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It is well-known that polylogarithmic space (PolyL for short) does not have complete

problems under logarithmic spacemany-one reductions. Thus, we propose an alternative

notion of completeness inspired by the concept of uniformity studied in circuit complexity

theory. We then prove the existence of a uniformly complete problem for PolyL under this

new notion. Moreover, we provide evidence that uniformly complete problems can help

us to understand the still unclear relationship between complexity classes such as PolyL

and polynomial time.

Keywords: reductions, completeness, polylogarithmic space, PolyL, complexity theory

1. INTRODUCTION

The class of problems that can be decided by deterministic Turing machines using space bounded
by a polynomial in the logarithm of the input size, is known in computational complexity as
polylogarithmic space and usually denoted as PolyL (see e.g., Papadimitriou, 1994). Same as we
know that every problem in L (logarithmic space) is in P (polynomial time), we have that every
problem in PolyL is in QP (quasi-polynomial time). This latter class represents algorithms which
run in sub-exponential time, more precisely in time bounded by 2O(log

c n) for inputs of size n and
some fixed constant c, and can thus be considered somehow more tractable than exponential time
algorithms. Interestingly, the fastest known algorithm for checking graph isomorphism belongs to
QP (see Babai, 2016).

It follows from the well-known space hierarchy theorem of Hartmanis et al. (1965) that the
subset of problems in PolyL with space bounded above by logc n is strictly included in the subset
bounded above by logc+1 n for all integers c > 0. Therefore, PolyL cannot have a complete problem
under logarithmic space many-one reductions. Note that if PolyL had such a complete problem
A, then the space complexity of deciding this problem must be bounded above by logc n for
some constant c, i.e., it must be in DSPACE(logc n) for some fixed c. If we now take a problem
B in DSPACE(logc+1 n) \ DSPACE(logc n), we get (by our assumption on the completeness of
A) that there is a Turing machine that decides B in space O(logc n), as B could be reduced to
A using logarithmic space and then decided in O(logc n). This means that B ∈ DSPACE(logc n),
contradicting that by the space hierarchy theorem DSPACE(logc n) ⊂ DSPACE(logc+1 n).

Even though PolyL does not have complete problems under logarithmic space many-one
reductions, and thus can be considered less robust than L (its logarithmic counterpart), we show
in this article that this perception can be challenged. Indeed, considering an alternative notion
of completeness, we are able to show that it is still possible to isolate the most difficult problems
in PolyL and to draw standard consequences of the kind entailed by the classical notion of
completeness.
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Our alternative notion of completeness (and hardness) is
grounded in the concept of uniformity borrowed from circuit
complexity theory (see Balcázar et al., 1990; Immerman, 1999;
Murray and Williams, 2017 among others), hence we call it
uniform completeness. A reviewer suggested that this is also
related to Ragusa (2012). The intuitive idea is to consider a
countably infinite family of problems instead of a single global
problem. Each problem in the family corresponds to a fragment
of a same global problem determined by a positive integer
parameter. Such problem is uniformly complete for a given
complexity class if there is a transducer Turing machine which
given a positive integer as input builds a Turing machine in
the required complexity class that decides the fragment of the
problem corresponding to this parameter.

The article is organized as follows. In section 2, we introduce
the necessary background from complexity theory and fix the
notation used throughout the article. We dedicate section 3 to
examine the quantified Boolean satisfiability problem and to
define a restriction of this problem which, as we show in this
article, captures the power and complexity of PolyL. We present
the notion of uniform completeness (and hardness) in section 4.
This constitutes the main novelty of this article. Using this new
concept, we then prove in section 5 the existence of a uniform
complete problem for PolyL. The problem is defined using
the restriction of the quantified Boolean satisfiability problem
introduced earlier in section 3. We present our conclusion in
section 6.

2. PRELIMINARIES

We assume the reader is familiar with deterministic Turing
machines and only include here the formal definitions that are
required to fix the notation. We take these formal definitions
from Balcázar et al. (1995).

Definition 2.1. A deterministic Turing machine with r tapes is a
five-tupleM = 〈Q,6, δ, q0, F〉, where:

• Q is the finite set of states.
• 6 is the finite tape alphabet.
• q0 ∈ Q is the initial state.
• F ⊆ Q is the set of accepting final states.
• δ :Q×6r → Q×6r−1 × {R,N, L}r is the (partial) transition

function ofM.

