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An algebra for local histograms

Jon Sporring1,2* and Sune Darkner1

1Department of Computer Science, University of Copenhagen, Copenhagen, Denmark, 2Center for

Quantifying Images From MAXIV (QIM), Lyngby, Denmark

In this article, we consider local overlapping histograms of functions

between discrete domains and codomains. We develop a simple algebra

for local histograms. Based on a separation of overlapping domains into

non-overlapping domains, we (1) show how these can be used to enumerate

the size of the set of possible histograms given the local histogram domains,

and (2) enumerate the number of functions, which share a specific choice of a

set of local histograms. Finally, we present a decoding algorithm, which given

a set of overlapping histograms, and calculate the set of functions, which share

these histograms.
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1. Introduction

Inspired by Koenderink and Doorn (1999), we have for many years worked with

images, and features derived from local histograms, and a nagging question has been,

what the degrees of freedoms remain, given a set of overlapping histograms. This paper

presents a theoretical investigation into the relationship between sets of local histograms

and functions between discrete domains and codomains of any dimension. We describe

an algebra of histograms, which is strongly related to the algebra of sets on the function

domain and multisets: Given a set of local histogram’s domains, h(Xi), Xi ⊂ X, where X

is the full domain, andXi are subsets thereof, such that
⋃

i Xi = X, we factorX into a new

set of disjoint subsets {X′
j},

⋃

j X
′
j = X, and with this, we are able to count the number

of independent histograms, which jointly describe the total set of local histograms, and

which leads to a simple countable, generative model for functions drawn from these

histograms. Finally, we present a simple algorithm for generating the set of functions,

which share a particular set of local histograms overlapping or not.

Our work is an extension of Sporring and Darkner (2022), where 1-dimensional

signals are considered and the concept of metameric classes is introduced in the concept

of local histograms. The article restricts itself to binary signals from their densely

overlapping histograms. In Wu et al. (2000), the authors consider normalized histogram

of images filtered with Gabor kernels (Gabor, 1946), and in particular, the limiting case

of the discrete domain converging to Z2.

This paper is organized as follows. In Section 2, we present the histogram-algebra,

in Section 3 we show how the number of unique functions sharing a specific set of

histograms is generated. In Section 4, we present the algorithm for calculating the set

of functions, which share a given set of local histograms, and finally, Section 6 gives

concluding remarks.
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2. Histograms as Infintely-Additive
set functions

In the following, we will define an algebra for discrete

histograms of disjoint domains, and we will extend this to

non-disjoint domains by repartitioning domains.

Consider discrete domain X, co-domain A, and a functions

f :X → A between them, such that the histogram h :A → Z+

hX(a) =
∑

x∈X

δ(f (x)− a), (1a)

δ(x) =







1, when x = 0,

0, otherwise,
(1b)

is defined. Conceptually, we think of X as d-dimensional

spatial domainX = {1, 2, 3, . . . , n}d with side-lengths n > 0, and

A as a an alphabet ofm > 0 different gray values A = {1, . . .m},

but for the properties of possibly overlapping histograms, the

interpretation of the values of X and A is not important, and X

and A could as well be the set {cow, cat, fish} or color triplets

{(0, 0, 0), (0, 0, 1), . . .}. As long as we can define a one-to-one

mapping to an index set, we need only to concern ourselves with

this index.

Two key properties of a histogram are that

Property 2.1. Histograms are non-negative, ∀a∈Ah(a) ≥ 0.

Property 2.2. Every value f (x), x ∈ X is counted once and only

once.

A direct consequence of Property 2.2 is that

∑

a∈A

hX(a) = |X|. (2)

In this article, we are interested in counting possible

histograms and for given histograms, counting the number of

possible function. Let’s start by examining the number of unique

histograms that exists for a single domain and co-domain. Let

HX = {hiX}, ∀i,jh
i
X 6= h

j
X be the set of unique histograms. Its

size may be calculated as unordered sampling with replacement,

where we visually represent each element in X with a “•”

and each bin edge with a “;.” Then the string “• • •; •; ; . . .”

corresponds to the histogram [1; 2; 3; . . .] → [3; 1; 0; . . .].

