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This study investigates few-shot weakly supervised repetition counting of a human

action such as workout using a wearable inertial sensor. We present WeakCounterF that

leverages few weakly labeled segments containing occurrences of a target action from

a target user to achieve precise repetition counting. Here, a weak label is defined to

specify only the number of repetitions of an action included in an input data segment in

this study, facilitating preparation of datasets for repetition counting. First, WeakCounterF

leverages data augmentation and label diversification techniques to generate augmented

diverse training data from weakly labeled data from users other than a target user, i.e.,

source users. Then, WeakCounterF generates diverse weakly labeled training data from

few weakly labeled training data from the target user. Finally, WeakCounterF trains its

repetition counting model composed of an attention mechanism on the augmented

diversified data from the source users, and then fine-tunes the model on the diversified

data from the target user.

Keywords: wearable sensor, repetition counting, few-shot learning, weakly supervised learning, human action

1. INTRODUCTION

Recent proliferation of wearable sensor devices, such as smart watches, paved the way for
individuals to track their health and work efficiently. Specifically, in the wearable computing
research community, real-world applications based on body-worn inertial sensors in sports and
industrial environments have been actively studied (Aehnelt et al., 2014; Guo et al., 2017).

In this study, we focus on repetition counting methods for an action using body-worn inertial
sensors because they are effective in sports and industrial environments that need to record
repetition data of workouts for exercise management and factory worker logs for performance
verification of predefined tasks, respectively (Lukowicz et al., 2004; Maekawa et al., 2016; Xia et al.,
2019, 2020; Morales et al., 2022). Prior studies on repetition counting rely on supervised learning
such as neural networks. However, these methods require costly data annotation of target actions as
depicted in Figure 1, where a label specifying the start time of each occurrence of the target action
and another specifying a short segment containing repetitions of the target action are required.

To address these issues, we have proposed the so-called WeakCounter (Nishino et al., 2021),
which is a weakly supervised method developed for repetition counting. WeakCounter assumes
that an input, namely, a three-axis acceleration segment from a smartwatch, and a weak label,
which is defined to specify only the number of repetitions of the target action included in the
input segment, are given (Figure 1). Unlike prior studies, WeakCounter does not require the two
costly labels. An attention-based neural network is used inWeakCounter, which is equipped with a
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FIGURE 1 | Example labels for supervised methods used in prior studies and our study. This example assumes to count the number of repetitions of the squat action.

Our study requires only a numerical value for the input segment, i.e., the number of repetitions of the squat action.

FIGURE 2 | Smartwatch acceleration sensor data regarding push-up actions from nine participants, indicating the individual differences in sensor data. Blue, orange,

and green lines indicate x-, y-, and z-axis sensor data, respectively.

detection block that detects the occurrences of the target action
via an attention mechanism and a counting block that counts the
number of detected occurrences.

WeakCounter was evaluated through the leave-one-user-out
cross validation framework where labeled sensor data from
a test user is unavailable. Therefore, the different physical
traits of participants, which causes a difference in acceleration
waveforms of workouts as depicted in Figure 2, can deteriorate
the performance of the weakly supervised method. To address
this issue, this study proposes a few-shot weakly supervised
method for repetition counting, which is called WeakCounterF.
Therefore, we train a neural network for repetition counting
on few test user training data with weak labels. This study
assumes that a training system asks a test user (target user) to
perform a target action repeatedly. For example, after starting
acceleration data collection, the user performs three push-
ups, then, the data collection stops. Note that the number of
repetitions, namely, three, is requested by the system before the

collection starts. Because the user does not need to label the
acceleration data, that is, locating each occurrence of the actions
in the data, this approach significantly reduces the cost related to
data collection and annotation. This study leverages few weakly
labeled sensor data segments for each target action to achieve
few-shot repetition counting.

Few-shot weakly supervised learning of repetition counting is
challenging because (i) waveforms of a target action can vary even
when the same test user performs it, (ii) a test sensor data segment
measured from the test user actions can contain waveforms
unrelated to a target action, for example, other actions such as
resting/drinking water activities and other workouts, making it
difficult to construct a robust counting model from few weakly
labeled data, (iii) training a countingmodel on fewweakly labeled
segments with limited variety from the test user is difficult and
deteriorates the robustness of the model.

To address these issues, we first train a counting model on
weakly labeled sensor data obtained from multiple users other
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than the test user (source users), which enables constructing a
robust counting model. Here, we use an attention-based neural
network to specifically focus on a short sensor data segment
corresponding to the target action. Then, we leverage few weakly
labeled segments obtained from the test user to adapt the trained
counting model to the test user actions by fine-tuning the model.
To improve the fine-tuned model robustness, we extract short
segments each corresponding to individual occurrence of the
target action from the weakly labeled segment from the test
user by leveraging the correlation among the occurrences. Then,
we generate diverse training segments with different labels, i.e.,
the number of repetitions, by concatenating the extracted short
segments for fine-tuning using data augmentation, enabling to
construct a robust counting model.

