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Deep Neural Networks (DNNs) can provide clinicians with fast and accurate

predictions that are highly valuable for high-stakes medical decision-making, such

as in brain tumor segmentation and treatment planning. However, these models

largely lack transparency about the uncertainty in their predictions, potentially giving

clinicians a false sense of reliability that may lead to grave consequences in patient

care. Growing calls for Transparent and Responsible AI have promoted Uncertainty

Quantification (UQ) to capture and communicate uncertainty in a systematic and

principled manner. However, traditional Bayesian UQ methods remain prohibitively

costly for large, million-dimensional tumor segmentation DNNs such as the U-Net.

In this work, we discuss a computationally-e�cient UQ approach via the partially

Bayesian neural networks (pBNN). In pBNN, only a single layer, strategically selected

based on gradient-based sensitivity analysis, is targeted for Bayesian inference. We

illustrate the e�ectiveness of pBNN in capturing the full uncertainty for a 7.8-million

parameter U-Net. We also demonstrate how practitioners and model developers can

use the pBNN’s predictions to better understand themodel’s capabilities and behavior.

KEYWORDS

medical decision-making, Bayesian uncertainty, Responsible AI, transparency, tumor

segmentation

1. Introduction

Clinical Decision Support Systems (CDSS) based on Artificial Intelligence (AI) are

promising to assist clinicians in providing better patient care in high-stakes medical decision-

making (Rajpurkar et al., 2022), including for brain tumor. AI-based CDSS have shown potential

to accurately segment tumor (Kocher et al., 2020; Nazar et al., 2020), which could aid in

treatment planning (Stupp et al., 2005) for patients with glioma (Stupp et al., 2005), a malignant

manifestation of brain tumors (Ferlay et al., 2010; Bleeker et al., 2012). AI models such as Deep

Neural Networks (DNNs) can learn patterns from radiologist-annotated multi-modal Magnetic

Resonance Imaging (MRI) scans for tumor delineation with high accuracy (Ronneberger et al.,

2015). These optimistic results have contributed to accelerating approvals from governing

agencies such as the U.S. Food and Drug Administration (FDA) (Topol, 2019), with the goal

to integrate them into clinical workflows (Benjamens et al., 2020).

In the domain of radiology, AI-based CDSS have shown potential to assist in treatment

planning, which requires precise segmentation to ensure that the treatment is effective

in resecting the bulk of the tumor, without unnecessarily affecting functional brain areas.
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Radiologists rely on their years of training and practice to estimate

the extent of tumor location and spread as precisely as possible.

Radiologists delineate the tumor based on its appearance on theMRI,

and mark additional boundaries around it to indicate certainty about

their segmentation, or lack thereof (Stroom and Heijmen, 2002).

Recently, researchers have used DNNs (Ronneberger et al., 2015;

Havaei et al., 2017; Hesamian et al., 2019; Haque and Neubert, 2020)

to automate tumor segmentation (Kaus et al., 2001) for a large cohort

of patients at a fraction of the time it would take to do it manually.

However, these algorithms do not communicate uncertainty,

which remains a key barrier to their responsible adoption in

clinical workflows (Tonekaboni et al., 2019). AI-based CDSS that

produce single-valued (i.e. deterministic) predictions do not reflect

the inherent uncertainty in medicine (Griffiths et al., 2005), and

encourage impressions of “superhuman” ability of AI (Campolo and

Crawford, 2020) without mechanisms to contest these claims (Begoli

et al., 2019). This can exacerbate problems with inappropriate

trust and reliance on AI-based CDSS (Bussone et al., 2015), with

potential harm to patient health (Strickland, 2019). Despite calls in

Transparent and Responsible AI (Amershi, 2020; Wang et al., 2021)

to quantify (Bhatt et al., 2021; Ghosh et al., 2022), report (Arnold

et al., 2018; Mitchell et al., 2019; Pushkarna et al., 2022) and design for

uncertainty (Bowler et al., 2022), little attention has been dedicated

to address uncertainty effects in AI models for healthcare (Begoli

et al., 2019; Tonekaboni et al., 2019). This lack of model transparency

remains a key barrier to the responsible adoption of AI in clinical

practice (Papernot et al., 2016; Ghassemi et al., 2018; Vayena et al.,

2018).