For brevity, it is convenient to assume that an ordering of the

alphabet exists such that we may write the before mentioned

histogram simply as [3; 1; 0; . . .]. The string will be |X|+ |A|−1

long, and all possible histograms can be produced by selecting

|A| − 1 positions in this string for the “;” character. Thus, the

number of unique histograms for a given domain X is given by

the binomial coefficient,

|HX | =

(
|X| + |A| − 1

|A| − 1

)

=

(
|X| + |A| − 1

|X|

)

. (3)

In the following, we will consider possibly overlapping,

local histograms over the domain X. Our expositions will be

divided into first non-overlapping or disjoint domains, and then

we will show how overlapping domains can be repartitioned

into disjoint domains, and how these relate to the original

overlapping domains.

2.1. Histograms over disjoint domains

Consider a partitioning of X into k < ∞ disjoint

subdomains X =
⋃k

i=1 Xi, where ∀i 6=jXi ∩ Xj = ∅. Due to

Property 2.2, h is a finitely-additive set function (Stover, 2022),

and hence,

k
∑

i=1

hXi (a) = h⋃

i Xi
(a) = hX(a). (4)

As a consequence, h∅(a) = 0, and addition of histograms

of disjoint domains is commutative and associative. The

subtraction hY (a)− hX(a) is a histogram when X ⊆ Y , e.g.,

hX∪Y = hX + hY ⇔ hX∪Y − hX = hY ⇔ hX∪Y − hY = hX ,

(5)

omitting the argument a for brevity. However, subtracting any

two histograms in general will likely produce negative values

violating Property 2.1, and although useful at times, the result

will not be a histogram.

Since the sets Xi are disjoint, the size of the set of all possible

histograms of X is found by extending Equation (3) directly,

∣
∣H

∣
∣ =

k
∏

i=1

|HXi |. (6)

2.2. Partitioning of non-disjoint sets

For a set of k non-disjoint domains X = {Xi} of X =
⋃k

i=1 Xi, we can repartition X into disjoint domains of unique

overlap of Xi

X′
I =





⋂

j∈I

Xj



 \





⋃

j∈{0,1,...n−1}\I

Xj



 , I ∈ Pk, (7)

where Pk is the powerset of {1, 2, . . . , k}, e.g., P3 =

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. With this notation,

we find the original sets as,

Xi =
⋃

p∈Pk : i∈p

X′
p. (8)

Example 2.1. As an example, consider 3 sets X1, X2, and X3,

there are 7 unqiue intersections as illustrated in Figure 1 together

with the powerset naming convention.
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FIGURE 1

The naming convention for generating unique, non-overlapping

domain parts are identified from X0, X1, and X2.

That is, X′
{1,2} = (X1 ∩ X2) \ X3 and X1 = X′

{1} ∪ X′
{1,2} ∪

X′
{1,2,3} ∪ X′

{1,3}.

Example 2.2. As a concrete example, consider the domain

X = {1, 2, . . . , 6} and the codomain A = {1, 2, 3}, and define

X1 = {1, 2, 3, 4}, X2 = {3, 4, 5, 6}. Assuming the usual ordering

of integers, we can illustrate this overlap on a line as,

X = [

X1
︷ ︸︸ ︷

1; 2; 3; 4; 5; 6
︸ ︷︷ ︸

X2

]. (9)

Using Equation (7) we find that P2 = {{1}, {2}, {1, 2}} and

that X′
{1} = {1, 2}, X′

{1,2} = {3, 4}, and X′
{2} = {5, 6}. Each of

these subdomains are of size 2, and thus, the by Equation (3),

number of possible histograms of each is
(2+3−1

3−1

)

= 6, and the

set of possible histograms is

HXI = {[2; 0; 0], [1; 1; 0], [1; 0; 1], [0; 2; 0], [0; 1; 1], [0; 0; 2]} ,

I ∈ P2. (10)

Since there are 3 disjoint regions each with 6 possible

histograms, there are 63 = 216 combinations of these.

Introducing a natural extension of our notations on the domains

to their corresponding histograms, one of these is,

h{1} = hX′
{1}

= [1; 1; 0], (11a)

h{1,2} = hX′
{1,2}

= [1; 0; 1], (11b)

h{2} = hX′
{2}

= [0; 2; 0], (11c)

in which case,

h1 = hX1 = h{1} + h{1,2} = [1; 1; 0]+ [1; 0; 1] = [2; 1; 1]

(12a)

h2 = hX2 = h{1,2} + h{2} = [1; 0; 1]+ [0; 2; 0] = [1; 2; 1].