The contributions of our research are as follows: (i) To the best
of our knowledge, this is the first application of few-shot weakly
supervised learning for repetition counting. (ii) The proposed
method is designed to construct a robust counting model using
few weakly labeled sensor data obtained from a test user. (iii) The
effectiveness of our method is investigated using real sensor data
collected from nine participants.

In the rest of this paper, we first review studies on repetition
counting, and transfer learning and few-shot learning for
activity recognition. We then present our proposed method for
few-shot repetition counting, which is called WeakCounterF,
and evaluate our method using sensor data collected in real-
world environments.

2. RELATED WORK

2.1. Repetition Counting Using
Acceleration Data
Repetition counting methods using time-series sensor data
can be categorized in two, namely, parametric and supervised
methods. Parametric methods rely on predefined parameters, for
example, the sensor data magnitudes corresponding to a target
action execution and time interval between two consecutive
occurrences of the target action (Seeger et al., 2011; Skawinski
et al., 2014, 2019; Sundholm et al., 2014; Bian et al., 2019).
These parameters should be selected a priori for each action
type. Recently developed supervised methods rely on neural
networks, such as recurrent networks and 1D convolution
networks, for time series data (Pernek et al., 2013; Mortazavi
et al., 2014; Soro et al., 2019). Even though the supervised
methods do not require predefined parameters, the occurrence
labels are significantly costly to prepare (Figure 1). Contrarily,
our method is designed as an end-to-end architecture for weakly
supervised learning.

WeakCounter (Nishino et al., 2021), which is a method
proposed in our prior study, trains a weakly supervised counting
model on labeled data obtained from users different from the test
user because obtaining labeled data from the test user is costly.
However, this approach suffers from differences in observed
sensor signals regarding the same workout type between different
users as depicted in Figure 2, which results in inaccurate
counting performance. In contrast, our current study leverages

few-shot weakly supervised learning to alleviate the sensor data
differences regarding different users.

2.2. Transfer and Few-Shot Learning for
Acceleration-Based Activity Recognition
Since wearable human activity recognition relying on deep
learning requires a considerable amount of labeled sensor
data, transfer learning techniques for wearable human activity
recognition have been actively studied by wearable and
ubiquitous computing research communities (van Kasteren et al.,
2010; Hu et al., 2011; Wang et al., 2018). Many of these
studies trained deep learning-based activity recognition models
on labeled sensor data acquired from source users, which were
then adapted to a target user by employing limited training data
from the target user. For example, Wang et al. (2018) proposed a
recognition network trained by minimizing the maximum mean
discrepancy (MMD) of data points that belong to the same class
between different domains.

Few-shot learning techniques, which transfer knowledge
from related tasks, have been studied to efficiently train
activity recognition models with limited training data for a
target task (Feng and Duarte, 2019; Deng et al., 2020). For
example, Feng and Duarte (2019) proposed a few-shot learning-
based activity recognition method that determines the initial
parameters of the recognition model of the target domain by
employing the similarity between the target and source domains.
WeakCounterF employs few-shot learning to count the actions
of a target user by fine-tuning a pretrained model that has
been trained on data from source users. However, unlike the
aforementioned models, WeakCounterF relies on limited weakly
labeled training data, which deteriorates the performance of
the fine-tuning process. To address this issue, we extract short
segments, each corresponding to the individual occurrence of a
target action, and generate diverse training data.

3. WEAKCOUNTERF: FEW-SHOT WEAKLY
SUPERVISED REPETITION COUNTING

3.1. Preliminaries
Given a three-axis acceleration data segment from a wearable
sensor such as a smart watch that contains occurrences of a
target action such as push-up and actions different from the
target action such as other types of workout and actions of
drinking water, the goal of this study is to estimate the number
of repetitions of the target action included in the segment.
To achieve this, we prepare training segments containing these
actions. However, because collecting a sufficient amount of
training segments from a target user is costly, we leverage training
segments collected from other users (source users). In addition,
to address the problem of sensor data difference between different
users, we ask the test user to perform the target action few times
and use the collected data with a weak label yt , i.e., the number of
repetitions, as additional training data. When we have multiple
target actions such as push-up, squat, and, sit-up, we prepare a
weakly labeled segment for each target action. In such case, we
also train a repetition counting model for each target action.
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FIGURE 3 | Overview of few-shot weakly supervised repetition counting method.

In summary, for each target action, a few weakly labeled
acceleration segments from both a test user and the source users
are provided as training data. A weakly labeled segment contains
occurrences of the target action, and a weak label specifying the
number of occurrences of the target action is associated with the
segment. Note that a weakly labeled segment collected from the
source user can contain actions other than the target action.