Uncertainty Quantification (UQ) for AI-based CDSS (Leibig

et al., 2017) remains challenging due to their high computational

costs (Jacobs et al., 2021). For example, Bayesian analysis (Berger,

1985; Bernardo and Smith, 2000; Sivia and Skilling, 2006) provides

a principled and systematic approach to quantify and update

the uncertainty of model parameters, but typically is solved via

expensive iterative algorithms such as Markov chain Monte Carlo

(MCMC) (Hastings, 1970; Andrieu et al., 2003; Robert and Casella,

2004; Brooks et al., 2011) or variational inference (VI) (Jordan et al.,

1999; Wainwright and Jordan, 2007; Blei et al., 2017). While Bayesian

methods have been historically used for UQ in medicine (Tsagkaris

et al., 2022), they are difficult to scale for handling, e.g., DNNs in AI-

based CDSS that often involve millions of parameters (MacKay, 1992;

Neal, 1996; Graves, 2011).

We seek to enable Bayesian UQ for million-parameter DNNs,

i.e., to create million-parameter Bayesian neural networks

(BNNs) (Blundell et al., 2015; Gal, 2016). We achieve this by

introducing a low-computation strategy for performing Bayesian

inference on a small, strategically chosen portion (layer) of the entire

DNN, thereby creating a partially BNN (pBNN) that approximates

the uncertainty of a full BNN. We use Flipout (Wen et al., 2018) VI

algorithm to solve the resulting Bayesian problem on the target layer.

Unlike related strategies (Riquelme et al., 2017; Azizzadenesheli et al.,

2018; Valentin Jospin et al., 2020) that attempt Bayesian inference

only on the last layer of a DNN which does not necessarily offer the

best uncertainty representation (Zeng et al., 2018), our approach

allows a justified selection on which part of the DNN to “Bayesianize”

guided by sensitivity analysis (SA).

To impart the ability to express uncertainty in tumor

segmentation models, we build pBNN for a state-of-the-art 7.8

million-parameter U-Net (Ronneberger et al., 2015) proposed for

medical image segmentation. To empirically validate our approach,

we train a full BNN as a baseline, and compute the uncertainty

approximation discrepancy of the pBNNs to this full BNN. Our

experiment demonstrates that the pBNN based on the SA-selected

layer is the most efficient in approximating the full Bayesian

uncertainty (per Bayesianized parameter) compared to other layer

choices. Our results suggest that the SA-based layer-selection offers

an effective and inexpensive way to identify the best DNN layer to

perform Bayesian inference.

The main contribution of our work is to enable Bayesian UQ

for million-dimensional medical DNN models. We features a novel

computational method that uses a SA-based DNN layer selection for

targeted Bayesian inference, which is especially useful in scenarios

where practitioners and model developers want to understand

the model’s uncertainty but do not have the resources for a full

Bayesian inference on the entire DNN. Our work advances future

interactions for Transparent and Responsible AI that can support the

investigation of the uncertainty in DNN models. We illustrate one

such interaction, through the use of uncertainty maps, to show how

our work can allow clinicians to interpret uncertainty of the tumor

segmentation AI.

2. Background and preliminaries

We begin by provide some mathematical background for

understanding DNNs and BNNs.

2.1. Bayesian neural networks

A DNN takes input x and predicts output ŷ: we write ŷ = f (x;w)
where w represent all tunable model parameters of the DNN (e.g.,

DNN weights and bias). Given NT training data points (xT , yT) =
{xn, yn}NT

n=1, the DNN is typically trained by finding w to minimize a

loss function:

w∗ = argminw L(w, xT , yT). (1)

For example, a popular choice is the least squares loss

L(w, xT , yT) = 1
NT

∑NT
n=1

[

f (xn;w)− yn
]2
. The optimization is often

done with stochastic gradient descent (Robbins and Monro, 1951;

LeCun et al., 2012). Once Equation 1 is solved, it produces a

deterministic DNN that makes single-valued prediction for any new

input x: ŷ = f (x;w∗).
BNN (MacKay, 1992; Neal, 1996; Graves, 2011; Blundell et al.,