(12b)

Since these overlapping histograms have been generated by

histograms on their disjoint parts, we are sure that a function

exists on X which has histograms h1 and h2. Further, since

histograms are finitely-additive functions we are sure that

Properties 2.1 and 2.2 are fulfilled for h1 and h2.

In the following, we will count the number of functions on

disjoint domains and see how these can be combined to generate

the family of functions, which share overlapping histograms

generated from the disjoint domains.

3. Unique functions and their
histograms on disjoint domains

For a single domainX, the total number of possible functions

is given as |A||X|, and some of these have the same histogram.

Conversely, given a histogram h, the set of functions, which

share this histogram can be produced as the set of distinct

permutations of the function,

S = [

|X|
︷ ︸︸ ︷

1; . . . ; 1
︸ ︷︷ ︸

h(1)

; 2; . . . ; 2
︸ ︷︷ ︸

h(2)

; 3; . . . ; 3
︸ ︷︷ ︸

h(3)

; . . .]. (13)

The number of distinct functions is given by

CX =

|A|
∏

i=1

(
|X| − cX(i)

hX(i)

)

, (14a)

cX(i) =







0, i ≤ 1
∑i

j=1 hX(j), otherwise.
(14b)

CX is a multinomial coefficient and can be simplified to

CX =

(
|X| − c(1)

h(1)

)(
|X| − c(2)

h(2)

)(
|X| − c(3)

h(3)

)

. . . , (15a)

=

(
|X|

h(1)

)(
|X| − h(1)

h(2)

)(
|X| − h(1)− h(2)

h(3)

)

. . . , (15b)

=
|X|!

h(1)!(|X| − h(1))!

(|X| − h(1))!

h(2)!(|X| − h(1)− h(2))!

(|X| − h(1)− h(2))!

h(3)!(|X| − h(1)− h(2)− h(3))!
. . . , (15c)
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=
|X|!

h(1)!h(2)!h(3)! . . .
, (15d)

=
|X|!

∏|A|
i=1 h(i)!

, (15e)

where we for simplicity have neglected to write the subscript X

and in the last term used that (|X|−h(1)−h(2)−. . .−h(|A|))! =

1. Like the simplified notation for h, we will also write Ci for CXi .

For the disjoint sets ∀i 6=jXi ∩ Xj = ∅, the functions on

Xi are independent on those on Xj, j 6= i, and may be chosen

independently. Thus, number of functions sharing H is

C
disjoint
X =

∏

i

CXi , (16)

where CXi is Equation (14) applied to hi.

Example 3.1. As an example, consider the (ordered) alphabet

A = {1, 2, 3} and the histogram hX = [1; 1; 2]. Then by

Equation (2) we know that |X| = 4. Finally using Equation (15)

we find that

CX =
4!

1!1!2!
= 12. (17)

Assuming that X is a line, we can list all possible functions
which has histogram hX as,

[0; 1; 2; 2], [0; 2; 1; 2], [0; 2; 2; 1], [1; 0; 2; 2], [2; 0; 1; 2], [2; 0; 2; 1],

[1; 2; 0; 2], [2; 1; 0; 2], [2; 2; 0; 1], [1; 2; 2; 0], [2; 1; 2; 0], [2; 2; 1; 0].

Example 3.2. Another example, for the same alphabet as in
Example 3.1 but with hX = [2; 0; 2] we follow the same

procedure as in Example 3.1 to calculate C = 4!
0!2!2! = 6, and

the list possible functions on a linear domain X as,

[0; 0; 2; 2], [0; 2; 0; 2], [0; 2; 2; 0], [2; 0; 0; 2], [2; 0; 2; 0], [2; 2; 0; 0].

Example 3.3. Continuing Example 2.2 with A = {1, 2, 3},

X = {1, 2, . . . , 6}, X1 = {1, 2, 3, 4}, X2 = {3, 4, 5, 6}, and

h{1} = [1; 1; 0], h{1,2} = [1; 0; 1], h{2} = [0; 2; 0], the number

of functions is computed from its non-overlapping parts are

C{1} =
2!