By the previous definition, there is one tape whose content cannot
be changed by the transition function. This is the input tape, that
we assume is read-only. Consequently, each configuration (a.k.a.
instantaneous description or snapshot) does not need to include
the contents of the input tape, as the position of the input head is
enough to determine the current symbol read from the input.

Definition 2.2. A configuration of a Turing machine M with r
tapes on a fixed input is a r+1 tuple of the form: (q, i,w2, . . . ,wr),
where q is the current state ofM, i is the position of the input tape
head and each wj ∈ 6

∗#6∗ represents the current content of the
j-th work tape. The symbol # /∈ 6 marks that the tape head is
reading the symbol immediately to its right. All symbols in the

infinite work tape j that do not appear in wj are assumed to be
the symbol blank “⊔”. In the initial configuration (q0, 0, #, . . . , #)
ofM, all work tapes are blank and the input tape head is scanning
the leftmost cell. An accepting configuration is a configuration
whose state is an accepting final state.

The concept of computation can now be defined as a sequence of
configurations.

Definition 2.3. A partial computation of a Turing machine
M with r tapes on an input string w = a1, . . . , an is a
(possibly infinite) sequence of configurations of M, in which
each step from a configuration to the next is dictated by
the transition function as follows: Assume a configuration
conf with state q, input tape head in position i and each
j-th work tape head scanning a corresponding symbol bj. If
δ(q, ai, b2, . . . , br) = (q′, b′2, . . . , b

′
k
,m1, . . . ,mr), then the state in

the next configuration is q′, the position of the input tape head
i′ equals i + 1, i − 1 or i depending on whether m1 is R, L, or
N, respectively, and each string w′

j (2 ≤ j ≤ r) representing the

contents of the j-th work tape equals the corresponding string
wj in conf with the possible exceptions of the symbol bj in the
position immediately to the right of # in wj and the position of
# itself. The former is replaced in w′

j by b′j. The latter is moved

one position to the right if mj = R, to the left if mj = L, or not
moved if mj = N. If the # in wj is in the leftmost position and
mj = L, then # remains in the same place in w′

j. Likewise, if i = 0

andm1 = L, then the head of the input tape remains in place, i.e.,
i′ = i. A computation is a partial computation that starts with the
initial configuration of M, and ends in a configuration where no
more steps can be performed.

If a computation of a Turing machine M ends in an accepting
configuration, then we call it an accepting computation of M.
In this case, the word in the input tape is accepted by M. The
language L(M) accepted by M is the set of all words accepted
byM.

Non-deterministic Turing machines simply relax the
definition of transition function δ with respect to their
deterministic counterparts, so that every move is not necessarily
determined uniquely by the current configuration.

Definition 2.4. A non-deterministic Turing machine with r tapes
is a five-tuple M = 〈Q,6, δ, q0, F〉, where Q, 6, q0 and F are
exactly as in Definition 2.1 and the transition function is defined
by

δ :Q×6r → P(Q×6r−1 × {R,N, L}r)

where P(A) denotes the powerset of A.

The previous definitions of configurations and computations
apply in exactly the same way to non-deterministic Turing
machines. However, they can have more than one computation
for a given input. Thus, a non-deterministic Turing machine M
accepts an input string w iff there exists a computation ofM on w
ending in an accepting configuration.

Complexity theory mainly concerns the classification of
computational problems in terms of required Turing machine
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resources, and the study of the relationship between the resulting
classes.

Definition 2.5. Let n denote the size of a Turing machine
input, i.e., the number of non-blank cells in the input tape,
and let t and s be functions such that t(n) > n + 1 and
s(n) ≥ 1. We define DTIME(t), NTIME(t) as the classes of
all languages accepted by deterministic and non-deterministic
Turing machines, respectively, whose running time is bounded
above by t(n). Similarly, We define DSPACE(s), NSPACE(s) as
the classes of all languages accepted by deterministic and non-
deterministic Turing machines, respectively, whose work space
is bounded above by s(n). Running time means the number
of transitions in a computation. Work space is the number of
different work tape cells (counting all work tapes) used during
a computation.

In this work we concentrate in the class of languages accepted
by deterministic Turing machines with polylogarithmic bounded
space, i.e., in the class known as PolyL. Of course, we also need
to reference some related complexity classes. They are formally
defined as follows.

