxford (refer to Figure 2A).

For the source domain, we relied on Google StreetView: we
took images from 2012 for the database, and images from 2014
as training queries (refer to Table 1), making sure that for each
query there is at least one positive sample in the gallery. Using
gallery and queries taken from 2 years apart helps to train the
networks in a robust way, and ensures that they focus on long-
term elements, instead of short-term or changing elements such
as vegetation or scaffolding. Figure 2 illustrates some examples
of these long-term temporal variations. Given that Street View
imagery provides 360◦ equirectangular panoramas at various
resolutions, we cropped two rectangles on opposite sides for each
panorama, corresponding to the front and rear views of the car.

To investigate VG across domains we also need images of
the city of Oxford taken in different environmental conditions.
For this purpose, we use samples taken from the Oxford
RobotCar dataset (Maddern et al., 2017), in which images
are conveniently tagged according to their weather or lighting
conditions. Specifically, RobotCar provides five domains: Snow,
Rain, Sun, Night, and Overcast (refer to Figure 1 for an example
of the differences among these domains and the source). Note
that, besides the environmental conditions, the RobotCar images
also differ from the source domain for the viewpoint, which
is clear by the fact that the hood of the car is visible in the
foreground (cf., Figure 1). Similarly to Piasco et al. (2019), we
take one image every 5 m in order to avoid redundant data,
e.g., collected when the car was still at a traffic light. We further
note that the RobotCar dataset was collected between 2014 and
2015, few years apart from the SVOX database, which adds more
temporal variations between source and target domains. In the
process of sampling the images from RobotCar, we ensure that
for each target query there is at least one positive sample in
the database built from StreetView, i.e., an image within 25 m
of distance. Eventually, this procedure results in roughly 1,500
images per domain which are then divided in to two sets: few
images, without labels, are used for domain adaptation, whereas
the rest are used to test the models on different target domains.

Finally, we provide train, validation, and test splits of
SVOX, as reported in Table 1. The images sampled from
the RobotCar dataset (Maddern et al., 2017) are included
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only in the train set (without labels, to be used for domain
adaptation) and in the test set (with labels, to assess the
inference across domains). All images, both from source and
target domains, were isotropically resized to 512x384 pixels. The
dataset can be found at this link https://drive.google.com/file/d/
16iuk8voW65GaywNUQlWAbDt6HZzAJ_t9/view.

4. METHOD

In this section, we present our solution for domain adaptive
and attentive visual geo-localization of outdoor images. Given
the nature of the task, test-time images are likely to come from
different domains that the source, where the most common
domain shifts are caused by illumination (day/night) and weather
changes. These domain shifts can lead to drops in accuracy when
the model is deployed in the real world, which represents an open
and challenging problem for previous visual geo-localization
methods (Arandjelovic et al., 2018), which typically train their
network on a single-domain dataset with little variability (e.g.,
StreetView imagery). Given that unlabeled target-domain images
are cheap to obtain and can be massively collected, we propose to
tackle the issue by combining multiple strategies: i) a domain-
driven data augmentation module, to generate images close to
the target domain, ii) an attention layer that provides robustness
to domain shifts, iii) a domain adaptation layer, to maximize the
similarity between features of the different domains.

These strategies are combined in a modular architecture, that
is composed of two parts (Figure 3):

• Adomain-driven data augmentationmodule (Section 4.1) that
transfers the style of the target domain to the source images.
In particular, we present two variants of this module: one that
uses two autoencoders and the second that uses a non-learned
style transfer method.We call AdAGeo the overall architecture
using the learned DDDA and AdAGeo-Lite the one using the
non-learned DDDA.

• A network that produces the image descriptors. This network
is composed of a CNN encoder, to extract features, an attention
layer to give focus on the salient parts of the scene (Section
4.2), and an aggregation layer (Section 4.3) that builds the final
embedding. This network is trained with a domain adaptation
strategy (Section 4.4), using the labeled source and augmented
images as well as the few unlabeled queries from the target
domain.

Both these parts necessitate only a few images from the target
domain, thus making AdAGeo and AdAGeo-Lite truly few-shot
architectures for VG across domains. Formally, we consider the
unsupervised domain adaptation scenario in which we have a
labeled dataset Xs = {(xsi , y

s
i )}

ns

i=1, where xsi is an image from
the source domain Ds and ysi is its geo-tag of the image and an

unlabeled target dataset Xt = {(xtj )}
nt

j=1 made of samples from

target domain Dt , with nt ≪ ns.