2015; Gal, 2016), in contrast, treats w as random variables with an

associated probability density function (PDF) that represents the

uncertainty on w. When training data become available, these PDFs

are updated through Bayes’ rule:

p(w|xT , yT) =
p(yT |xT ,w)p(w)

p(yT |xT)
, (2)

where p(w) is the prior PDF,1 p(yT |xT ,w) is the likelihood

PDF, p(w|xT , yT) is the posterior PDF, and p(yT |xT) is the marginal

likelihood (a PDF-normalization term). The prior thus represents the

1 Note that p(w|xT ) = p(w), i.e., the prior uncertainty should not change from

knowing only the input values of the training data without their output values.
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uncertainty on w before seeing any training data, and the posterior

describes the updated uncertainty after incorporating the training

data. Solving the Bayesian inference problem then entails computing

the posterior p(w|xT , yT).
Conventional Bayesian solutions largely rely on

MCMC (Hastings, 1970; Andrieu et al., 2003; Robert and Casella,

2004; Brooks et al., 2011) to sample the posterior distribution.

While MCMC provably converges to the exact posterior that may

be highly non-Gaussian, it converges slowly in high-dimensional

settings due to the onset of measure concentration to the so-called

typical set (Betancourt, 2017). Hamiltonian Monte Carlo (Neal, 2011;

Hoffman and Gelman, 2014; Betancourt, 2017), one of the more

scalable MCMC variants, has been used for Bayesian inference for up

to hundreds of parameters, but remains orders of magnitude short of

the million-parameter BNNs targeted in this paper.

VI (Jordan et al., 1999; Wainwright and Jordan, 2007; Blei

et al., 2017) provides much better scalability by finding the best

approximation to the true posterior from a parametric family of

distributions (e.g., all independent Gaussians), thereby turning the

sampling task into an optimization one:

θ∗ = argminθ DKL[q(w; θ) ‖ p(w|xT , yT)], (3)

where q(w; θ) is the appromating posterior PDF parameterized

by θ , and the Kullback-Leibler (KL) divergence DKL quantifies the

farness from the true posterior p(w|xT , yT) to q(w; θ). One can

further show that θ∗ is also the maximizer of the well-known evidence

lower bound (ELBO):

θ∗ = argmaxθ Eq

[

ln p(yT |xT ,w)+ ln p(w)− ln q(w; θ)
]

= argmaxθ ELBO(θ), (4)

which can be estimated through Monte Carlo that samples w(m)

from q(w; θ):

ELBO(θ) ≈ 1

M

M
∑

m=1

[

log p
(

yT |xT ,w(m)
)

+ log p
(

w(m)
)

− log q
(

w(m); θ
)]

. (5)

The optimization can be approached leveraging gradient-based

algorithms, where gradient with respect to θ can be obtained via

back-propagation. We adopt the recent Flipout VI algorithm (Wen

et al., 2018) to solve the Bayesian problem. Flipout (Wen et al., 2018)

has been demonstrated to provide substantial computational savings

for dense, convolutional, and recurrent neural network architectures.

The method injects pseudo-independent weight perturbations

in order to decorrelate gradients, thereby achieving drastically

decreased variance for the ELBO Monte Carlo estimator. It also

offers vectorized implementation that allows one to take advantage

of GPU computations.

However even with Flipout, the computational and memory

requirements for million-parameters is still extremely high, if not

outright prohibitive. Krishnan et al. (2020) found that for large

DNN architectures with O(107 − 108) parameters, MFVI failed to

converge altogether. Therefore, one cannot simply take Flipout off-

the-shelf to build million-dimensional BNNs, additional algorithmic

developments are still needed.

3. Method for building a partially
Bayesian neural network

We introduce a novel method to address the scalability

challenges of building million-parameter BNNs, by performing

targeted Bayesian inference on a strategically selected portion of the

overall DNN—we call the result a partially Bayesian neural network

(pBNN). We present the overall procedure via three main steps (see

Figure 1): (1) access a deterministic DNN model, (2) conduct SA to

select a DNN layer for Bayesian inference, and (3) perform targeted

Bayesian inference on the selected layer using Flipout VI to arrive at

the final pBNN. We describe each step below in detail.

3.1. Step 1: Access a deterministic DNN
model

The first step is to access a deterministic DNN model (i.e., one

that is trained by minimizing the loss in Equation 1). The purpose of

this DNN is to provide an inexpensive and meaningful starting point

for the upcoming SA and layer selection. One scenario is that such

a deterministic DNN is already available from a pre-existing study

or another research group, and we can simply inherit. If it does not

exist yet, one may train a new model following Equation 1, which is

relatively (to any BNN) inexpensive.

