
TYPE Curriculum, Instruction, and Pedagogy

PUBLISHED 12 December 2022

DOI 10.3389/fcomp.2022.983237

OPEN ACCESS

EDITED BY

Gerrit C. Van Der Veer,

University of Twente, Netherlands

REVIEWED BY

Eduard Enoiu,

Mälardalen University, Sweden

Sofia Papavlasopoulou,

Norwegian University of Science and

Technology, Norway

*CORRESPONDENCE

Daniel Spikol

ds@di.ku.dk

SPECIALTY SECTION

This article was submitted to

Digital Education,

a section of the journal

Frontiers in Computer Science

RECEIVED 30 June 2022

ACCEPTED 24 November 2022

PUBLISHED 12 December 2022

CITATION

Spikol D, Dybdal M and Elmeskov DC

(2022) Student experiences in a

university preparatory programming

course. Front. Comput. Sci. 4:983237.

doi: 10.3389/fcomp.2022.983237

COPYRIGHT

© 2022 Spikol, Dybdal and Elmeskov.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Student experiences in a
university preparatory
programming course

Daniel Spikol*, Martin Dybdal and Dorte C. Elmeskov

Departments of Computer Science and Science Education, University of Copenhagen,

Copenhagen, Denmark

Even though computer science is currently being integrated into primary and

secondary education worldwide, we cannot yet make assumptions about our

student’s prior knowledge of computing. Every student might have di�erent

conceptions about the field of study they are about to enter. Students

start at computer science programs with di�erent prior experiences with

programming, ranging from no experience to a high degree of proficiency.

At the Department of Computer Science, University of Copenhagen, we have

designed a 2-week voluntary summer kickstart course in programming to

help students in this transition into our three computer science programs.

To evaluate the course, we followed three groups of students. Group one

with no/limited programming experience attended the kickstart course. The

second group with no/little programming experience did not participate in

the course, and the third group of students with programming experience did

not participate in the class. We observed the kickstart course and conducted

interviews. We followed up about 3 weeks after the start of the semester and

then again at the end of the semester in December. Our findings suggest

that the course reduces the gap in programming experiences and strengthens

students’ self-e�cacy and sense of belonging. However, the approach creates

a social gap between students who have not attended the course with

no/limited experience at the beginning of the semester. Even though the

students in December do not experience any di�erence between students who

have attended the course and those who have not, it is important to consider

this social gap at the beginning of the semester when designing and planning

a preparatory course like the kickstart course.

KEYWORDS

computer science education, development/boot camp, Cs0 and Cs1 learners,

education design research, problem-based learning, pedagogical approaches

1. Introduction

Computer science is currently being integrated into primary and secondary

education worldwide, but we cannot yet make assumptions about our student’s prior

knowledge of computing. Every student might have different conceptions about the

field of study they are about to enter. Students start at computer science programs with

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.983237
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.983237&domain=pdf&date_stamp=2022-12-12
mailto:ds@di.ku.dk
https://doi.org/10.3389/fcomp.2022.983237
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.983237/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Spikol et al. 10.3389/fcomp.2022.983237

different prior experiences with programming, ranging from no

experience to a high degree of proficiency. Research on novice

programmers and introductory programming courses (Robins,

2019; Von Hausswolff, 2022) has shown to be challenging

for the students and generally have high failure rates. The

field of computer science education has been focusing on

these challenges. Yet, problems persist, and student engagement

in computing is low compared to other studies (Bennedsen

and Caspersen, 2007; Luxton-Reilly et al., 2018). Schulte and

Knobelsdorf (2007) have highlighted that novice students need

better problem-solving and design strategies.

General approaches for introductory programming

courses generally focus on the tools, paradigms, programming

languages, and environments (Kandemir et al., 2021). However,

just focusing on the efficiency of teaching and learning

programming proves problematic in introductory courses

where there is a need to ensure a well-thought-through on-

boarding process for new students to ensure a safe environment

where they can understand each other and efficiently learn

together, despite their interests and prior experience with the

subject.