4.1. Domain-Driven Data Augmentation
The purpose of the domain-driven data augmentation (DDDA)
module is to find a mapping Ds 7→ Dpt from the source domain

to a pseudo-target domain that better approximates the target
domain, i.e., Dpt ≈ Dt . This mapping can then be applied to the
source dataset Xs to generate a new labeled dataset with pseudo-

target images Xpt = {(x
pt
i , y

pt
i )}

npt

i=1. Although Xpt has the same
dimensionality and labels as Xs, it has a smaller discrepancy w.r.t.
the target domain Dt .

The creation of the pseudo-target dataset is a data
augmentation technique performed only once, offline. Afterward,
we use bothXs andXpt to train the descriptor extraction network,
which not only leads to a more robust model but it also results
in faster convergence of the training. In the rest of this section,
we present two different implementations of the DDDA module:
an approach that uses two autoencoders to learn a bi-directional
mapping between Ds and Dpt (c.f. Section 4.1.1), and a non
learnable method based on a Fourier transform (c.f. Section
4.1.2). These two DDDA methods are the distinctive difference
between AdAGeo and AdAGeo-Lite.

4.1.1. Learned DDDA for AdAGeo

As a first solution for the DDDA module, we take inspiration
from Cohen and Wolf (2019) who propose an approach for
the problem of learning a bi-directional mapping between two
domains, one (i.e., Ds) having many samples and the other (i.e.,
Dt) with only one sample available. This solution fits the VG
scenario as it has already been demonstrated (Cohen and Wolf,
2019) to be effective on images depicting streets and urban
places. Moreover, it does not requires massive resources and long
training times. The main intuition of this method is to use two
parallel autoencoders, named AeS = DecS(EncS(x)) and AeT =

DecT(EncT(x)), respectively, and with EncS and EncT denoting
encoders and DecS and DecT decoders. The goal is to minimize
the distance between the distributions of the latent spaces of
the two autoencoders, forcing the encoders to produce domain-
invariant embeddings, while at the same time each decoder
should be able to translate the embeddings to an image in its own
domain. This is achieved by minimizing a reconstruction loss on
both autoencoders:

LREC =
∑

s∈S

‖AeS(s))− s‖1 +
∑

t∈T

‖AeT(t))− t‖1 (1)

as well as cycle-consistency losses:

Lsts−cycle =
∑

s∈S

‖DecS(EncT(DecT(EncS(s))))− s‖1

Ltst−cycle =
∑

t∈T

‖DecT(EncS(DecS(EncT(t))))− t‖1
(2)

Ineq. (2), the bar above a module means that its weights are
frozen during the backpropagation of the loss. Moreover, as in
Cohen and Wolf (2019), it is important that the embeddings
approximate a Gaussian distribution, which helps the two
domains to better align and can be achieved through a variational
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FIGURE 3 | The proposed architecture. First, a domain-driven data augmentation method is used to generate a labeled pseudo-target dataset from the source

dataset and just 5 unlabeled target images. Then, the source dataset, pseudo-target dataset, and the 5 unlabeled target images are used to train the network that

extracts the image descriptors. This network leverages an attention layer and a domain adaptation module to provide robustness to domain shifts. The difference

between AdAGeo and AdAGeo-Lite is in the implementation of the domain-driven data augmentation.

FIGURE 4 | Visualization of attention score maps on source domain (A) and target domains (B–F) unseen by the attention module at training time.

loss on both encoders:

LVEncS =
∑

s∈S

KL({EncS(s)|s ∈ S}‖N(0, I))

LVEncT =
∑

t∈T

KL({EncT(t)|t ∈ T}‖N(0, I))
(3)

The complete loss is finally:

Lfinal = LREC + Lsts−cycle + Ltst−cycle+

0.001LVEncS + 0.001LVEncT
(4)

Once the training process is finished, the pseudo-target images

are generated as x
pt
i = DecT(EncS(x

s
i )), with their corresponding

labels being y
pt
i = ysi .