1!1!0!
= 2, C{1,2} =

2!

1!0!1!
= 2,

C{2} =
2!

0!2!0!
= 1, (18)

Thus, the total number of functions for these specific

histograms h0 and h1 is C{1}C{1,2}C{2} = 4, and the functions

are any combination of

f (X′
{1}) ∈ {[1; 2], [2; 1]}, f (X′

{1,2}) ∈ {[1; 3], [3; 1]},

f (X′
{2}) = [2; 2]. (19)

One of the 4 functions, which have histograms h1 and h2

specified in Equation (12) is thus f (X) = f (X′
{1}∪X

′
{1,2}∪X

′
{2}) =

[1; 2; 3; 1; 2; 2].

Example 3.4. As a final example, consider a one-dimensional

function over the alphabet A = {1, 2, 3} and where X = X1 ∪

X2 ∪ X3, X1 = {1, 2, 3, 4}, X2 = {2, 3, 4, 5}, X3 = {3, 4, 5, 6}. The

unique partitions are then given as,

X′
{1} = {1}, X′

{1,2} = {2}, X′
{1,3} = ∅, X′

{1,2,3} = {3, 4},

X′
{2} = ∅, X′

{2,3} = {5}, X′
{3} = {6}. (20)

The possible histograms of the singleton domains are

hI ∈ {[1; 0; 0], [0; 1; 0], [0; 0; 1]}, I ∈ {{1}, {1, 2}, {2, 3}, {3}},

(21)

and for X′
{1,2,3},

h{1,2,3} ∈ {[2; 0; 0], [1; 1; 0], [1; 0; 1], [0; 2; 0], [0; 1; 1], [0; 0; 2]},

(22)

since |X′
{1,2,3}| = 2. The total number of different histograms is,

∣
∣H

∣
∣ =

(
3

2

)4(4

2

)

= 486. (23)

To generate a set of functions and overlapping histograms,

we choose a specific set of hI ,

h{1} = [0; 0; 1], h{1,2} = [0; 1; 0], h{1,2,3} = [1; 1; 0],

h{2,3} = [0; 0; 1], h{3} = [1; 0; 0], (24)

and thus, h1 = h{1} + h{1,2} + h{1,2,3} = [1; 2; 1], h2 =

h{1,2} + h{1,2,3} + h{2,3} = [1; 2; 1], and h3 = h{1,2,3} + h{2,3} +

h{3} = [2; 1; 1]. The number of functions is computed from its

non-overlapping parts,

C{1} = 1, C{1,2} = 1, C{1,2,3} = 2, C{2,3} = 1, C{3} = 1,

(25)

Thus, the total number of functions for these specific

histogramsH = {h1, h2, h3} is C{1}C{1,2}C{1,2,3}C{2,3}C{3} = 2,

and the functions are any combination of

f (X′
{0}) = [2], f (X′

{0,1}) = [1], f (X′
{0,1,2}) ∈ {[0; 1], [1; 0]},

f (X′
{1,2}) = [2], f (X′

{2}) = [0],

(26)

and one of the two possible functions sharing H is thus f (X) =

[2; 1; 0; 1; 2; 0].

In the above, we have given a method for generating

histograms and functions by repartioning the domain into

disjoint domains. In the following, we will investigate how to

find the set of functions, which share a set of overlapping

histograms.
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4. Unique functions from
overlapping histograms

For a set of overlapping histograms, H = {h1, h2, . . . , hk}

we have yet to find a closed form solution for counting the

number of functions, which share H. However, by repartition

their domain using Equation (7) giving |Pk| disjoint domains,

we are able to recursively calculate the sets of histograms for the

repartitioned domains which agree withH. For each domain, we

have κhI (1, |XI |), I ∈ Pk different histograms where κ is given

recursively as,

κh(j, k) =













1, if k = 0,

u(j,k)
∑

i=l(j,k)

κh(j+ 1, k− i), otherwise,
(27a)

u(j, k) = min(h(j), k), (27b)

l(j, k) = max



0, k−

|A|
∑

i=j+1

h(i)x



 . (27c)

Example 4.1. For example, given two overlapping subdomains

X1 andX2, we repartitioning the domain using Equation (7) into

X′
{1} = X1 \ X2, X

′
{1,2} = X1 ∩ X2, and X′

{2} = X2 \ X1.