Therefore, at the Department of Computer Science,

University of Copenhagen, we have designed a 2-week voluntary

summer kickstart course in programming to help students in

this transition into our three computer science programs. From

surveys of students’ prior experience, we know that the majority

of the students starting on our bachelor programmes have little

or no previous programming experience (approximately 60%).

We have designed an elective onboarding course, especially for

this group of students, to ensure they feel welcome to participate

and become computer scientists without being shied away from

stereotypes or assumptions.

2. Pedagogical framework

Along with evaluating the kickstart experience for students,

we also want to reflect on the eight design principles we used to

develop this course over the past several years. The design of the

course and the evaluation is based on two key concepts, which

are defined in the following way:

Self-efficacy beliefs: Self-efficacy is typically defined as a

person’s belief in their ability to succeed in a specific situation

or in a particular task (Bandura, 2000). It is one manifestation of

how individuals come to perceive themselves from experiences

and interactions with others and their capacity to have some

degree of control over their environment. As such, self-efficacy is

the foundation upon which student persistence is built. Students

have to believe they can succeed in college. Otherwise, there is

little reason to continue to invest in efforts to do so.

Sense of belonging: Believing in one’s ability to complete a

particular course of action, though essential to persistence, does

not ensure persistence. It is also required that students come to

see themselves as a member of a community or faculty, staff and

other students who value their participation, that they matter

and belong (Tinto, 1987).

Through the development of the kickstart course, the

following eight design principles have guided how we teach.

These design principles are derived from practice, discussion

among instructed, and suggested loosely by theory, but

mostly from practice and teacher discussion. Our starting

point is the need to teach introductory computer science

more as a computational thinking set of skills rather than

a set of tools, paradigms, and programming languages.This

practice grows on the tradition of the department and its

approach to the educational challenges of teaching computer

science (Sveinsdottir and Frøkjær, 1988). The aim is to

create experiences for the students that stress the science of

computations, rather of all types of data and data processes, and

to move the focus away from computers as being central to this

endeavor (Caeli and Yadav, 2020).

1. Self-directed learning process: Our first principle is to

adopt a social constructivist approach. We, as teachers, should

act as facilitators and only use limited portions of the course

in lectures (below 20%). Instead, we should provide students

with only the necessary information, tools and guidance to

actively learn by working hands-on, as well as give them ample

opportunity to get feedback on their work.

2. Faded worked examples: To allow for a self-directed

learning process, we have designed a set of worksheets1 as

a guiding tool for the students. The worksheets have been

designed using faded-worked examples (Atkinson et al., 2003),

where the student goes through four phases for every new

programming concept (e.g., variables, conditionals, iteration):

• Typing in code verbatim using the new concept

• Editing the code to do certain things, to understand the new

concept better

• Solving exercises using the concepts they just learned

• Doing a small creative project.

For every new concept, we start with as much structure as

possible (typing in code) to support students in internalizing

the syntax and how to use a text editor. We then fade the

concept until students experience almost no structure (doing

a project). Going through these steps, the students should also

experience more and more freedom to experiment with the code

and fewer and fewer strict requirements about how the code

should function. This allows students to feel in control and

obtain ownership over their code which is our following and

third guiding principle.

3. Sense of ownership and self-efficacy: To support our

second goal of developing student self-confidence in their

ability to learn to program; we should design the material

in a way where students obtain a sense of ownership of the

programs they are writing as well as strengthen their self-efficacy

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2022.983237
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Spikol et al. 10.3389/fcomp.2022.983237

(Bandura, 2000). This requires us to ensure students have

intimate knowledge about their entire programs and feel free to

impact their program as they like. As mentioned in the previous

section, we allow for such freedom and encourage students to

modify the programs as they like and do their creative projects.

To ensure students have ownership of their entire programs,

we try to avoid handing out code but let them type in from

worksheets or as part of “code-a-long” sessions, where everyone

constructs a similar program together.

4. Pair programming and code-reviews: Our fourth

design principle is to challenge students’ assumptions and

expand their perspectives on how computer scientists work by

introducing them to pair programming and code-reviewing.