4.1.2. Fourier-Based DDDA for AdAGeo-Lite

The DDDA solution based on two autoencoders discussed in
Section 4.1.1, and originally presented in Berton et al. (2021b),
is effective for few-shot domain-driven data augmentation, but
it has some drawbacks: i) it requires a computationally heavy
architecture, and ii) it introduces an additional training step to be
performed before the descriptor extractor model can be trained.
Moreover, it is arguable whether such a complex generative

method is needed when the appearance discrepancies commonly
encountered in VG due to environmental changes are mostly
in the form of variations to the global photometric statistics.
Indeed, as discussed by Yang and Soatto (2020), such global
illumination discrepancies can be eliminated without having to
be learned. Inspired by Yang and Soatto (2020), we propose a
second DDDAmethod based on the lightweight Fourier Domain
Adaptation (FDA). Formally, let FA,FP

:R
3×H×W → R

3×H×W

be the amplitude and phase components of the Fourier transform
F. Let us also denote withMβ a mask whose value is zero except
for the center region defined by β ∈ (0, 1):

Mβ (h,w) = 1(h,w)∈[−βH :βH,−βW :βW]. (5)

where the center of the image is assumed to be in the position
(0, 0). Then, given two randomly sampled images xs ∼ Ds,
xt ∼ Dt , the FDA-DDDA is formalized as:

xpt = F
−1([Mβ ◦ F

A(xt)+ (1−Mβ ) ◦ F
A(xs),FP(xs)]) (6)

Ineq. (6), first, the low frequency part of the amplitude of the
source imageFA(xs) is replaced by that of the target image. Then,
the modified spectral representation of xs is mapped back to the
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FIGURE 5 | Qualitative comparison between AdAGeo and AdAGeo-Lite data augmentation methods: on the first row, the RobotCar images are augmented with the

DDDA method from AdAGeo-Lite, on the second row the augmentation is performed with AdAGeo. The columns, from left to right, refer to the following target

domains: Snow, Rain, Sun, Night, and Overcast.

image xs→t , whose content is the same as xs but will resemble the
appearance of a sample from Dt . Usingeq. (6), we generate the
pseudo-target dataset Xpt , without training.

4.2. Attention
The descriptor extraction network is tasked to produce the image
representations that are used to perform the retrieval of similar
places. In order to guide this network to focus on the most
relevant features’ areas for the retrieval task, we introduce an
attention layer after the encoder. To this end, we took inspiration
from the class activation map (CAM) (Zhou et al., 2016) which
tries to focus on discriminative image areas that are the most
useful to produce the class output in the image classification
task, exploiting the final average pooling layer present in recent
networks such as the ResNet (He et al., 2016). Let us consider
for a given image of dimension 3× H ×W the extracted feature
representation f of shape D × H1 × W1 where D is the number
of kernels from the last convolutional layer in the encoder.
Furthermore, consider also the backbone classifier block, which
contains a fully connected layer with D × C weights wcd with d
values respectively for each class c. The attention map AMc for a
given class c is obtained by the following linear combination:

AMc = σ (
∑

d

fd · wcd) (7)

where σ is the softmax function and whose result has dimension
H1 ×W1.
Finally, AMc is upsampled to H × W, and it is applied over the
input image, to visualize the most relevant regions for that class
c.

In our architecture, we use the fully connected layer of a
CNN pretrained on Places365 (Zhou et al., 2017), which contains
C = 365 classes, to produce the AMc. The idea stems from
the fact that the classes in Places365 (such as house, building,
market) are inherently relevant to the task of geo-localization
in urban environments. The images are passed to the whole
backbone extracting the local features representation f from
the last convolutional layer and producing the AMcmax for the

category cmax with the highest probability predicted by the fully
connected layer. Then, the features are spatially weighted with
the scores calculated before:

f w = f · AMcmax (8)

producing new weighted features f w with the same dimensions
as f .

We demonstrate that the attention mechanism is useful also
for the target images since the salience regions can help to
distinguish also the elements across different domains. Figure 4
shows the results obtained applying the attention mechanism
over all domains at test-time, which shows significant visual
results also over target domains unseen by the attention module.