Definition 2.6. Let log n denote the logarithm base 2 of n, i.e.,

log2 n, and logk n denote (⌈log n⌉)k, where ⌈log n⌉ is the least
integer greater than or equal to log n.

L =
⋃

c ≥ 1 DSPACE(c · log n); NL =
⋃

c ≥ 1 NSPACE

(c · log n); PolyL =
⋃

k ≥ 0 DSPACE(logk n)

P =
⋃

k ≥ 0 DTIME(nk); NP =
⋃

k ≥ 0 NTIME(nk);

PSPACE =
⋃

k ≥ 0 DSPACE(nk)

It is well-known that each deterministic class is closed under
complementation and that each deterministic class is included
in its non-deterministic counterpart, but it is not known
whether this inclusion is strict. It is also well-known that NL
is closed under complementation, included in P and strictly
included in PSPACE. Also, NP is included in PSPACE. All
these results can be found in classical complexity theory books
such as in Papadimitriou (1994) and in Balcázar et al. (1995).
Obviously, NL is included in PolyL, but it is unclear how
PolyL compares with P. We only know that PolyL 6= P,
since P has a complete problem under logarithmic space
many-one reductions but polyL does not due to the space
hierarchy theorem. It is not expected for polyL to be strictly
contained in P. Whether the converse is true, it is also
unclear.

One of the most important sort of intuitions about
complexity classes and their interrelationships is provided
by the concepts of reducibility and complete problem. We
again borrow the definitions of these well-known concepts
from Balcázar et al. (1995).

Definition 2.7. A language A is polynomial time many-one
reducible to a language B iff there is a function f :6∗ → 6∗,
computable in polynomial time by a transducer Turing machine,
such that w ∈ A iff f (w) ∈ B for all w ∈ 6∗.

As usual, we denote that A is reducible to B by A ≤m B,
and if f is the function that defined this reduction, then we
say that A ≤m B via f . Polynomial time many-one reductions
are sometimes called Karp reductions. For the classes P, L
and NL, Karp reductions are considered too strong, since they
have complete problems via logarithmic space reductions. The
concept of completeness provides important insight about the
most difficult problems inside a complexity class.

Definition 2.8. Given a complexity class C,

• A language A is C-hard iff for any language B in C, we have that
B ≤m A.

• A language A is C-complete iff it is C-hard and A ∈ C.

3. A RESTRICTED QUANTIFIED BOOLEAN

SATISFIABILITY PROBLEM

Our aim is to define a problem that captures the power and
complexity of PolyL. We start from a well-known problem that
captures these features in another deterministic space complexity
class, namely the PSPACE-complete problem of determining the
satisfiability of quantified Boolean sentences (QSAT for short),
and explore a restriction of this problem so that it can be
uniformly solved in PolyL.

Definition 3.1. Let V be a set of Boolean variables, i.e., a set of
symbols that can take the value 0 (false) or 1 (true). The class of
Boolean formulae over V is defined by the following rules:

• Constants 0 and 1 are Boolean formulae.
• If x ∈ V , then x is a Boolean formulae.
• If ϕ and ψ are Boolean formulae, then (ϕ ∨ ψ), (ϕ ∧ ψ), and

¬(ϕ) are Boolean formulae.
• Nothing else is a Boolean formulae.

The class of quantified Boolean formulae is the smallest class
defined by the rules:

• Every Boolean formula is a quantified Boolean formula.
• If x ∈ V and ϕ is a quantified Boolean formula, then ∃xϕ and

∀xϕ are quantified Boolean formulae.

Notice that the previous definition implies that a quantified
Boolean formula is always in prenex normal form, i.e., every
quantified Boolean formula consists of a (possible empty) prefix
of quantifiers followed by a quantifier-free Boolean formula. This
is of course not necessary, but it is convenient. We also assume
w.l.o.g. that every variable that appears in a formula is quantified
in the prefix at most once.