Since this deterministic DNN will be used to guide the selection

of model layer for Bayesian inference, it must have the same

architecture as the DNN that will eventually undergo Bayesian

inference. However, the precise training setup (e.g., choice of loss

function, learning rate) for creating this deterministic DNN is

flexible since the goal in the next step is to seek a general sense

of the sensitivity behavior. This flexibility is important in practice,

for instance in situations where we are only given a pre-existing

deterministic model but without information on how it was trained.

3.2. Step 2: Conduct sensitivity analysis to
select a layer for Bayesian inference

Next, we perform SA on the deterministic DNN from Step 1

in order to assess the model prediction behavior as a result of

model parameter variation. We adopt gradient-based sensitivity for

its simplicity, although other types of sensitivity (e.g., variance-based

sensitivity) may also be used. Specifically, we first take the partial

gradient of model prediction output with respect to the parameters

of the candidate layer being considered (e.g., ℓth layer), which can

be calculated easily from a DNN using only a single pass of back-

propagation. Since this partial gradient is a vector, we then take its L2-

norm to transform it into a scalar (other norms such as the L1-norm

may be used as well). Lastly, to avoid automatic favoring of larger

layers due to simply having more parameters (and therefore more

entries contributing to the gradient vector), we normalize (divide)

by the number of parameters in layer ℓ (Nℓ) to arrive at the average

sensitivity per parameter. Our overall Sensitivity Index for layer ℓ is:

SI(ℓ) = 1

Nℓ

∣

∣

∣

∣

∣

∣
∇wℓ

ŷ
∣

∣

∣

∣

∣

∣

2
. (6)

The layer with the highest SI, ℓ∗ = argmaxℓ SI(ℓ), would then

induce the largest change in prediction ŷ when its parameters wℓ are
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FIGURE 1

Proposed framework to address scalability challenges of Bayesian inference on neural networks by building pBNN: Step (1) represents a million-parameter

deterministic NN. Step (2) conduct sensitivity analysis to identify the layer that has greatest impact on model output. Step (3) conduct Bayesian inference

on the most sensitive layer to build pBNN. The resulting pBNN combines the strengths of both deterministic and Bayesian NNs, allowing scalability.

perturbed. This layer thus presents as themost critical layer, justifying

to focus our resources to capture the Bayesian uncertainty for layer

ℓ∗. Layer ℓ∗ will then undergo Bayesian inference in the next step.

We note that gradient is a local operator and captures sensitivity

locally at the optimized parameter values of the deterministic DNN

(i.e., from Equation 1). To capture sensitivity more globally across a

wider range of possible wℓ values, one may also consider averaging

the gradient from multiple locations of wℓ, for instance in estimating

the prior-expectation of the gradient: Ewℓ

[

1
Nℓ

∣

∣

∣

∣∇wℓ
ŷ
∣

∣

∣

∣

2

]

. However,

these global measures are more expensive to compute.

3.3. Step 3: Perform targeted Bayesian
inference to build pBNN

In the last step, we perform targeted Bayesian inference on

the identified layer ℓ∗ to build the pBNN. Formally, we partition

w into two subsets: w = {wB,wD} where wB are the DNN

parameters corresponding to layer ℓ∗ that will undergo Bayesian

inference, and wD consists of all remainder parameters that are

treated deterministically (i.e., not as random variables). This sets

up for a pBNN where only a strategically chosen portion (layer)

is Bayesianized.

At this point, we may simply freeze wD at their deterministic

DNN values w∗
D (from Step 1), and invoke VI to compute the

conditional posterior:

θ∗B = argminθB
DKL

[

q(wB; θB) ‖ p(wB|w∗
D, xT , yT)

]

. (7)

However, allowing wD to change may allow additional

improvement in approximating the posterior. Therefore, we

propose to jointly optimize wD (the deterministic parameters)

and θB (parameters of the variational posterior for the Bayesian

DNN parameters)

{θ∗B ,w∗
D} = argminθB ,wD

DKL

[

q(wB; θB) ‖ p(wB|wD, xT , yT)
]

. (8)

Lastly, we solve Equation 8 numerically using the Flipout VI

algorithm introduced at the end of Section 2.1.