4.3. Weakly Supervised Descriptors
Aggregation
In order to transform the attentive embeddings into vectorized
representations of each image we use a NetVLAD layer
(Arandjelovic et al., 2018), a common descriptor aggregator for
VG (Kim et al., 2017; Arandjelovic et al., 2018; Wang et al., 2019).
To use NetVLAD, we first perform K-means clustering over
500 randomly sampled embeddings of images from the source
and pseudo-target domains to compute K centroids. Then, given
the embeddings f w of dimension D × H1 × W1, reshaped with
dimensions D× R where R = H1 ×W1, the element (j, k) of the
VLAD representation V (Jégou et al., 2010) is computed as

V(j, k) =

R∑

i=1

e−‖f wi −ck‖
2

∑
k′ e

−‖f wi −ck′‖
2
· (f wi (j)− ck(j)) (9)

where f wi (j) and ck(j) are the j-th dimensions of the i-th
embedding and k-th centroids, respectively. The fraction ineq. (9)
is the soft-assignment of descriptor f wi to centroid k-th. Given
the intrinsic nature of VG data, where the label for each image is
represented solely by its position, it is not possible to use standard
supervised losses to drive the training, because two photos taken
in the same position (therefore, with the same label) but opposite
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directions would depict different locations. To overcome this, we
use a weakly supervised triplet margin loss as in Arandjelovic
et al. (2018). For each query q, this loss is defined as

Ltriplet =

Y∑

y

h(min
i

d2(F(q), F(p
q
i ))+m−d2(F(q), F(n

q
y))) (10)

where d( · , · ) represents the Euclidean distance, F(x) is the
features representation for image x, {p

q
i } is the set of potential

hard positives (images within 10 m from the query q), {n
q
y} is the

set of Y negatives (further than 25 m), h is the hinge loss, and m
is a constant parameter chosen as margin.

4.4. Domain Adaptation
In order for the retrieval to work well across domains it
is important that the embeddings produced by the attention
module are domain agnostic, i.e., they do not encode domain-
specific information. We achieve this by using a domain
discriminator which receives embeddings from the three
domains Ds, Dpt , and Dt . The discriminator is composed of two
fully connected layers, and its goal is to classify the domain
to which the embeddings belong. Just before the discriminator,
there is a gradient reversal layer (Ganin and Lempitsky, 2015)
that in the forward pass acts as an identity transform, while in
the backward pass multiplies the gradient by -λ, where λ > 0.
The use of this layer effectively sets up a min-max game, where
the discriminator tries to minimize the domain classification loss,
that is a cross-entropy loss LCE, while the feature extractor learns
to produce domain-invariant embeddings, acting as an adversary
to the discriminator.

5. EXPERIMENTS

In this section, we first explain the training details for AdAGeo
and AdAGeo-Lite as well as the experimental protocol and the
methods considered for comparisons. With this setting, we then
report results from extensive experiments aimed at assessing both
the domain adaptation and domain generalization capabilities of
our methods. Finally, we include an ablation study to investigate
the effect of the various components of our architecture.

5.1. Training Details
Prior to training the descriptor extraction network, we need
to generate the pseudo-target dataset. For the learned DDDA
method (c.f. Section 4.1.1), we adopt the architecture of Cohen
and Wolf (2019) which consists of two encoders, made of two
convolutional layers and four residual blocks, and two symmetric
decoders, made of four residual blocks and two deconvolutional
layers. To train this architecture we use the Adam optimizer with

a learning rate of 0.0002 and batch size 1. For the non-learned
DDDA method (c.f. Section 4.1.2), we use the implementation
of the Fourier Domain Adaptation from Yang and Soatto (2020),
and set the parameter β to 0.001. For both the DDDA methods
and the training of the descriptor extractor network we use only
5 unlabeled images from the target domain.

Once the pseudo-target dataset is created, we use it together
with the source dataset and the few target images used in the
previous step to train the descriptor extraction network. For
this network, we use a ResNet-18 (He et al., 2016) pre-trained
on Places365 (Zhou et al., 2017) as the backbone, and we fine-
tune it from the last two convolutional blocks to the end. The
features extracted at the last convolutional layer, before ReLU,
are passed to the attention and the domain adaptation modules.
As an optimizer, we use Adam with a learning rate of 0.00001,
and for each iteration, we use 4 tuples, each consisting of 1
query image, the best positive, and 10 negative samples. The
negative samples are chosen following the standard procedure
described by Arandjelovic et al. (2018), in order to increase the
likelihood that Ltriplet > 0, by making sure that each negative is
similar enough to the positive. The two losses are combined as
Ltriplet + α · LCE where α = 0.1. Finally, unlike most domain
adaptation methods which train the network for a constant
number of epochs, or perform validation and early stopping
on the source validation set, we perform validation and early
stopping on the generated pseudo-target validation set, having a
similar distribution to the target set, helps to optimally stop the
training.