Further, if A = {1, 2}, X′
{1} = {1, 2}, and X′

{1,2} = {3, 4}, then

there are the following possible combinations of histograms for

h1 and h{1}:

h1 = [4; 0] ⇒ h{1} = [2; 0], (28a)

h1 = [3; 1] ⇒ h{1} ∈ {[2; 0], [1; 1]}, (28b)

h1 = [2; 2] ⇒ h{1} ∈ {[2; 0], [1; 1], [0; 2]}, (28c)

h1 = [1; 3] ⇒ h{1} ∈ {[1; 1], [0; 2]}, (28d)

h1 = [0; 4] ⇒ h{1} = [0; 2], (28e)

The recursive evaluation of κ in Equation (27) for this

example is visualized as the trees in Figure 2. Not that given h{1},

then h{1,2} is determined directly by Equation (5) as h1 − h{1}.

For example, if h1 = [3; 1] ∧ h{1} = [1; 1] then h{1,2} =

[3; 1]− [1; 1] = [2; 0].

GivenH, we can use Equation (27) to sequentially generate a

tree of histograms hI which agree withH. For example, starting

with h1 we can calculate the set of possible histograms for

(h{1}, h1 \ h{1}) pairs. Then for each h1 \ h{1} we calculate the set

FIGURE 2

Recursive evaluation of Equation (27). (A–E) corresponds to Equations (28a–28e). The nodes are the (j, k) pair, j is the index of the following

histogram value, and the branch number its value. k is the number of values still to be decided. The count of leave-values gives the value of κ .

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.939563
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Sporring and Darkner 10.3389/fcomp.2022.939563

of possible histograms for (h{1,2}, h1 \ h{1} \ h{1,2}) pairs and so

on. In practice, we have chosen to implement a sifting algorithm

instead, which will be described in the following.

Given a set overlapping domains {X0,X1, . . .} and their

corresponding histograms {hX0 , hX1 , . . .}, we propose a sifting

algorithm that considers a list of candidate functions that are

iteratively updated as we consider additional local histograms.

We produce candidate functions, and for a particular candidate

function f , which has candidate values at positions Xn =
⋃n−1

i=0 Xi, the next window Xn and its target histogram hXn , we

identify yet to be considered region Xn \ Xn and calculate the

function

gXn\Xn = hXn − hXn∩Xn . (29)

If g ≥ 0 and
∑

a g(a) = |Xn \ Xn|, then we cannot refute

the candidate, and g is the histogram of Xn \ Xn which agrees

with the histograms h0, h1, . . . hn, and hence the candidate f is

replaced with a new set of candidate functions extending f (Xn)

with function values that have histogram g at Xn \ X
n.

The computational complexity of the algorithm is governed

by the sizes of the function, the sizes of Xi, and the sweeping

order of the update of the candidates. In Figure 3 are two

unavoidable cases shown for a 2-dimensional domain. In the

figure, Xn are denoted by the blue areas, and Xn by the green

square.

Since each candidate appears to grown binomially by the size

that Xn \ Xn, our experiments indicate that a sweeping order,

where the cases where Xn \ Xn is small seems to produce fewer

maximum number of candidates during the reconstruction. An

upper bound on the search tree is given in Section 5. The main

part of our algorithm is shown in Figure 4. The full algorithm

can be downloaded from github.

Example 4.2. An example of a reconstruction is shown

in Figure 5, where A = {0, 1, 2}, X = {0, 1, . . . 9}2, and Xi are

3× 3 square windows translated in both directions with a stride

of 1. In this case, there are two images, which has the same set of

local histograms form = 3.

5. Bound on the size of the search
tree

As a measure of the Computational complexity of our sifting

algorithm, we will here give an upper bound on the search tree.

Given an n×n image with intensities from an alphabetA and

its local histograms hij over m × m domains, Xij, where m ≤ n,

and where ij is the lower left corner of the domain. We consider

the maximum case of all local (n−m+1)2 histograms produced

by m×m windows translated by 1 over the image domain. Our

algorithm considers the histograms in a diagonal order,

[h11, h21, h12, h31, h22, h13, h41, . . . , h(n−m+1)(n−m+1)].