4. Illustration with a test problem

Before applying the pBNN to the tumor segmentation DNN, we

first demonstrate our framework on a test problem using a small

densely-connected DNN with synthetic training data in order to

bring intuitions and insights.

To set up the problem, we generate 256 synthetic training

data points following the example from Blundell et al. (2015) with

some modifications:

yi = xi + 0.3 sin (2πx+ ǫi) + 0.3 sin (4πx+ ǫi) + ǫi (9)

where ǫi ∼ N(0, 0.022).

We fit the data to a DNN comprised of an input layer, 9 hidden

dense layers with swish activation, and a dense output layer with

linear activation (see Table 1). The dense layers varied in width

to mimic the varying sizes of convolutional layers encountered

in tumor segmentation DNNs. The DNN has a total of 13, 385

trainable parameters.

In Step 1 of the pBNN procedure, we produced a deterministic

DNN by minimize the loss in Equation 1, with the result plotted

as the solid orange line in Figure 3. In Step 2, we computed the

gradient-based SI in Equation 6 for each of the 10 candidate layers,

shown in Figure 2. The bar graph indicates generally lower SI for

the middle layers compared to those near the input or output; the

lowest SI is at Layer 7, and the highest SI is at Layer 9. Layer 9

is therefore selected for Bayesianization. In Step 3, we construct a

pBNN by performing Bayesian inference on Layer 9 using Flipout VI

and training all other layers deterministically, following Equation 8.

We provide more details of the pBNN implementation and

validation below.

Our pBNN is implemented using TensorFlow Probability

(TFP) (Dillon et al., 2017), where Layer 9 is replaced with a

DenseFlipout layer and all other layers remaining to be Dense.

Training is then performed simultaneously on θB and wD as in

Equation 8. For the Bayesianized DNN parameters (wB), we adopt

independent Gaussian priors with a rather wide standard deviation

to reflect an initial uninformative distribution: p(wB) ∼ N(0, 102).
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TABLE 1 Architecture of the densely-connected DNN used for the test

problem.

Layer Tunable parameters

Input 0

Dense 1 4

Dense 2 12

Dense 3 40

Dense 4 144

Dense 5 544

Dense 6 2,112

Dense 7 8,320

Dense 8 2,064

Dense 9 136

Output 9

FIGURE 2

Sensitivity Index (SI) for all layers in the DNN for the test problem.

Layer 9 has the highest SI and is selected for Bayesianization.

A Gaussian likelihood is also used to depict independent Gaussian

observation noise (σǫ = 0.02 to be consistent with the data-

generation in Equation 9) on the y targets:

p(yT |xT ,wD,wB) =
NT
∏

n=1

1

σǫ

√
2π

exp

[

−1

2

(

yn − f (xn;wD,wB)

σǫ

)2
]

.

(10)

The variational posteriors are from the family of independent

Gaussians qi(wB; θB) ∼ N(µi, σ
2
i ), and so the variational parameters

are θ = {µi, σi}. We train this pBNN using the Nadam (Dozat, 2016)

optimizer for 104 epochs with a learning rate of 10−3 and batch size

of 64.

To assess whether the pBNN constructed with SA-selected Layer

9 provides a good approximation to the uncertainty of the full BNN,

we also train a full BNNwhere all layers are replaced by DenseFlipout

FIGURE 3

Training data (black dots) overlaid with the deterministic DNN

prediction (solid orange) and full BNN posterior push-forward

uncertainty (solid blue line is the mean, blue shadow is the 95%

credible interval).

layers; the posterior push-forward uncertainty2 of the full BNN is

shown in Figure 3. Furthermore, to investigate the performance of

pBNNs if a layer different from Layer 9 were selected, we construct

separate pBNNs where a different layer is Bayesianized.