Pair programming has been a valuable part of our course,

as it also fosters collaborative learning and strengthens social

bonds, as well as creates opportunities for students to talk

about their programs with one another and start learning the

vocabulary around programming (“Perhaps we should declare

a new variable”). It should be noted that the discussions do

not happen out of the blue, and the teaching assistants should

help guide and foster dialogue among students. To further

support students, in addition to what they can learn from the

feedback they get from teaching assistants, we introduce daily

peer-review sessions where two pair programming groups meet

and exchange code. The peer reviews are structured through a

checklist that explains what the reviewers should look for in the

other group’s code. The daily session allows the student to get

their code in better shape, making it easier for them to continue

working on their projects the following day.

5. Tangible Data: To support our goal of broadening

perspectives on computer science, we want to show students

that what a computer scientist does is not limited to what

happens on screens. We want them to experience that they, as

future computer scientists, can impact the physical world and

experience data as the bridge between the physical and digital

worlds.

6. Generate relevance: To support further the goal of

broadening perspectives on computer science. It is also essential

to show students that computer scientists can help solve some

of today’s societal issues. In our course, we have decided to use

the central portion of the second week on a design thinking-

based hackathon (Plattner, 2013), where students brainstorm,

plan, design, program, and prototype a small Internet-of-things

product. The week ends with a small exhibition. We have

used sustainability as a theme for the hackathon, as there

are many opportunities for students to develop ideas around

environmental (shorten showers) and social sustainability

(reduce stress). We could just as well have used any other theme.

7. No homework: The first steps in learning programming

can and often will be frustrating, with many issues where

students get stuck and need help. Working on your own is

not ideal in those circumstances, as you need access to help

when problems arise and you hit a roadblock. A common

solution is automated feedback on everything from code style

to correctness. However, these automated feedback tools only

work for code, where there are one or few correct ways to solve

a problem. When projects are open-ended and perhaps even

include physical hardware such as sensors, automated correction

falls short. Instead, we have scheduled enough time during the

day for students to work on their projects and hired more

teaching assistants per student than we traditionally do.

8. Worksheet on paper: Ten years ago, it might not

be controversial to print teaching material for students. Still,

today we are accustomed to digitally delivering our worksheets,

assignments and other course material. However, for an

introductory course in programming, where students’ cognitive

abilities are stretched to the limit, we need to be aware of all tasks

we intend students to perform. Delivering worksheets digitally

introduces extraneous cognitive load (Sveinsdottir and Frøkjær,

1988), as students working on small laptop screens are required

to switch between the text editor and PDF viewer. For our

course, we have thus decided to hand out all worksheets on paper

to ensure students can continue to have their code on the screen

while also looking at the worksheets.

3. Learning environment

The course happens in the 2 weeks leading up to the

start of studies for new university students. The course ran

for 2 weeks (9:00–15:00 every day), where the first week was

composed of mainly hands-on work using Python mode in the

Processing programming environment. The second week builds

on their Python experience from the first week but moves on to

programming Internet-of-things devices using MicroPython on

ESP32 micro-controllers. The second week ended with a design

thinking-based hackathon where teams of students developed

interest-driven projects for the last two days.

3.1. Research/Evaluation questions

To investigate the kickstart course and the design principles,

we formulated the following questions:

1. How do the students perceive the kickstart course?

2. How do the students experience their programming skills,

and do they develop confidence in their ability to learn to

program (self-efficacy)?

3. How do the students experience their start of studies (sense

of belonging)?

3.1.1. Scope of project

The evaluation of the kickstart course was conducted as

a development project to gain knowledge about the kickstart

course, as seen from the student’s perspective. Therefore, the

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2022.983237
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Spikol et al. 10.3389/fcomp.2022.983237

TABLE 1 Design principles.

Principles Motivation

1 Self-directed learning process Active learning

2 Faded work examples Self-directed learning

3 Sense of ownership and

self-efficacy

Students develop confidence by creating

their own projects from scratch

4 Pair Programming and code

reviews

Dialogue and reflection on

programming

5 Tangible data Exploring modalities of programming

6 Generate relevance Socially driven computing

7 No homework Dev-camp and time to work

8 Worksheets on paper Encouraging students to type in rather

than copy/pasting

evaluation was carried out with a developmental perspective

and with the overall purpose of gaining knowledge that could

be used to develop further the course in close dialogue with

both the responsibility and the department. Additionally, the

evaluation was not conducted with a direct research purpose but

rather in line with the aims of a Curriculum, Instruction, and

Pedagogy (CIP) to inform the practice of introductory computer

science courses.