5.2. Datasets for Domain Generalization
Among the available multi-domain geolocalization datasets, we
use Mapillary Street Level Sequences (MSLS) (Warburg et al.,
2020) and St Lucia (Milford and Wyeth, 2008) to test the
capability of our solution to generalize to unseen domains,
including different cities. MSLS is composed of a collection of
sequences from 30 different cities, and it encompasses a large
variety of domain changes, such as night/day, long-term, and
sun/rain. For our experiments, we chose 5 cities with the goal
of having different degrees of similarity with the source dataset:
Copenhagen, San Francisco, Nairobi, Tokyo, and São Paulo. For
further assessment of the various methods, we also test on the St
Lucia dataset, which was collected in a suburb of Brisbane and
presents no heavy temporal changes between the database and
queries. The size of each dataset used for domain generalization
is shown in Table 2.

5.3. Comparisons With Other Methods
To evaluate AdAGeo and AdAGeo-Lite we compare them
with other methods. To the best of our knowledge, the only

TABLE 2 | Sizes of cities from MSLS (Warburg et al., 2020) and St Lucia (Milford and Wyeth, 2008) datasets.

Copenhagen San Francisco Nairobi Tokyo São Paulo St Lucia

Gallery 12601 437 35096 6315 34823 1549

Queries 6595 427 18989 4525 26310 1464
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TABLE 3 | Domain adaptation results: comparison between all methods, shown as recall@1 (R@1) on each target domain.

Method #T
Snow Rain Sun Night Overcast

Avg
R@1 R@1 R@1 R@1 R@1

NetVLAD 0 50.1 ± 1.3 36.5 ± 0.6 17.7 ± 0.9 1.6 ± 0.4 60.0 ± 0.7 33.2

Wang all 23.8 ± 6.2 11.2 ± 1.4 5.7 ± 0.5 0.9 ± 0.5 37.6 ± 8.2 15.8

NetVLAD+SAFN all 57.3 ± 2.5 43.6 ± 0.4 19.1 ± 2.0 2.2 ± 0.7 68.3 ± 1.2 38.1

NetVLAD+DCORAL all 60.2 ± 2.0 33.5 ± 1.1 14.1 ± 0.6 2.1 ± 0.8 61.2 ± 3.6 34.2

NetVLAD+GRL all 68.9 ± 2.5 50.9 ± 2.0 27.1 ± 4.8 4.6 ± 1.2 76.9 ± 0.7 45.7

AdAGeo 5 73.3 ± 2.2 55.7 ± 1.8 29.6 ± 1.0 10.5 ± 1.9 80.1 ± 1.5 49.8

AdAGeo-Lite 5 73.8 ± 0.3 57.6 ± 2.5 30.6 ± 4.4 11.1 ± 0.5 78.8 ± 1.9 50.4

#T shows the number of target images used at training time. Snow, Rain, Sun, Night, and Overcast are the 5 target domains of the SVOX+RobotCar dataset. The last column shows

the average recall@1 across all domains. In bold is the best result for each target domain.

TABLE 4 | Domain generalization results: comparison between all methods, shown as recall@1 (R@1) on each target domain.