Case h11: Our sifting algorithm will first produce the set

of candidates for X11 which by (15) produces m2!
∏|A|

i=1 h11(i)!

candidates. The pseudo-uniform histogram, |h(j) − h(k)| ≤

1, j 6= kmaximizes this value. To prove this, consider two values

in the histogram, where h(j) > h(k), and the denominator,

d =
∏

i

h(i)! (30)

= h(j)!h(k)!
∏

i 6∈{j,k}

h(i)!, (31)

For a similiar histogram h′ which is equal to h, except

h′(j) = h(j) − 1 and h′(k) = h(k) + 1, then the ratio of their

FIGURE 3

Examples of overlap between a solution candidate (shaded), a new window (green).
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FIGURE 4

An F# sifting algorithm.

corresponding denominator is,

d

d′
=

∏

i h(i)!
∏

i h
′(i)!

(32)

=
h(j)!h(k)!

(h(j)− 1)!(h(k)+ 1)!
(33)

=
h(j)

h(k)+ 1
≥ 1. (34)

When h(j) = h(k)+ 1 then d
d′

= 1 otherwise d
d′

> 1, and we

conclude that d is minimized for pseudo-uniform histograms.

Since m2 is a constant, m2!
∏|A|

i=1 h(i)!
is maximized for pseudo-

uniform histograms. Writing m2 by its integer quotient and

remainder,

m2 = q|A| + r (35)

where q and r are whole numbers and 0 ≤ r < |A|, then the

pseudo-uniform histogram will have |A| − r bins with q values

and r bins with q + 1, and the largest number of candidates for

the left-most part of the image is

m2!
∏|A|

i=1 h11(i)!
=

m2!

q!|A|−r(q+ 1)!r
. (36)

Case h21: Our algorithm next considers the histogram h21 for

the window X21, which is a translated 1 wrt. X11, i.e., |X11 \

X21| = |X21 \X11| = m. When hX11\X21 = hX21\X11 , then none

of the candidates generated by h11 can be discarded, and for

each, wemust consider all the additional candidates for hX21\X11 .

In the worst case, hX21\X11 is pseudo-uniform. Writing m in

terms of its integer quotient and remainder,

m = p|A| + s (37)

where p and s are whole numbers 0 ≤ s < |A|, this gives us

m!
∏|A|

i=1 hX21\X11 (i)!
=

m!

p!|A|−s(p+ 1)!s
. (38)

additional hypotheses to consider for each existing candidate.

Case h12:Having reach this histogram, all candidates agree with

h11 and h21. Since, |X12 \ (X11 ∪ X21)| = |X12 \ X11| = m,

the number of additional hypotheses for each candidate are the

same as derived for case h21.

Case h22:Having reach this histogram, all candidates agree with

h11, h21, h12, h31. Since, |X22 \ (X11 ∪ X21 ∪ X12 ∪ X31)| =

|X22\(X11∪X21∪X12)| = 1, and there is at most one solution for

this solution corresponding to a non-negative value in difference

between h22−hX22∩(X11∪X21∪X12). If this histogram difference is

has negative value, then the candidate solution can be discarded,

however, for simplicity’s sake, we will ignore this. Thus, this case

does not give additional candidates.

Bound on the number of candidate images: By the anti-

diagonal order, we 1 time are in Case h00, n − m times in Case

hi,1, i > 1 and in Case h1,j, j > 1, which are identical to Cases

h2,1 and h1,2, and (n − m − 1)2 times in Case hi,j, i, j > 1,

which are identical to Case h22. Thus, we conclude that the
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FIGURE 5

Reconstructing an image from its local histogram with m = 3. In this example, the solution set contains two images.

worst case scenario is reached when all histograms considered

are pseudo-linear, in which case a maximum of

m2!

q!|A|−r(q+ 1)!r

(
m!

p!|A|−s(p+ 1)!s

)2(n−m)

hypotheses must be considered. Examples of the number of

hypotheses by the above equation for a small set of n, A, and

m are given below

n |A| m #Hypotheses

10 2 2 393216

10 2 3 602654094

10 3 2 786432

10 3 3 131651795681280

11 2 2 1572864

11 2 3 5423886846

11 3 2 3145728

11 3 3 4739464644526080

Note: In practice, the number of hypotheses in memory is

considerably smaller. Consider the case of n = 3 and m = 2.