Two of the authors have been responsible for the course’s

design and teaching. At the same time, the third author

conducted the evaluation. It is essential to distinguish between

the different roles and emphasize that the teachers have not

been part of the course evaluation and that the evaluator was

not part of designing the course. The evaluator has observed

the teaching and more importantly, the students during the

course. Additionally, they were solely responsible for recruiting

the students from the kickstart course and the overall student

body. The evaluator, the department, and the course responsible

discussed the design and the evaluation planning. This resulted

in the involved stakeholders identifying the focus and the

purpose of the evaluation, formulation of evaluation/ research

questions and the practical planning of the evaluation.

3.2. The kickstart course

The 2021 course had 117 students, two teachers, and six

teaching assistants. The day starts with an inspiring mini talk

about the diverse aspects of computer science and then the

main topic of the day with the short lecture described by design

principles 1, 5, and 6 (see Table 1). Students work in pairs in

small teams of less than 20, guided by a teacher assistant using

the worksheets (Table 1 principles 1, 2, 3, 4, 5, 6, and 8).

The goal of the kickstart course is not to educate proficient

programmers but to make the students feel comfortable and less

worried about starting their studies. After the course, students

should have:

1. Reduced their knowledge gap in terms of programming

experience when compared to students who start with prior

experience

2. Developed self-confidence in their ability to learn to program

3. Has established a sense of belonging (Tinto, 1987) within

the group of students and a member of the wider category

of computer scientists to be

4. Broadened their perspectives on what computer science

and programming are, what types of problems computer

scientists solve, and how computer scientists work and

collaborate.

3.3. Project design and data collection

The evaluation was designed as a qualitative study,

consisting of group interviews and individual interviews

with three groups of students: 1) Students with no/ limited

programming experience who had attended the course, 2)

Students with no/ limited programming experience who had

not attended the course, and 3) Students with a lot of

programming experience who had not attended the course.

Qualitative classroom observations of the teaching and the

student’s participation in the kickstart course were conducted

in August 2021. The data from the classroom observations have

not been analyzed but have provided insights for the qualitative

study and the interviews.

Based on the research/ evaluation questions, the group

interviews focused on the students’ experience of 1) their start

of studies, 2) their programming skills, and 3) the kickstart

course. The group interviews were conducted in September

2021, just after the start of the studies. Three rounds of group

interviews were conducted in September, one round for each

group of students. The students in the group interviews were

recruited voluntarily by our physical presence in exercise classes

on campus just before the interviews and via e-mail invitations.

The following number of students were recruited for each

group of students:

• Nine students with no/ limited programming experience

who had attended the course

• Five students with no/ limited programming experience

who had not attended the course

• Five students with a lot of programming experience who

had not attended the course.

In the group interviews, the students were divided into

smaller groups of 2–3. The group interviews combined

individual reflections on post-it notes, group discussions based

on personal reflections and individual responses to an online

survey. Each round of group interviews was facilitated by an

interviewer so that the smaller groups answered and discussed

the same questions simultaneously. Each round of group

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2022.983237
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Spikol et al. 10.3389/fcomp.2022.983237

FIGURE 1

Thematic analysis workshop notes in Danish, photograph by authors.

interviews lasted for approximately an hour. In each round of

group interviews, the discussions in each smaller group were

recorded. Each audio recording has been listened through,

and notes have been written. Essential quotes are written in

total length. A thematic analysis of the post-it notes from the

individual reflections and the notes and the quotations from the

group discussions have been thematically analyzed based on the

research/ evaluation questions (Braun and Clarke, 2006).