3.2. Method Overview
An overview of WeakCounterF is shown in Figure 3. The
proposed method comprises two main phases: pretraining and
fine-tuning. In the pretraining phase, we pretrain an attention-
based neural network for repetition counting of a target
action, WeakCounter-Net, on source users’ data in advance
(Nishino et al., 2021). When we have multiple target actions,
we prepare a network for each target action. To train a robust
pretrained network, we generate diverse training data from the
source users’ sensor data by employing data augmentation and
label diversification techniques. The counting network called
WeakCounter-Net is designed based on a counting method used
by humans, to achieve robustness.

The fine-tuning phase is composed of Generation of Fine-
tuning Dataset and Fine-tuning WeakCounter-Net. In Generation
of Fine-tuning Dataset, we construct a dataset that is used to
adapt the pretrained network to the target user from weakly
labeled data segments collected from the target user. We first
extract a short segment corresponding to each occurrence of a
target action from the weakly labeled segment. By replicating and
concatenating the extracted short segments of the occurrences,
we create a variety of composite segments, with each of them
composed of multiple occurrences of the target action. For Fine-
tuning WeakCounter-Net, the pretrained model was fine-tuned
on the generated dataset.

3.3. Pretraining Phase
3.3.1. Label Diversification and Data Augmentation
We first perform label diversification that increases the variation
of training labels. The basic idea of this method is simple. When

we concatenate several data segments, the ground truth label (i.e.,
no. of repetitions) of the concatenated segment is given by the
sum of the ground truth labels of the original segments. Based on
this idea, we can easily generate diverse weakly labeled data.

We perform label diversification for each pair of segments
from a pool of source users’ weakly labeled training segments.
Assuming that a pair consisting of segment s1 with label y1 and
segment s2 with label y2 is given. We concatenate s1 with s2 and
attach a label y1 + y2 to the concatenated segment. (s1 and s2 can
also be the same segment). This approach enables the generation
of NtC2 + Nt new labeled segments from the original Nt training
segments because we generate a new labeled segment from each
pair of training segments. Here, nCr =

n!
(n−r)!r!

.

Subsequently, for each of the labeled segments, we perform
data augmentation to generate Na diverse segments in terms of
the order of actions performed, amplitude of the action, speed
of the action, and sensor pose, thereby preventing overfitting.
Figure 4 shows an overview of the data augmentation process.
We first split the segments into subsegments because we shuffle
those subsegments in the following procedure. Here, the target
action should not be performed simultaneously at the breakpoint
of the split. Therefore, we compute the variance within a sliding
time window and select the center of the window with a variance
smaller than the threshold as the breakpoint. We then iterate the
following procedure Na times. For each subsegment, we perform
the following operations according to (Morris et al., 2017; Yu
et al., 2017):

• Scaling: We change the scale of the sensor data magnitude
by multiplying a random value sampled from the uniform
distribution U(1− cs, 1+ cs) for each subsegment.
• Time warping: We elongate or contract each subsegment

by up/down-sampling the subsegment using the linear
interpolation such that the length of the converted subsegment
becomes l ·U(1− ct , 1+ ct), where l is the length of the original
subsegment.

We then shuffle and concatenate the subsegments to generate a
complete segment. Finally, we randomly shift the acceleration

Frontiers in Computer Science | www.frontiersin.org 4 July 2022 | Volume 4 | Article 925108

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Nishino et al. Few-Shot Weakly Supervised Repetition Counting

FIGURE 4 | Procedure of data augmentation.

values for each axis to achieve robust counting against the
differences in sensor poses by adding a bias value sampled from
the uniform distribution U(−cb, cb).

3.3.2. WeakCounter-Net
When humans count the number of apples on a table, they first
identify each apple and then count the number of identified
objects (i.e., apples). Similarly, WeakCounter-Net is designed to
be equipped with a detection block that detects the occurrences
of the target action using an attention mechanism and a counting
block that counts the number of detected occurrences. The
detection block outputs a 1D time-series that exhibits a peak
at the time of occurrence of the target action, and the output
is fed into the counting block. As a result, we can train the
counting block to count the number of peaks within the 1D time-
series. This architecture is expected to robustly count an arbitrary
number of occurrences even if the variation in the training labels
is limited.

As shown in Figure 5, the model consists of detection and
counting blocks. An attentionmechanism (Xiao et al., 2015; Zeng
et al., 2018; Yu et al., 2019) is introduced into the detection
block to focus on the target action because unrelated actions can
be included within an input segment. First, we perform feature
extraction with 1D convolution layers to output Df -dimensional

time-series F ∈ R
Df×L, where L is the data length. Then, we

compute attention by a = sigmoid[Conv2(F)], where Conv2(·)
is two 1D convolution layers with dropout in the attention
mechanism, as shown in Figure 5.