Method #T Snow Rain Sun Night Overcast Cph Nairobi Tokyo SF Sao Paulo St Lucia

NetVLAD 0 50.2 36.6 17.8 1.6 60.1 51.7 38.0 28.1 46.4 23.6 89.4

S
n
o
w

Wang all 23.8 7,9 2,7 0,9 11,3 25,5 4,9 13,7 22,2 8,0 41,9

NetVLAD+SAFN all 57.4 37.7 16.3 1.7 67.7 53.3 40.4 29.0 47.6 24.0 86.1

NetVLAD+DCORAL all 60.3 34.9 15.6 3.4 74.0 42.5 30.5 24.6 37.4 19.9 83.8

NetVLAD+GRL all 68.9 48.7 21.9 2.3 76.4 52.3 40.4 28.2 46.6 23.4 85.1

AdAGeo-Lite 5 73.5 57.6 28.6 4.0 77.1 65.0 51.0 36.4 63.8 34.3 95.1

R
a
in

Wang all 8.0 11.2 0.1 0.4 17.3 21.5 4.7 12.4 22.0 6.5 39.7

NetVLAD+SAFN all 59.1 43.7 17.5 1.6 67.8 52.8 39.0 28.8 46.5 23.9 87.2

NetVLAD+DCORAL all 59.3 33.6 15.8 3.5 71.6 44.1 30.7 26.9 39.9 21.3 84.9

NetVLAD+GRL all 66.8 50.9 23.5 1.0 73.0 50.8 39.8 27.5 44.2 22.3 85.1

AdAGeo-Lite 5 73.8 55.4 27.7 2.7 79.2 65.8 55.6 36.2 63.7 35.3 95.8

S
u
n

Wang all 7.3 8.7 5.7 0.4 11.4 23.6 5.5 13.1 20.8 6.1 32.4

NetVLAD+SAFN all 58.9 42.4 19.1 1.9 71.1 51.4 41.0 27.9 46.7 23.6 86.2

NetVLAD+DCORAL all 53.1 35.8 14.1 2.4 64.8 46.4 33.6 24.7 40.1 21.1 82.6

NetVLAD+GRL all 64.7 45.7 27.1 1.0 72.8 52.3 41.4 28.0 46.2 24.0 85.0

AdAGeo-Lite 5 70.3 56.9 30.6 2.7 75.3 64.5 52.2 35.8 63.1 34.2 94.1

N
ig
h
t

Wang all 7.5 15.4 2.5 0.9 19.0 26.7 9.4 14.9 23.3 8.7 43.7

NetVLAD+SAFN all 57.2 37.5 16.3 2.2 67.6 49.2 40.1 27.5 45.2 23.1 84.2

NetVLAD+DCORAL all 55.0 34.8 16.4 2.1 69.1 47.7 35.2 24.8 41.4 22.0 83.5

NetVLAD+GRL all 57.9 40.3 19.1 4.6 67.9 53.7 39.3 28.9 49.3 25.5 88.0

AdAGeo-Lite 5 68.1 49.0 23.1 11.1 74.0 65.1 56.4 36.4 63.7 34.5 94.6

O
ve
rc
a
st

Wang all 6.3 14.7 1.6 0.4 37.6 26.4 6.6 14.4 22.3 7.8 39.8

NetVLAD+SAFN all 56.8 39.3 16.2 1.5 68.3 51.6 37.0 28.0 45.8 23.6 84.2

NetVLAD+DCORAL all 49.6 34.7 14.5 1.5 61.3 44.7 35.3 22.8 38.5 20.7 83.6

NetVLAD+GRL all 66.5 43.7 21.0 2.0 77.0 49.1 37.3 26.3 42.8 22.0 84.7

AdAGeo-Lite 5 72.6 52.8 27.0 2.7 78.8 65.7 53.6 36.5 64.4 35.0 95.0

The RobotCar scenario on the left indicates which one is used at training time for domain adaptation. #T shows the number of target images used at training time. In bold is the best

result for each pair of train-test target domains.

other VG method built for domain adaptation is the one
proposed by Wang et al. (2019), which uses an attention module
and MK-MMD (Gretton et al., 2012). In particular, we use
the code provided by the authors, in both its variants: the
first one with just the attention mechanism (Wang: Att) and
the second one with also the DA branch (Wang: Att+DA).
Additionally, we also compare NetVLAD (Arandjelovic et al.,
2018), one of the most used and well-established methods for
VG. Given the focus of our research, we implement NetVLAD

with various domain adaptation techniques, namely GRL (Ganin
and Lempitsky, 2015), DeepCORAL (Sun and Saenko, 2016),
and SAFN (Xu et al., 2019). For SAFN, we compute the features
norm from the embeddings produced by the last convolutional
layer of the backbone, using the code provided by the
authors. For fairness of comparisons, we compare the methods
using as backbones ResNet-18 (He et al., 2016) pretrained
on Places365 (Zhou et al., 2017) and cropped at the last
convolutional layer.
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5.4. Qualitative DDDA Comparison
Between AdAGeo and AdAGeo-Lite
The DDDA method used in AdAGeo has the downside that
it requires a training phase that lasts roughly 12 h on a V100
GPU. The lighter architecture AdAGeo-Lite was developed to
remove this additional training phase and to streamline the
pipeline, using a simpler Fourier Domain Adaptation. We show
in Figure 5 some qualitative results obtained with the two DDDA
methods. As we can see, there is little to no difference in the
generated pseudo-targets.