In December 2021, individual interviews were conducted

with seven students. Based on the research/ evaluation questions

and the group interviews, the individual interviews consisted

of questions on the students’ experience of how things were

going academically and socially. The interviews also focused

on the student’s experience of their programming skills and

their perspectives on the kickstart course. All 19 students’ from

the group interviews were invited via e-mail to participate in

an individual interview. 7 of these 19 students accepted the

invitation. The following number of students were recruited for

the individual interviews:

• Three students with no/ limited programming experience

who had attended the course

• Three students with no/ limited programming experience

who had not attended the course

• One student with a lot of programming experience who had

not attended the course.

3.4. Data process

The individual interviews were conducted virtually in

December 2021 and lasted 30–60 min. The individual interviews

were recorded. The recordings were listened through, and notes

were written. Essential quotes are written in total length. A

thematic analysis of the notes and quotations from the group

and individual interviews has been conducted (Braun and

Clarke, 2006). The thematic analysis can be described as a

theoretical thematic analysis driven by the research/evaluation

questions rather than an inductive approach. The thematic

analysis was conducted in two rounds, the first round with

the primary purpose of developing an interview guide for

the individual interviews and the second round focusing

on analyzing all collected data (both group interviews and

individual interviews). In the first round of the analysis, initial

reading and analysis of the individual answers to the survey

and the post-its from the group interviews were conducted.

This initial analysis was driven by the research/evaluation

questions, focusing on the perspectives of each group of students

and led to the development of an interview guide for the

individual interviews.

In the second round of analysis, all recordings of the group

interviews and the individual interviews were listened through,

notes were taken, and essential quotations were written at full

length. The quotes from the students have been translated and

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.983237
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Spikol et al. 10.3389/fcomp.2022.983237

edited for readability. This second round of analysis was also

driven by the research/evaluation questions and focused on

the perspectives of each group of students. Figure 1 illustrates

this process.

The thematic analysis can be described as a recursive process

moving back and forth between the collected data, the codes,

and the data extracts, keeping in mind that the evaluation was

a development project rather than solely research. Both the

first and second rounds of analysis were a way of familiarizing

with the data. In the second round of analysis, notes from the

interviews and the post-its were read through. Initial codes

from the data were generated, and data extracts were organized

into meaningful groups. The different codes have then been

refined and sorted into initial themes, and the themes have been

refined through a re-reading of codes and extracts from the

interviews. A scheme for the thematic analysis was developed

to analyse the data systematically. The agreement of the codes

was done through discussions between the authors and the head

of studies for the department. Keeping in mind that the project

was focused more on organizational evaluation rather than for

research.

4. Results to date

We used several interventions to investigate the three

evaluation question to understand how students experienced

the course, their programming skills, confidence, and the start

of their university studies. A course evaluation survey was

conducted, and 61 students participated. Additional, several

weeks into the beginning of the semester, students were

recruited for qualitative study consisting of group and individual

interviews of the different groups of students. The following

subsections present the results of these interventions.

4.1. Course evaluation survey

We conducted a course evaluation survey on the last day of

class. The survey had five demographic questions and nine free

text questions that provided opportunities to express how they

experienced the course, aspects of the course they would change,

the difficulty of the course, and the style of teaching and level of

feedback.

4.1.1. Demographics

What we see in the demographics is the split between;

we have three bachelor programs for computer science,

machine learning, computer science and economics, and general

computer science. From the end-of-term evaluation survey,

61 of the 117 students participated. Most kickstart students

came from the broader computer science track (35), 19 from

computer science and economics, and seven from machine

learning. The gender split was typical, with 43 men, 19 women,

and a single non-binary student. The student age also followed

the normal distribution for university, with half (30) of the

students being 21–23 year students from the 18 to 20-year-old

bracket. Additionally, some outliners from 24 to 29 (9) and three

students between the ages of 30 and 39. Most students (41) come

from gymnasium, the broad secondary education programme

at a high level, which qualifies students to go to university and

other forms of higher education. Most importantly, 41 students

have no programming experience for the kickstart course. These

demographics are similar to the university’s student body in

computer science.