Here, a ∈ R
1×L indicates the importance (i.e., attention)

of each data point in F. After performing element-wise
multiplication of the attention time series by F, by summing the
result over the axis of dimension (i.e., Df ), the detection block
outputs a 1D time series (i.e., 1 × L) that exhibits a peak at the
occurrence of the target action (see bottom of Figure 5). The

counting block processes the 1D time series with 1D convolution,
max pooling, and fully connected layers to output an estimate.

We train WeakCounter-Net on weakly labeled data from
source users by employing the Adam optimizer (Kingma and Ba,
2014) to minimize the mean squared error between the estimates
and the ground truth. When we train WeakCounter-Net for a
certain action, such as push-up, we employ segments containing
push-up actions with weak labels for the action collected from the
source users for the training.

3.4. Fine-Tuning Phase
Here, we fine-tune the pretrained WeakCounter-Net model
by employing limited training data from the target user. As
mentioned above, a few sensor data segments containing a few
repetitions of the target action collected from the test user are
provided. With these segments, we generate a diverse dataset and
then fine-tune the pretrained model on the dataset.

3.4.1. Generation of Fine-Tuning Dataset

3.4.1.1. Extraction of Each Occurrence of Target Action
In this process, we first extract each occurrence of the target
action from the weakly labeled segment. Note that the segment
has only a label that specifies the number of repetitions of the
target action included in the segment. By employing the weak
label, we extract each occurrence of the target action, that is,
determine the start time and length of each occurrence. The
upper part of Figure 6 shows an example sensor data segment
collected from a test user. As shown in the figure, we can identify
three occurrences of the target action “sit-up.” However, we can
also see waveforms unrelated to the target action at the beginning
and end of the segment, which correspond to actions related to
the start and end of the data collection. In this method, we first
roughly determine the start time and length of each occurrence
by employing auto-correlation and then determine the exact start
time and length using an optimization technique.
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FIGURE 5 | Architecture of WeakCounter-Net.

FIGURE 6 | Determining the length of the target action using auto-correlation.

1. Determining candidates of the length of target action: Since
the segment contains repetitions of the target action, we
can estimate the duration (length) of the target action by
computing the autocorrelation of the segment. However, as
illustrated in Figure 6, waveforms unrelated to the target
action are included in the segment, making it difficult to
estimate the duration by simply using the autocorrelation.
Therefore, we extract a subsegment with the length of l/n
from the segment using a sliding window, where l is the
length of the segment, and then calculate the autocorrelation
for each subsegment. Consequently, we can expect that some
subsegments that do not contain unrelated waveforms are
extracted. Figure 6 shows an example extracted subsegment
and computation of the auto-correlation coefficients by
calculating the Pearson correlation between the original
subsegment and shifted subsegment while changing the shift
value. As shown in Figure 6, the shift value of le yields
the maximum peak of the correlation coefficient, indicating
that the duration of the target action is le. We calculate the
autocorrelation coefficients for the subsegments by changing
n and take the shift values yielding the top-Nl peaks of
autocorrelation coefficients as candidates for the length

Algorithm 1 Determining candidates of the length of target
action.
Input: ACC,yt /* input three-axis acceleration data and ground

truth label ∗/
Output: Lcan /* candidates of the length of target action ∗/

/* pre-processing ∗/
1: ACCs ← Scaling each dimension of ACC with IQR
2: ACCp ← Smoothing ACCs with low pass filter and combine

three dimensions with RMS
3: Vcan =[], Ican =[]
4: /∗ extracting sub-segments with length l/n ∗/
5: for n = 1 . . . ns do
6: ls← l/n
7: /∗ sliding sub-segment with stride ws ∗/
8: for j = 0,ws, . . . l− ls do
9: /∗ calculate auto-correlation of sub-segment and find

max peak ∗/
10: ssub ← ACCp[j : j+ ls]
11: coauto ← Calculate sequence of auto-correlation for ssub
12: Vpeak, Ipeak ← Value and index of each detected peak in

coauto
13: vmax ← max(Vpeak), imax ← argmax(Vpeak)
14: Vcan.append(vmax), Ican.append(imax)
15: end for

16: end for

17: Osort = argsort(Vcan) /∗ indices of Vcan are sorted in
descending order of peak values ∗/

18: Lcan ← Ican[Osort[:Nl]] /∗ extract top-Nl peaks in Osort ∗/

of the target action. The detailed procedure is presented
in Algorithm 1.