Let ϕ[x/a], where a ∈ {0, 1} and ϕ is a quantified Boolean
formula, denote the formula obtained by substituting a for every
occurrence of x in ϕ. The semantics of quantified Boolean
formulae can be formally defined as follows.
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Definition 3.2. Let v :X → {0, 1} be a Boolean assignment and
ϕ a quantified Boolean formula, the truth value of ϕ under v is
defined recursively by the rules:

• v(ϕ) = 0 if ϕ = 0.
• v(ϕ) = 1 if ϕ = 1.
• v(ϕ) = v(x) if ϕ = x for some x ∈ V .
• v(ϕ) = v(ψ)+ v(α) (Boolean addition) if ϕ = (ψ ∨ α).
• v(ϕ) = v(ψ) · v(α) (Boolean multiplication) if ϕ = (ψ ∧ α).
• v(ϕ) = v(ψ) (Boolean complement) if ϕ = ¬(ψ).
• v(ϕ) = v(ψ[x/0])+ v(ψ[x/1]) (Boolean addition) if ϕ = ∃xϕ.
• v(ϕ) = v(ψ[x/0]) · v(ψ[x/1]) (Boolean multiplication) if
ϕ = ∀xϕ.

Boolean formulae can be encoded as words over a finite alphabet
and thus written down in Turing machine tapes. Here, we
encode quantified Boolean formulae as words over the following
alphabet:

6QBF = {∧,∨,¬,∀, ∃, (, ), 0, 1, true, false}

where each variable is represented by the binary expression of its
subindex, and true and false denote the Boolean constants.

We can now formally define the QSAT problem as well as its
restriction for PolyL.

Definition 3.3. Let QBF denote the set of quantified Boolean
formulae encoded as words of a fixed alphabet 6 and let var(ϕ)
for ϕ ∈ QBF denote the set of variables encoded in ϕ.

• QSAT is the subset of QBF formed by all encodings of
quantified Boolean sentences (i.e., formulae without free
variables) that evaluate to “true”.

• QSAT
pl

k
= {ϕ ∈ QSAT | |var(ϕ)|3 ≤ logk |ϕ|}.

It is well-known that QSAT is complete for PSPACE under Karp
reductions. See for instance Theorem 3.29 and its associated
lemmata in Balcázar et al. (1995). Using a similar strategy plus a
new concept of uniform completeness defined in the next section,

we show in this article that the family of problems {QSAT
pl

k
}k≥0

captures the essence of the most difficult problems in PolyL.

4. UNIFORM COMPLETENESS

The new notion of completeness (and hardness) that we define in
this section is grounded in the concept of uniformity borrowed
from circuit complexity theory (see e.g., Balcázar et al., 1990;
Immerman, 1999), hence we call it uniform completeness.

As a first step we need to define a notion of uniformity for
Turing machines.

Definition 4.1. Let M be a countably infinite class of Turing
machines such that for every integer k > 0 there is exactly one
machineMk ∈ M. We say thatM is uniform if there is a Turing
machineMM which for every input k ≥ 0 builds an encoding of
the correspondingMk ∈ M.

Instead of looking at isolated languages (or problems), we are
concerned here with families of languages (or problems).

Definition 4.2. A language family L is a countably infinite
class of languages of a same finite vocabulary. We say that L is
compatible with a language A if

⋃
Li∈L

Li = A.

Consequent with the previous definitions, we now consider
decidability in the context of families of languages and uniform
classes of Turing machines.

Definition 4.3. Let L be a language family andM be an uniform
class of Turing machines. We say that M uniformly decides L if
for every Li ∈ L there is anMj ∈ M such thatMj decides Li.

The following definition clarifies when we can say in this context
that a language (uniformly) belongs to a complexity class.

Definition 4.4. Let C be a complexity class and L be a language
family. A language A is uniformly in C via L if the following
holds:

• L is compatible with A.
• There is a uniform class of Turing machines M which

uniformly decides L.
• Each Turing machine in M satisfies the same resource

restrictions that define C.

For a uniform reduction of a language to a language family,
we simply require the existence of a standard polynomial time
many-one reduction to a single member of that family.

Definition 4.5. A language A is uniformly many-one reducible
to a language family L (denoted A ≤u

m L) iff there is a language
L ∈ L such that A is polynomial time many-one reducible to L,
i.e., iff A ≤m L.

We have now the necessary tools to define our uniform notion of
completeness (and hardness).

Definition 4.6. Given a complexity class C and a language family
L,

• A languageA is uniformly C-hard viaL iffL is compatible with
A and for any language B in C, we have that B ≤u

m L.
• A language A is uniformly C-complete via L iff it is uniformly

C-hard via L and uniformly in C via L.