4.1.2. Open questions

For the paper, we will focus on the first open question,

“How did you experience the course? Describe the course as

you explain it to a fellow student who has not taken it.” The

students highlighted the kickstart program’s goals, especially

self-confidence and self-belonging. However, we wanted to get

a more in-depth response and comparison between different

levels of students and students that did not attend the kickstart

course, which was one of our main motivations for conducting

the evaluation. One of the responses highlights the teacher’s aim

for the course as follows:

“The course provides fast and educational insight

into programming. The first few days are enormously

progressive, with good and well-prepared worksheets that

guide one through the ’curriculum’. It worked well as

an anxiety-reducing tool about one’s expectations to start

in computer science without experience. You get a basic

understanding of the subject, that it is problem-solving

through the instructions you write, and you learn a little

about the general language. It is such a de-alienating course.

It’s a cool offer for someone unsure of what exactly to study,

reassuring.” (kickstart participant)

Another student summarized their feelings about the course

highlighting the more social aspects that the kickstart aims to

create:

“It was also a casual course, so you did not feel

overwhelmed by new information and also had time to

socialize a bit with the others on your team. all in all, a

super good course, which makes me feel much more ready

to start studying, both purely academically about having

learned programming 101 but also with a good focus on the

social.”(kickstart participant)

Additionally, the students reported on how the course

provided opportunities for getting to know people by working

together to learn about programming.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2022.983237
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Spikol et al. 10.3389/fcomp.2022.983237

“In addition, it is a course where during the week you

get to know someone who is in the same place and you,

therefore, work together to get a lot of learning.” (kickstart

participant)

4.2. Qualitative study-group interviews, a
few weeks after the start of studies’

Students who have participated in the kickstart course

experience that the course has made their start of studies easier

socially and academically. The kickstart students have general

reflections about the course in retrospect to the beginning of the

semester and how they felt about the first few weeks of teaching,

especially in programming:

“I was happy with it [the kickstart course], at least.

During the first week, it was easier; now is the second week,

so the work is okay, and I feel that I am on a level with

everyone else” (kickstart, no/limited experience)

At the same time, the kickstart course has strengthened

the participants’ confidence in their ability to learn how to

programme. A student had the experience of being enabled

through their participation in the course:

Before I started studying, I was afraid I could not follow

the teaching and could not think code-oriented. In addition,

I was also a little scared that I would use a long time to find

a group of friends I could be comfortable with. Both ideas

have fortunately been something that was just in my head.”

(kickstart, no / limited experience)

Socially, participating in the kickstart course has also made

the start of studies easier:

“. . . It was nice [. . . ] that I knew someone in advance.

That made the study start (. . . ) a little less awkward when

meeting a lot of new people at the same time. That I think,

was super fine.” (kickstart, no / limited experience)

However, all students, both those who have attended the

course and those who have not, experience that students,

who have participated in the course, have the advantage

of knowing someone in advance during the first weeks of

their studies. A student who had not participated in the

course stated:

“. . . Half of the class already know each other. . . It

creates another dynamic. Usually, no one knows anyone in

advance at the start of their studies. It is easier to get to know

each other in the first weeks.” (non-kickstart, no / limited

experience)

This causes a social gap between the students who have

participated in the course and those who have not, at least in

the first weeks of the study programme.

4.3. Individual interviews at the end of the
first semester

At the end of the first semester, in early December, seven

students were recruited, three from the kickstart, three non-

kickstart with limited experience, and one non-kickstart with

a lot of experience. Students who participated in the course

continue to experience that the kickstart course made their start

of studies easier academically and socially. Kickstart students in

December felt that the course gave them a sense of belonging

that helped them transition to university.

"Starting studying in a new place, it takes some time

to get to know the place, but maybe it was easier for me,

because I already knew the place a bit." (kickstart, no/limited

experience)

Additionally, the peer programming used in the kickstart

course provided students with added skills to collaborate more

effectively with other students, providing students with more

tools to help them with their studies.

"There is also some peer programming, which has been

quite nice to do in group work. Because it’s much easier

to spot other people’s mistakes than to spot your own, pair

programming has been very nice in group work." (kickstart,

no/limited experience)

Students also reflected on how the kickstart, the start of

studies, and the different courses allowed them to move from

other groups and meet new students.

"In the team, it might have meant a bit of a team feeling

that we knew each other beforehand. I don’t know if it has

made a difference, maybe. It certainly hasn’t had the negative

effect that you only stick with people you know hand. I don’t

think that’s been the case. People are open whether they have

been there or not." (kickstart, no/limited experience)

Both students who have attended the kickstart course and

those who have taken the course experience no difference

socially or academically in December.