2. Determining the start time of the first occurrence: We then
roughly estimate the start time of the first occurrence of the
target action by employing each candidate of the estimated
length le in the above procedure. Note that the weak label yt
(i.e., the number of occurrences of the target action) of the
segment is given, and the action is assumed to be continually
performed. Therefore, when we assume that the start time
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of the first occurrence is ts1 and the number of occurrences
is yt , the sensor data similarity among s(ts1, le), s(ts1 + le, le),
s(ts1 + 2le, le), . . . , s(ts1 + (yt − 1)le, le) should be high, where
s(t, l) shows a short data segment starting at time t with a
length of l, as shown in Figure 7A. In our method, we scan
the segment to find ts1 that yields the minimum dynamic time
warping (DTW) distance among the short segments, which is
calculated as follows:

∑

i,j∈Nyt

DTW(s(ts1 + i · le, le), s(ts1 + j · le, le)), (1)

where DTW(·, ·) is the DTW distance between two data
segments, and Nyt is a set of integer values larger than or
equal to zero and smaller than yt . Figure 7A exhibits example
identified occurrences based on estimated start time and
duration. The detailed procedure is presented inAlgorithm 2.

3. Determining the start time and length of each occurrence: In
the above procedure, we roughly obtained the start time of the
first occurrence and the duration. Note that we assumed that
the duration of all occurrences are identical. Here, using an
optimization technique, we obtain the start time and duration
of each occurrence because the duration of each occurrence
can be different, and there can be a short blank between
two consecutive occurrences. The objective function of the
optimization is

∑

i,j∈Nyt

DTW(s(tsi , lsi ), s(tsj , lsj )), (2)

where tsi is the start time, and lsi is the length of the ith
occurrence. We find tsi and lsi that minimize the objective
function by using the L-BFGS-B optimizer (Zhu et al.,
1997). During the optimization, the following restrictions are
introduced to obtain final results that do not deviate from
the initial estimates obtained in the previous procedure. (i)
The absolute time difference between the estimated start time
of the ith occurrence and the initial start time estimated
in the previous procedure should be smaller than le. (ii)
The difference between the estimated lengths of the ith
occurrence should be similar (<0.2 le). Figure 7B shows
example identified occurrences by the optimization.

3.4.1.2. Generation of Composite Data
In the above procedure, we obtained estimates of the start time
and length of each occurrence. By replicating and concatenating
the segments corresponding to the occurrences, we generate
training data to fine-tune the pretrained model. Here, we
generateNf weakly labeled segments for each label value yi, where
1 ≦ yi ≦ ymax. We generate a weakly labeled segment with label
yi as follows:

1. We randomly select yi occurrences (short data segments)
from a weakly labeled segment from the target user. Recall
that we know the start and end times of each occurrence
in the weakly labeled segment from the target user in the
above procedure. To improve the robustness of the counting
model, we randomly change the start and end times of an
occurrence by adding r to the start/end time when we extract
the occurrence, where−0.1le < r < 0.1le.

2. We concatenate the extracted yi segments. To improve
the robustness of the counting model, we randomly insert
segments unrelated to the target action between occurrences
of the target action. Unrelated segments are the segments that
are not extracted as occurrences of the target action in the
weakly labeled segments from the target user. When we have
other target actions (e.g., other workout types), we also use
short segments of other target actions as unrelated segments.

3. To generate diverse training data, we also leverage data
augmentation techniques mentioned in Section 3.3.1.

3.4.2. Fine-Tuning WeakCounter-Net
We fine-tune the pretrained WeakCounter-Net on the fine-
tuning dataset generated in the previous procedure. The learning
rate used in this procedure is smaller than that of the pretraining
phase, as shown in Table 1.

4. EXPERIMENTS

4.1. Dataset and Evaluation Methodology
We collected 100 Hz three-axis acceleration data from ASUS Zen
Watch three devices worn on the right wrists of nine subjects.
A data collection session for an input segment contained three
types of workouts in a random order: push-ups, squats, and
sit-ups. The number of occurrences of each action was randomly

FIGURE 7 | Determining start time and length of each occurrence of a target action in a weakly labeled segment for sit-up workout. (A) Determining rough start time

of the first occurrence ts1 and duration le. In this case, we assume that the duration of the 2nd and 3rd occurrences is also le. Therefore, the start times of the 2nd and

3rd occurrences are decided based on ts1 and le. (B) Determining start time and duration of each occurrence using optimization.
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Algorithm 2 Determining the start time of the first occurrence
and the length of target action.