The initial 3 histograms h11, h21, and h12 generates hypotheses

for the m2 − 1 = 3 values in |X22 ∩ (X11 ∪ X21 ∪ X12)|, for

which there are only different
(3+|A|−1

|A|−1

)

histograms, and h22

must be A
(3+|A|−1

|A|−1

)

out of the possible
(4+|A|−1

|A|−1

)

histograms.

Similarly, if the histogram difference contains zero-values, then

any candidate, which has a non-zero value at the corresponding

histogram point can be discarded. This happens often, when

m2 < |A|.

6. Conclusion

In this article, we have considered locally overlapping

histograms of functions from discrete domains and codomains

of any dimension. Histograms of signals and images have

been studied in the literature extensively, and particularly, the

seminal work on locally orderless images (Koenderink and

Doorn, 1999), the notion of local histograms has gained a solid

theoretical basis. The authors’ work map discrete functions

and histograms into the continuous domain, in a manner that
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makes differentiation of discrete functions well-posed. Their

work, however, left the essential question unanswered: what is

the expression power of histograms? In Sporring and Darkner

(2022) a partial answer is given to this question for binary

signals with densely overlapping histograms, and in this article,

we extend this work for non-binary discrete functions of any

dimension and with windows of any overlap, and in this article

we have:

• Presented a simple algebra for histograms of discrete

domain and co-domains based on non-overlapping sets.

• For a given set of covering sets in the domain, we have

given a constructive method for identifying unique, non-

overlapping sets which cover the domain.

• We have given an equation for the size of the set of

all possible histograms based on the set of unique, non-

overlapping domain sets.

• For a specific set of histograms of the individual

unique, overlapping and non-overlapping sets, we

have given

• an equation for calculating the corresponding

histograms of any set in the domain and

• an equation for counting the total number of functions

with these histograms.

• Presented an algorithm, which given a set of overlapping

histograms, produce the set of functions, which share these

histograms.

Understanding the expression power of local histograms is

not done. For one, we still seek to connect the results obtained

for discrete functions with the continuous domain.

Data availability statement

The code is publicly available at: https://github.com/

sporring/reconstructionFromHistograms.

Author contributions

JS and SD: conceptualization and writing—review and

editing. JS: formal analysis, methodology, software, and

writing—original draft. Both authors have read and agreed to the

published version of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher. All claims expressed in this article

are solely those of the authors and do not necessarily represent

those of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be evaluated

in this article, or claim that may be made by its manufacturer, is

not guaranteed or endorsed by the publisher.

References

Gabor, D. (1946). Theory of communication. Part 1: the analysis of information.
J. Inst. Electr. Eng. 93, 429–441. doi: 10.1049/ji-3-2.1946.0074

Koenderink, J. J., and Doorn, A. J. V. (1999). The structure of locally orderless
images. Int. J. Comput. Vis. 31, 159–168.

Sporring, J., and Darkner, S. (2022). Reconstructing binary signals from local
histograms. Entropy 24, 433. doi: 10.3390/e24030433

Stover, C. (2022). Finite Additivity. From MathWorld–A Wolfram Web
Resource, created by Eric W. Weisstein. Available online at: https://mathworld.
wolfram.com/FiniteAdditivity.html

Wu, Y. N., Zhu, S. C., and Liu, X. (2000). Equivalence of julesz ensembles
and frame models. Int. J. Comput. Vis. 38, 247–265. doi: 10.1023/A:100819942
4771

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.939563
https://github.com/sporring/reconstructionFromHistograms
https://github.com/sporring/reconstructionFromHistograms
https://doi.org/10.1049/ji-3-2.1946.0074
https://doi.org/10.3390/e24030433
https://mathworld.wolfram.com/FiniteAdditivity.html
https://mathworld.wolfram.com/FiniteAdditivity.html
https://doi.org/10.1023/A:1008199424771
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	An algebra for local histograms
	1. Introduction
	2. Histograms as Infintely-Additive set functions
	2.1. Histograms over disjoint domains
	2.2. Partitioning of non-disjoint sets

	3. Unique functions and their histograms on disjoint domains
	4. Unique functions from overlapping histograms
	5. Bound on the size of the search tree
	6. Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher's note
	References