Classical complete problems in complexity theory lead to some
interesting consequences such as Corollary 3.19c in Balcázar
et al. (1995) which states that if a PSPACE-complete problem
under Karp reductions is in P, then PSPACE = P. The following
lemma shows that our somehow “weaker” notion of uniform
completeness still allows us to derive similar kinds of results.

Lemma 4.1. Let A be uniformly PolyL-complete via a problem
family L. If A is uniformly in P via L, then PolyL ⊆ P.

Proof: Let M and M
′ be classes of deterministic Turing

machines that uniformly decide L and, respectively, witness
that A is uniformly in PolyL and P. Since we assume that A
is uniformly complete for PolyL via L, it follows by definition
that for each language B in PolyL there is an L in L such that
B ≤m L, and thus also a corresponding Turing machine MB,L
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that computes this reduction in polynomial time. Furthermore,
the fact that A is uniformly in P via L implies (again by
definition) that there is a deterministic TuringmachineML ∈ M

′

that decides L in polynomial time. Therefore, we can define a
deterministic Turing machine MB that decides B in polynomial
time. This shows that, under the assumptions in this lemma,
PolyL ⊆ P. The machine MB works by simply assembling
together MB,L and ML, redirecting the output of MB,L to a work
tape and makingML read its input from that work tape.

It is interesting to note that PolyL is included in the class of
problems that have quasi-polynomial time algorithms. This class

is defined as QP =
⋃

k≥0DTIME(2log
k n) (see Babai, 2016 among

others).

5. A UNIFORMLY COMPLETE LANGUAGE

In this section we show that the language QSATpl =
⋃

k≤0QSAT
pl

k
captures the essence of the most difficult problems

in PolyL. That is, we prove the following result.

Theorem 5.1. QSATpl is uniformly PolyL-complete via the

language family L = {QSAT
pl

k
}k≥0.

As in classical complexity theory, we essentially need to prove
that QSATpl is PolyL-hard and that it is indeed in this class.
The subtle but important difference lies in the fact this is
not possible in the traditional sense. We use instead the
concept of uniform completeness (and hardness) introduced in
Definition 4.6. Theorem 5.1 is thus a direct consequence of the
fact that the following two conditions hold via the language

family L = {QSAT
pl

k
}k≥0:

a. The language QSATpl is uniformly Poly-L-hard.
b. The language QSATpl is uniformly in PolyL.

Lemma 5.2 and 5.3 below prove, respectively, that both
conditions are meet.

Lemma 5.2. QSATpl is uniformly PolyL-hard via L.

Proof: Since by definition L = {QSAT
pl

k
}k≥0 and QSATpl =

⋃
k≤0QSAT

pl

k
, it is trivial to see thatL is compatible with QSATpl.

Now we need to show that for any language B in PolyL, B ≤u
m

L. Since this is the case if there is a language QBF
pl

k
for some k

such that B ≤m QBF
pl

k
, we only need to show that we can build a

quantified Boolean formula ϕ from the specification of a Turing
machineM with polylogarithmic space bound and input w, such
that ϕ evaluates to 1 iff M accepts w. Notice that the k can be as
big as necessary and that there will always be a k big enough so

that the encoding of ϕ belongs to QBF
pl

k
. Thus the formula ϕ can

be built exactly as in the proof that QSAT is PSPACE-hard (see
for instance Theorem 3.29 in Balcázar et al., 1995), since PolyL is
included in PSPACE.

Lemma 5.3. QSATpl is uniformly in PolyL via L.

Proof: We have already seen in the proof of the previous lemma
that L is compatible with QSATpl. Thus, we need to show
that there is a uniform class of Turing machines M which
uniformly decides L and that each Turing machine in M works
in polylogarithmic space.

We start by showing that, for every k ≥ 0, the

language QSAT
pl

k
is in DSPACE(logk n). Let 6QBF =

{∧,∨,¬,∀, ∃, (, ), 0, 1, true, false}. As discussed in section 3,
we can encode arbitrary quantified Boolean formulae as words
over this finite alphabet. We build a deterministic Turing
machineMk that takes as input a word w ∈ 6∗

QBF which encodes
a (not necessarily well-formed) quantified Boolean formula ϕ

and decides whether w ∈ QSAT
pl

k
working in space bounded

above by logk |w|.
Let eval be the recursive procedure described in Algorithm 1

which computes the value of a quantified Boolean formula in
prenex normal form. If the length ofw is n, then it is clear that the
depth of the recursion defining eval cannot exceed this number,
since the number of variables must be less than n. Furthermore,

since we actually need to decide whether w ∈ QSAT
pl

k
, we can

stop the recursion and return false if the quantifier free part of
the formula has not been reached at a recursion depth of |var(ϕ)|

which by definition of QSAT
pl

k
is less than logk n.