Input: ACCp, yt , Lcan
Output: le, ts1
1: /∗ find the optimal length le in candidates Lcan ∗/
2: DTWcan = [], Segcan = []
3: for lc in Lcan do

4: /∗ calculate Equation (1) by changing start time of the first
occurrence ∗/

5: D = []
6: for x = 0 . . . l− le do
7: Segs = [s(x, lc), . . . , s(x + (yt − 1)lc, lc)] /∗ extracting

short segments, with each of them corresponding to an
occurrence ∗/

8: Pseg ← all pairs of Segs
9: dsum = 0 /∗ storing sum of DTW over all pairs of Segs ∗/

10: for p in Pseg do

11: /∗ p shows pair of two short segments and DTW(p)
calculates the distance between two segments ∗/

12: dsum+ = DTW(p)
13: end for

14: D.append(dsum)
15: end for

16: /∗ scan local minima in D and remove cases where static
segments are included in short segments ∗/

17: Vm, Im ← Value and index of each of detected minima in
D

18: STDm = 0 /∗ storing minimum standard deviation of the
segment ∗/

19: /∗ repeat until STDm exceeds the threshold value to avoid
including static segments ∗/

20: while STDm <= thstd do
21: vmin ← min(Vm), imin ← argmin(Vm)
22: ts1 = imin

23: S = [s(ts1, lc), . . . , s(ts1 + (yt − 1)lc, lc)]
24: STDm =min([STD(s(ts1, lc)), . . . , STD(s(ts1 + (yt − 1) ∗

lc, lc))])
25: Vm.pop(vmin), Im.pop(imin)
26: end while

27: dall ← Sum of DTW over all pairs of S
28: DTWcan.append(dall), Segcan.append(S)
29: end for

30: /∗ return le and ts1 that yield minimum Equation (1) ∗/
31: Odtw ← argmin(DTWcan)
32: le = Lcan[Odtw]
33: ts1 ← Start point of Segcan[Odtw][0]

selected between 1 and 20. Each session also contained unrelated
motions such as drinking water and wiping the sweat. The
subjects also obtained a few weakly labeled segments for fine-
tuning by performing each action two to five times on different
days. Specifically, we obtained four weakly labeled segments for
fine-tuning for each subject. Table 2 presents an overview of
the dataset.

TABLE 1 | Parameters used in the methods and experiments.

Parameter Value Description

Na 100 The number of segments to be generated from one

segments in data augmentation

cs 0.4 The magnitude for scaling in data augmentation

ct 0.3 The magnitude for resampling with time-warping in data

augmentation

cb 5.0 The maximum absolute value to be shifted in data

augmentation

ns 4 The parameters to determine the length of the

sub-segment in Algorithm 1

Nl 5 The number of candidates of the length of target action

ws 100 The stride of sliding windows in Algorithm 1

Nf 100 The number of weakly labeled segments to be generated

lrp 0.001 The learning rate for pretrainig

lrf 0.0001 The learning rate for fine-tuning

ep 100 The epoch number for pretraining

ef 50 The epoch number for fine-tuning

Leave-one-subject-out cross-validation was performed during
the experiment. Specifically, one subject was considered as
a target user, and the remaining subjects were considered
as source users. We generated 100 composite data from
a few weakly labeled segments of a source user to train
WeakCounter-Net. We also generated 5, 000 composite data
from each weakly labeled segment of each target user for fine-
tuning.

To validate the effectiveness of the proposed method, we
prepared the following variants:

• WeakCounterF: This is the proposed method. This method
fine-tunes a pretrained WeakCounter-Net on four weakly
labeled segments from a target user (i.e., yt = 2, 3, 4, 5).
• WeakCounterF (one-shot): This is the proposed method. This

method fine-tunes a pretrainedWeakCounter-Net on only one
weakly labeled segment from a target user.
• CNN: This is a variant the proposed method. This

method employs a 1D convolutional neural network
instead of WeakCounter-Net. The network is composed
of three 1D convolutional layers and one output
layer.
• Only-composite: This method trains WeakCounter-Net

on composite sensor data generated from weakly labeled
data from a target user for fine-tuning. This method
does not pretrain WeakCounter-Net on source users’
data.
• WeakCounter: This is our prior method that does not use few-

shot learning (Nishino et al., 2021). Therefore, this method
does not fine-tune WeakCounter-Net on a target user’s weakly
labeled data.

We evaluated these variants based on the mean absolute
error (MAE) (Skawinski et al., 2019) of their estimates. The
experimental parameters used in our experiments are listed
in Table 1.
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TABLE 2 | Overview of dataset.

Subject
Number

of segments

Average

length

of segment (s)

Number of

weakly labeled

segments

Average length of

weakly labeled

segments (s)

Age
Height

(cm)

Weight

(kg)

A 40 135.1 12 20.4 23 182 85

B 20 134.0 12 20.1 24 176 65

C 20 145.1 12 15.0 23 164 68

D 5 156.2 12 19.4 22 179 67

E 5 136.6 12 17.1 22 172 58

F 5 90.0 12 13.0 22 171 69

G 5 151.0 12 15.2 22 176 66

H 5 94.8.0 12 16.2 22 176 70

I 5 99.8 12 13.8 22 167 49

TABLE 3 | MAE of each method for each type of workout.