5.5. Results: Domain Adaptation With
AdAGeo
The methods are trained using SVOX as the source domain
and Oxford RobotCar (Maddern et al., 2017) (around 800
images, depending on the domain, refer to Table 1) as the target.
Depending on the method, a different number of target images
has been used: NetVLAD uses none (i.e., no domain adaptation);
for AdAGeo, we use 5 images (i.e., 5-shot scenario); and for
other methods, we use the whole target set (about 800 images,
depending on the domain Table 1). At test time, we use the
SVOX test gallery and queries from Oxford RobotCar (Maddern
et al., 2017), thus ensuring that the test-time photos come from
a geographically disjoint area than the train/DA set. For methods
with DA, training is performed separately for each of the 5 target
domains (Snow, Rain, Sun, Night, and Overcast). As a metric,
we use the commonly used recall@N (R@N), which measures
the percentage of queries for which at least one of the first N

predictions is located within a given threshold distance from
the relative query. Following standard procedure, the threshold
distance is set at 25 m (Kim et al., 2017; Arandjelovic et al., 2018;
Zhu et al., 2018; Liu et al., 2019a;Wang et al., 2019;Warburg et al.,
2020; Berton et al., 2021a,b; Hausler et al., 2021). All the results
shown are the outcome of three experiments, and we report the
mean and SD, to ensure further reliability.

In Table 3 we show the results for each method. We find
that AdAGeo and AdAGeo-Lite outperform all other approaches
while using two orders of magnitude fewer target domain images.
The comparable results between the two are in line with the
qualitative similarity of their two pseudo-targets, as seen in
Figure 5. This supports the intuition that the domain shift caused
by the environmental changes (e.g., illumination and weather)
have, for the most part, the characteristics of global photometric
variations. Actually, AdAGeo-Lite gives slightly better results,
perhaps due to the fact that finding the optimal configuration for
the many hyperparameters of the learned DDDA is not trivial,
whereas the FDA method used in AdAGeo-Lite only has one
hyperparameter to tune.

From this results, it stands out that all models perform poorly
on the Night target domain. This can be expected, as the shift
between this domain and the source domain (StreetView) is
extreme, with very dark images and with a strong yellow tones.
Even though AdAGeo and AdAGeo-Lite surpass all competitors
by at least 5.9 points, the results are still far from the other
cases. We observe that the pseudo-target images generated
for the Night target by AdAGeo and AdAGeo-Lite indeed
present an accentuated yellow hue (cf. Figure 5), and indeed

FIGURE 6 | Domain generalization qualitative results: top-half rows depict the queries and their associated attention map, which are successfully geolocalized in the

first prediction. Bottom-half rows show failure cases which are not retrieved even after 20 predictions.
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the ablation results presented later in Section 5.7 demonstrate
that they improve the results. On the other hand, looking at the
visualization of the attention score maps (refer to Figure 4) we
note that the model is much less focused, particularly on the
buildings as they are not well discernible. This is also confirmed
by the ablation study that is presented later in Section 5.7.

5.6. Results: Domain Generalization
In domain generalization, we use a model trained on the source
and pseudo target datasets Xs,Xpt , with pseudo targets adapted
from Dt , to make out-of-distribution inference on a target

domain Dt′ 6= Dt unseen at training time. For each scenario
in the RobotCar dataset, we trained a model and tested its
generalization abilities. For this set of experiments, we only use

TABLE 5 | Ablation table of AdAGeo on the SVOX+RobotCar dataset in a 5-shot

setting with ResNet18 as the encoder.