5. Discussion

To answer our first question of how students perceive

the kickstart course, the findings suggest that the kickstart

course reduces the gap in programming experiences

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2022.983237
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Spikol et al. 10.3389/fcomp.2022.983237

and strengthens students’ self-efficacy and sense of

belonging. However, the learning experience initially

creates a social gap between students who have not

attended the course and those that participated at the

beginning of the first semester. This gap is especially

prevalent for students with little or no prior programming

experience who did not attend the course. However,

by the end of the semester, the students do not perceive

any differences.

The second question is about how the students

experience their programming skills and do they develop

confidence in their ability to learn to program (self-efficacy).

We see that the students gain confidence through the

experience, and, to some extent, the design principles

help guide the students by allowing them the experience

of learning to program in a less pressured space, a

voluntary course giving them the freedom to experiment

more. We believe that our pedagogical framework allows

students to have self-efficacy as defined by Bandura

(2000).

For how students perceive the start of their studies (question

3), we see a critical point for discussion since the gap between

students with no or little programming experience that have

or have not attended the kickstart creates a new dilemma in

terms of the purpose and the aims of the kickstart. Recognizing

and addressing this dilemma of feeling left behind by the

students that did not participate in the kickstart further

highlights the complexity of designing and running these

preparatory courses.

Statistics from the university administration have

illustrated that the kickstart course does not significantly

change the drop-out rate. But, the department sees

the benefits of providing this course to students with

limited programming experiences by giving them a

step toward confidence and a sense of belonging. We

are looking at further expanding the kickstart course’s

principles to reach more students and for ongoing

outreach programs.

5.1. Lessons learnt

In retrospect, over the last several years of running this

course, we believe universities need to provide more robust

scaffolding to help students transition to higher education.

Opportunities for kickstart or development camps can provide

this opportunity if designed in a way that provides students

with the self-confidence to tackle complex problems. In Table 1,

we summarize the design principles and the motivations for

using these principles. These principles have been developed

through practice to support the department’s vision for

computer science for research and education (Caeli and Yadav,

2020).

Additionally, when further designing the two first

courses all the computer science students take, we have

discussed how to integrate aspects of these principles into

the introductory courses for the bachelor programs in

computer science and other introductory programming

courses. There has been close dialogue between the course

designers, teachers, and the evaluator with the head of studies

and the other teachers in the department. Additionally, the

kickstart materials and practice have been used in other

non-computer science introductory programming courses to

help these students learn to program and computationally

think. These problems are common to computer science

education, and educators and researchers approach them

differently. What is essential is the knowledge sharing that

both supports innovative education and research (Schulte

and Knobelsdorf, 2007; Robins, 2019; Von Hausswolff,

2022).

The research reported in this paper has limitations

around the methodological approach since we investigated

the kickstart course from the pragmatic position of

evaluating benefits for the department. Additionally, the

university and the department have a particular approach

to pedagogy that the course aimed to introduce to the

students, with the notion of lecturers, teaching assistants,

and worksheets.

5.2. Contributions

To summarize the paper’s contributions, first, we see the

benefits of providing kickstart courses that use development

and boot camp approaches to give confidence and self-

efficacy to new students. Mainly as a transition experience

for incoming university students. Secondly, the practice-

based design principles encourage strategies for computational

thinking that include problem-solving, active and self-directed

learning, and discursive and reflective processes like pair

programming combined with real-world problems to encourage

the students. These approaches can help students feel a

sense of belonging to their studies and relevance to society,

creating more capable learners. However, when designing a

voluntary course recognizing the students that cannot attend

may be adversely affected in the beginning needs to be

considered.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2022.983237
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Spikol et al. 10.3389/fcomp.2022.983237

Ethics statement

Ethical review and approval was not required for the study

on human participants in accordance with the local legislation

and institutional requirements. The patients/participants

provided their written informed consent to participate in

this study.