Push-up Squat Sit-up Average

CNN 1.02± 0.42 2.81± 2.05 1.02± 1.11 1.62± 1.57

Only-composite 3.32± 2.74 2.71± 1.89 1.64± 0.92 2.53± 2.04

WeakCounter 1.37± 0.89 2.03± 2.04 0.88± 0.69 1.43± 1.38

WeakCounterF 0.71± 0.65 1.35± 0.76 1.01± 0.60 1.02± 0.70

WeakCounterF (one-shot) 0.93± 0.67 1.32± 0.93 1.01± 0.71 1.09± 0.79

The bold value shows the lowest MAE for each type of workout.

TABLE 4 | MAE of each subject for each method.

A B C D E

CNN 0.85 ± 0.10 0.50 ± 0.28 2.80 ± 3.00 1.80 ± 1.91 1.73 ± 0.92

Only-composite 1.30 ± 0.31 4.85 ± 4.10 3.50 ± 2.08 2.60 ± 1.64 2.07 ± 2.48

WeakCounter 0.71 ± 0.25 0.65 ± 0.33 1.80 ± 1.26 3.13 ± 3.11 1.47 ± 0.31

WeakCounterF 0.63 ± 0.32 0.67 ± 0.23 1.43 ± 0.94 0.87 ± 1.03 1.20 ± 0.40

WeakCounterF 0.85 ± 0.47 0.71 ± 0.29 1.57 ± 0.90 0.78 ± 0.71 1.13 ± 0.51

(one-shot)

F G H I Average

CNN 1.27 ± 1.92 3.47 ± 1.33 1.00 ± 1.30 1.13 ± 0.42 1.62 ± 1.57

Only-composite 1.80 ± 1.33 1.93 ± 1.78 2.13 ± 1.10 2.80 ± 2.09 2.55 ± 2.04

WeakCounter 0.87 ± 0.46 1.73 ± 0.42 0.53 ± 1.21 1.93 ± 1.70 1.43 ± 1.38

WeakCounterF 1.07 ± 0.31 1.07 ± 0.12 0.60 ± 0.40 1.67 ± 1.47 1.02 ± 0.70

WeakCounterF 1.10 ± 0.39 1.22 ± 0.62 0.55 ± 0.28 1.87 ± 1.39 1.09 ± 0.79

(one-shot)

The bold value shows the lowest MAE for each subject.

4.2. Results
4.2.1. Performance
Table 3 lists the MAE of each method for each type of workout.
As shown in the table, the proposed method achieved the
lowest MAEs for these workout types. The average MAE for
WeakCounterF is lower than that for WeakCounter by 0.41,
indicating the effectiveness of fine-tuning WeakCounter-Net

TABLE 5 | MAE of each type of workout for WeakCounterF (one-shot) fine-tuned

on a weakly labeled segment with label yt.

yt Push-up Squat Sit-up Average

2 0.86± 0.60 1.51± 0.92 0.99± 0.33 1.12± 0.70

3 0.84± 0.53 1.16± 0.96 1.00± 0.71 1.00± 0.74

4 1.13± 0.94 1.23± 0.83 1.01± 1.02 1.19± 0.90

5 0.84± 0.59 1.38± 1.14 0.83± 0.67 1.02± 0.84

on few weakly labeled data. This table also highlights the
effectiveness of one-shot learning because WeakCounterF (one-
shot) also achieved lower MAEs thanWeakCounter. The average
MAE for CNN is greater than that for WeakCounterF by
0.60, indicating the important of the attention-based counting
network. Additionally, the MAEs of Only-composite are much
greater than those of the other methods. These results indicate
that using only weakly labeled segments from a target user is
ineffective. This is because it is difficult to train a robust counting
network on weakly labeled segments only from a target user.

Table 4 lists theMAEs for each subject. In few cases, theMAEs
forWeakCounterF are greater than those forWeakCounter, such
as Subject E. However, WeakCounterF can reduce the MAEs in
many cases. In the results of WeakCounter and CNN, the MAEs
of few subjects are larger than 3.0 because of the large sensor
data differences among the subjects. However, WeakCounterF
can address these issues by employing composite data generated
from weakly labeled segments from a target user. As shown in
Table 4, CNN, Only-composite, and WeakCounter sometimes
exhibit very poor performance for certain subjects. In contrast,
WeakCounterF achieves stable performance for all the subjects.