To implement eval we can use a stack, where in each entry we
record the quantifier prefix up to that point, using a four-tuple of
the form (Qi, b̄, v1, v2) for each quantifier Qi in the prefix of the
formula. The components of this tuple are as follows: Qi is either
∀ or ∃, b̄ is the index in binary of the quantified variable xi, v1
is the truth value 0 or 1 assigned to this variable (initially 0) and
v2 records the truth value of the sub-formulae ψi in Qixiψi. The
value of v2 is blank if the sub-formula ψi has not been evaluated
yet. Once ψi has been evaluated for first time with xi = 0, the
returned truth value 0 or 1 is stored in v2, v1 is updated to the
value 1 and the subformula ψi is evaluated again with xi = 1.
At this point, we update v2 to the truth value obtained by taking
the disjunction or conjunction of its current value with the one
returned by ψi, depending on whether Qi is ∃ or ∀, respectively.
This value v2 is then returned as value for the corresponding call
eval(Qixiψi).

Given that the described approach needs space |var(ϕ)| · (8+
log |var(ϕ)|) for each stack entry, and that we have seen that the
maximum recursion depth needed in our case is |var(ϕ)|, we get

Algorithm 1 Evaluation of a quantified Boolean formula in
prenex normal form.

1: procedure eval(ϕ)
2: if ϕ is quantifier-free then
3: return eval_quantifier_free(ϕ)

4: if ϕ has the form ∀xψ then

5: return eval(ψ[x/0]) ∧ eval(ψ[x/1])

6: if ϕ has the form ∃xψ then

7: return eval(ψ[x/0]) ∨ eval(ψ[x/1])
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that working space bounded by |var(ϕ)|3 is enough to implement
this evaluation strategy for the quantifier prefix of ϕ.

Regarding the evaluation of the quantifier free part of ϕ, note
that every time that we reach the last quantifier in the prefix,
we have a full valuation for the variables in the quantifier free
subformula. Thus we can evaluate this quantifier free subformula
in space bounded by log n. Note that the algorithm in Buss
(1987) for the evaluation of Boolean formulas with variables and
a value assignment works in alternating logarithmic time, which
is known to be in L (i.e., in deterministic logarithmic space). See
Theorem 2.32 in Immerman (1999) among other sources.

Thus, the size of the stack is what determines the upper bound
in the space needed byMk to decide whether w, i.e., the encoding

of ϕ, is in QSAT
pl

k
. Since this size is |var(ϕ)|3 and by definition

of QSAT
pl

k
we know that |var(ϕ)|3 ≤ logk n, we get that Mk

can decide whether w ∈ QSAT
pl

k
using space bounded above by

logk |w|.
Clearly, the class M =

⋃
k≥0Mk, where each Mk is

as described above, uniformly decides the language QSATpl.
Furthermore, since we defineMk constructively, there is a Turing
machineMM which for every input k builds an encoding of the
correspondingMk ∈ M. This concludes our proof.

6. CONCLUSION

In this article, we explore an alternative notion of completeness
for PolyL. This notion is inspired by the concept of uniformity
from circuit complexity theory. This results in a new concept
of uniform completeness, which shows that we can still isolate
the most difficult problems inside PolyL and draw some of the
usual interesting conclusions entailed by the classical notion of
complete problem (see in particular Lemma 4.1). The result is

relevant for it has been well-known since a long time that PolyL
has no complete problems in the usual sense. It is plausible that
this new concept of uniform completeness can be applied to other
interesting complexity classes for which there are no (known)
complete problems. The hope is to further our understanding of
practically relevant complexity classes. Examples of such classes
are deterministic and non-deterministic polylogarithmic time
(see Ferrarotti et al., 2020 and Ferrarotti et al., 2021 among
others) as well as the well-known quasi-polynomial time.
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