Author contributions

DS contributed by bringing together the course design and

the evaluation. MD designed the course and developed the

principles. DE conducted the evaluation.All authors contributed

to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Atkinson, R. K., Renkl, A., and Merrill, M. M. (2003). Transitioning from
studying examples to solving problems: effects of self-explanation prompts and
fading worked-out steps. J. Educ. Psychol. 95, 774. doi: 10.1037/0022-0663.95.
4.774

Bandura, A. (2000). “Self-efficacy: the foundation of agency,” in Control of
Human Behavior, Mental Processes, and Consciousness: Essays in Honor of the 60th
Birthday of August Flammer, Vol. 16 (Mahwah, NJ: Erlbaum), 17–33.

Bennedsen, J., and Caspersen, M. E. (2007). Assessing process
and product. Innovat. Teach. Learn. Inf. Comput. Sci. 6, 183–202.
doi: 10.11120/ital.2007.06040183

Braun, V., and Clarke, V. (2006). Using thematic analysis in psychology. Qual.
Res. Psychol. 3, 77–101. doi: 10.1191/1478088706qp063oa

Caeli, E. N., and Yadav, A. (2020). Unplugged approaches to
computational thinking: a historical perspective. TechTrends 64, 29–36.
doi: 10.1007/s11528-019-00410-5

Kandemir, C. M., Kalelioğlu, F., and Gülbahar, Y. (2021). Pedagogy of
teaching introductory text-based programming in terms of computational thinking
concepts and practices. Comput. Appl. Eng. Educ. 29, 29–45. doi: 10.1002/cae.
22374

Luxton-Reilly, A., Simon, A.lbluwi, I., Becker, B. A., Giannakos, M., Kumar,
A. N., Ott, L., et al. (2018). “Introductory programming: a systematic literature

review,” in Proceedings Companion of the 23rd Annual ACM Conference on
Innovation and Technology in Computer Science Education (ACM), 55–106.
doi: 10.1145/3293881.3295779

Plattner, H. (2013). “An introduction to design thinking,” in Iinstitute of Design
at Stanford (Berkeley, CA: Apress), 1–15.

Robins, A. V. (2019). “12 novice programmers and introductory programming,”
in The Cambridge Handbook of Computing Education Research, eds S.
Fincher, and A. Robins (Cambridge: Cambridge University Press), 327.
doi: 10.1017/9781108654555

Schulte, C., and Knobelsdorf, M. (2007). “Attitudes towards computer
science-computing experiences as a starting point and barrier to computer
science,” in Proceedings of the Third International Workshop on Computing
Education Research-ICER ’07 (ACM Press), 27–38. doi: 10.1145/1288580.
1288585

Sveinsdottir, E., and Frøkjær, E. (1988). Datalogy–The Copenhagen tradition of
computer science. BIT Numer. Math. 28, 450–472. doi: 10.1007/BF01941128

Tinto, V. (1987). Leaving College: Rethinking the Causes and Cures of Student
Attrition. Chicago, IL: University of Chicago Press.

Von Hausswolff, K. (2022). Practical thinking while learning to program-
novices’ experiences and hands-on encounters. Comput. Sci. Educ. 32, 128–152.
doi: 10.1080/08993408.2021.1953295

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.983237
https://doi.org/10.1037/0022-0663.95.4.774
https://doi.org/10.11120/ital.2007.06040183
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1007/s11528-019-00410-5
https://doi.org/10.1002/cae.22374
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1017/9781108654555
https://doi.org/10.1145/1288580.1288585
https://doi.org/10.1007/BF01941128
https://doi.org/10.1080/08993408.2021.1953295
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Student experiences in a university preparatory programming course
	1. Introduction
	2. Pedagogical framework
	3. Learning environment
	3.1. Research/Evaluation questions
	3.1.1. Scope of project

	3.2. The kickstart course
	3.3. Project design and data collection
	3.4. Data process

	4. Results to date
	4.1. Course evaluation survey
	4.1.1. Demographics
	4.1.2. Open questions

	4.2. Qualitative study-group interviews, a few weeks after the start of studies'
	4.3. Individual interviews at the end of the first semester

	5. Discussion
	5.1. Lessons learnt
	5.2. Contributions

	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	References