4.2.2. Effect of the Number of Actions in Weakly

Labeled Segments on One-Shot Learning
WeakCounterF (one-shot) employs a weakly labeled segment
from a target user. Here, we investigate the relationship between
counting performance and the number of occurrences of a target
action (i.e., yt) included in a weakly labeled segment. Table 5
presents the results of WeakCounterF (one-shot) for different
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TABLE 6 | MAE when detecting the start/end time of each occurrence for each yt value (samples).

yt Push-up Squat Sit-up Average

Start points 2 25.35 ± 14.51 27.35 ± 31.80 50.09 ± 60.38 34.26 ± 40.36

3 17.45 ± 13.44 28.42 ± 24.79 24.99 ± 24.03 23.62 ± 20.72

4 18.68 ± 13.30 22.29 ± 12.80 31.47 ± 28.86 24.15 ± 19.78

5 19.96 ± 13.44 19.12 ± 7.54 40.39 ± 21.74 26.49 ± 17.81

End points 2 21.71 ± 13.57 28.93 ± 31.20 56.76 ± 68.78 35.80 ± 45.27

3 20.09 ± 16.83 25.03 ± 20.20 28.13 ± 24.47 24.42 ± 20.21

4 16.60 ± 10.64 26.33 ± 14.81 38.02 ± 32.43 26.98 ± 22.48

5 16.87 ± 18.51 17.78 ± 9.60 37.29 ± 23.78 23.98 ± 19.92

Average 2 23.53 ± 13.38 28.14 ± 31.10 53.42 ± 64.26 35.03 ± 42.46

3 18.77 ± 14.46 26.73 ± 21.57 26.56 ± 24.00 24.02 ± 19.97

4 17.64 ± 10.83 24.31 ± 13.23 34.74 ± 28.90 25.56 ± 19.96

5 18.41 ± 12.88 18.45 ± 6.90 38.84 ± 21.80 25.23 ± 17.50

yt values. We assumed that the occurrence extraction process is
robust when yt is high. Therefore, we assumed that the MAEs for
larger yt values will be smaller. However, as shown in Table 5,
the MAEs for WeakCounterF (one-shot) were not significantly
affected by the yt values. This may be because WeakCounterF
(one-shot) is robust against small errors in detecting each
occurrence because this method adds random noises to the
estimated start time and length (end time) of each occurrence
when extracting the occurrences.

4.2.3. Error in Detecting Start and End Times of Each

Occurrence
Here, we investigate the performance of our method for detecting
the start and end times of each occurrence. Table 6 lists the
errors (in the samples) of the proposed method. The errors were
calculated based on the manually annotated ground truth for the
start and end times of each occurrence. Because the sampling rate
of the sensor was 100 Hz, an error of 25 samples corresponds
to 0.25 s. The results reveal that the MAEs when yt = 2 are
greater than those in the other cases. As mentioned above, when
the number of occurrences included in a weakly labeled segment
from a target user is large, the prediction of the duration of a
target action is robust.

Here, the average duration of each occurrence of the push-up,
squat, and sit-up actions were 177.8, 229.1, and 269.7 (samples),
respectively. To improve the robustness, when we extract each
occurrence, we randomly changed the start/end times by adding
r to the predicted start/end times where −0.1le < r < 0.1le.
A value of 0.1le corresponds to 10% of the estimated duration
of the target action. Therefore, we consider that the error in the
start/end time detection to be reasonable.

5. DISCUSSION

While the above results revealed the effectiveness of the proposed
method, there is room for performance improvement. Although
the errors in detecting the start/end time of each occurrence
of a target action were small on average, we identified several
cases where the proposed detection method yielded large errors

depending on target actions and subjects, with the maximum
error of 180 samples. Because the estimation of the duration of
a target action did not have large errors, it is considered that the
challenge lies in the estimation of the start time. We believe that
the use of techniques such as motif detection can improve the
estimation of the start/end time.

The detection results of the start/end time and the results of
WeakCounterF (one-shot) for each yt indicate that, even if the
start/end times are accurately detected, the proposed method
cannot always achieve high counting performance. When yt
is 4 in push-up, the start and end times were detected with
smaller errors than the other yt values. However, the counting
error for yt = 4 by WeakCounterF (one-shot) was larger
than the other yt . The results indicate that there are some
issues regarding the method of generating composite data from
extracted segments. As a part of our future work, we plan to
generate more diverse training data by performing additional
diversification operations.

In addition, because our experiment was conducted offline
with well-segmented data, we plan to validate our method on
real-time data.We believe thatWeakCounterF also achieves good
performance for real-time data by simply extracting segments
with a certain length from the real-time data and feeding them
into WeakCounter-Net. Note that, when we extract segments
from the real-time data, it is important to avoid setting a
breakpoint of the extraction at an occurrence of a target
action. Similar to the data augmentation procedure, we can
find moments with small variances and set the moments as
the breakpoints.

6. CONCLUSION

This study proposed a new method for the few-shot weakly
supervised repetition counting of human actions such as
workouts using a wearable inertial sensor. The proposed
method leverages few weakly labeled segments containing
the occurrences of a target action from a target user to
achieve precise repetition counting. Our experiments revealed
that few-shot and one-shot learning based on our method
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achieved small errors for repetition counting. As a part
of our future work, we plan to improve the proposed
method to achieve few-shot weakly supervised real-time
repetition counting.
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