Method
Snow Rain Sun Night Overcast

Avg
R@1 R@1 R@1 R@1 R@1

Baseline 50.1 36.5 17.7 1.6 60.0 33.2

Baseline+DDDA 61.3 45.3 23.3 6.1 71.1 41.4

Baseline+Att 49.4 39.9 24.5 3.3 64.0 36.2

Baseline+DA 65.3 49.7 25.4 6.0 75.2 44.3

Baseline+DDDA+Att 66.6 54.5 27.3 5.5 72.2 45.2

Baseline+DDDA+DA 67.2 51.5 24.8 9.4 78.4 46.3

Baseline+Att+DA 66.0 49.1 24.8 3.2 76.1 43.8

AdAGeo 73.3 55.7 29.6 f10.5 80.1 49.8

R@1, recall@1; DDDA, Domain-Driven Data Augmentation; Att, Attention layer; DA,

Domain adaptation layer.

AdAGeo-Lite, since it outperformed AdAGeo in the domain
adaptation experiments.

From Table 4, we observe that AdAGeo-Lite generalizes
largely better than all other models, not only on the
different RobotCar scenarios but also when considering
sample images coming from new cities, not in the training
dataset. These results extensively show that, as a side
effect, our style transfer techniques are beneficial in terms
of generalization, which is a highly desirable property
in visual geo-localization. This is true not only for shifts
between related domains such as images under different light
conditions, but also for queries of dissimilar nature such
as cities belonging to many geographical continents. Some
visualizations of attention score maps on these datasets is shown
in Figure 6.

The results also show that all models, including AdAGeo and
AdAGeo-Lite, struggle to generalize to Tokyo and to São Paulo.
We conjecture that this is due to the fact that both these scenarios
present a large gallery (see Table 2), which increases the number
of negatives per query, making geolocalization on these cities
inherently more challenging.

5.7. Ablation
We evaluate the components of AdAGeo by conducting
an extensive ablation study over each target domain of
SVOX+RobotCar. The results are shown in Table 5, where all
experiments have been run in a 5-shot environment (except for
the experiments where the target domain is not used) and all the
modules combination are tried. As a baseline, we use a ResNet-
18 encoder (cropped at the last convolutional layer) followed
by a NetVLAD (Arandjelovic et al., 2018) layer. Then, we try
all possible combinations of the three proposed components:
Domain-driven data augmentation module (DDDA), Attention

FIGURE 7 | Results of experiments with AdAGeo with 0-shots, 1-shot, 5-shots, 50-shots, and all-shots. With easier domains (Snow, Rain, Overcast), AdAGeo shows

a good improvement in accuracy with just 1 target domain image, while with more challenging domains (Sun, Night), AdAGeo requires a higher amount of images to

perform significant improvements.
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module (Att), and Domain adaptation module (DA). The use of
all components results in AdAGeo. As shown in Table 5, each
module produces an improvement with respect to the baseline.
The ablation study also proves that the modules are orthogonal
to each other, giving consistent improvements when used alone
as when used together. In particular, the attention module yields
a 3% improvement on the baseline, and 3.5% on the final model,
although it does not see the target domain at training time.
Finally, the three modules together show an improvement of
more than 16% on average over the baseline.

To better understand how the number of target domain
images influences the outcome, we also conduct extensive
experiments on this matter. Results are in Figure 7, and
they show that the model can benefit from a high amount
of target images on challenging domains, while for easier
domains the model quickly saturates even with as few
as 5 images.

6. CONCLUSIONS

In this study, we have proposed a method to tackle the problem
of cross-domain visual geo-localization using only few unlabeled
target images. The foundation of our architecture is to use two
orthogonal domain adaptation techniques as well as an attention
mechanism. In particular, we present two variations of our
method, AdAGeo and AdAGeo-Lite, that differ in the domain-
driven data augmentation module. Given the modularity of our
method, in the future, we plan to extend it to use different style
transfer solutions, e.g., TUNIT (Baek et al., 2021) for the case,
when many unlabeled target images are available, or FUNIT (Liu
et al., 2019b) for the case, when the training can rely on more
considerable resources. Both AdAGeo and AdAGeo-Lite are

able to outperform current state-of-the-art solutions while using
two orders of magnitude fewer target images during training.
Remarkably, our experiments show that the simpler domain-
driven data augmentation method used in AdAGeo-Lite yields
comparable or better results in comparison to the learned DDDA
module used in the first AdAGeo version. Finally, we propose a
new dataset, called SVOX, which, extends Oxford RobotCar and
can be used as a large scale multi-domain dataset for visual place
recognition, presenting a realistic scenario for future research in
the field.
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