Since a good pBNN is one that faithfully approximates the

uncertainty in the full BNN, we measure its performance based on

how close the pBNN’s posterior push-forward is to the full BNN’s

posterior push-forward via the KL divergence. Following the same

reasoning as the SI from Equation 6, we normalize this quantity

by multiplying Nℓ (since lower KL is better), to arrive at our

validation metric:

Dnorm = Nℓ

Ntot
DKL[f (x;w∗

D,wpartial,B) || f (x;wfull))], (11)

where wpartial,B ∼ qpartial(wpartial,B; θ∗B ) are the Bayesianized

parameters in the pBNN, and wfull ∼ qfull(wfull, θ
∗) are the full set

of parameters (all Bayesianized) in the full BNN. The Dnorm values

for each pBNN are plotted against SI in Figure 4, where we observe

a Spearman’s correlation of rs = −0.83 which is considered to be

strongly correlated in literature (Akoglu, 2018). This supports our

SA-based layer selection strategy, where the layers with high SI will

also lead to low Dnorm. Lastly, we note that while we perform this

brute-force comparison to validate the effectiveness of our approach,

in practice one would only train the pBNN on the SA-selected layer

as described in Section 3.

5. Demonstration: Tumor segmentation
with U-Net

Here, we present the main demonstration of our pBNN,

applying it to a state-of-the-art DNN model used for medical image

segmentation: the U-Net (Ronneberger et al., 2015). Since our goal

2 Posterior push-forward is p(f (x;wB ,wD)|x, xT , yT ), which di�ers from the

posterior predictive p(y|x, xT , yT ).
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FIGURE 4

Normalized KL divergence from the full BNN posterior push-forward to the di�erent pBNNs is highly correlated with the SI that is used to select the layer

for Bayesianization (Spearman’s correlation rs = −0.83).

is to demonstrate our pBNN framework presented in Section 3 and

not to develop or justify the choice of architecture, we take the U-Net

architecture as given.

5.1. Step 1: Access a deterministic DNN
model

We begin by training a U-Net deterministically using the

architecture and code published by Ojika et al. (2020). As shown

in Figure 5, the U-Net comprises of an encoder, decoder, and skip

connections. The encoder module composes of 2D Convolutional

layers followed by MaxPooling layers with window size 2 × 2, and

2D Spatial Dropout layers for regularization. The decoder module

is composed of corresponding Conv2DTranspose layers followed by

Concatenate layers. Nested in between the encoder and decoder is

the 2D Upsampling layer with bilinear interpolation. The U-Net has

feature map size set to 32, kernel size 3 × 3, and dropout rate 0.2.

For the 2D Convolutional layers, ReLU activation is used along with

He uniform variance scaling initializer, and kernel size is set to 2× 2.

Overall, this U-Net has a total of 7.8 million tunable parameters.

We perform the training on dataset from the Medical

Segmentation Decathlon Challenge Task 01 (Simpson et al., 2019)

consisting of brain MRI scans of patients with glioma. The training

set contains of 58,464 2D images (each sized 144×144) and a separate

validation set contains 6,624 images. Data augmentation is employed

during training to increase data diversity including random choices

of horizontal and vertical flips, ±45◦ rotation, and ±2.5◦ shearing.

The ADAM optimizer (Kingma and Ba, 2015) is run for 30 epochs

used a learning rate 0.001 and a mini-batch size of 128. The training

loss function is a weighted sum of the Dice coefficient (Dice, 1945;

Crum et al., 2006) and standard Binary Cross Entropy. The training

results are summarized in Table 2.

5.2. Step 2: Conduct sensitivity analysis to
select a layer for Bayesian inference

We computed the gradient-based SI in Equation 6 for each

candidate layers, shown in Figure 6. In particular, the layers near

the top portion of the encoder carry larger SI. This response

gradually decreases proceeding further into the model, reaching a

minimum near themiddle, followed by a light rebound at the decoder

layers. The lowest SI occurs at Layer decoder_3a, and the highest

SI is at Layer encoder_1a. Layer encoder_1a is therefore selected

for Bayesianization.

5.3. Step 3: Perform targeted Bayesian
inference to build pBNN

We construct a pBNN by performing Bayesian inference

on encoder_1a using Flipout VI and training all other layers

deterministically, following Equation 8. We implement our

pBNN using TensorFlow Probability (TFP) (Dillon et al., 2017)

by replacing the 2DConvolution layer of encoder_1a with

tfp.layers.Convolution2DFlipout. Training is then performed

simultaneously on θB and wD as in Equation 8. For the Bayesianized

DNN parameters (wB), we adopt independent Gaussian priors with

a rather wide standard deviation to reflect an initial uninformative

distribution: p(wB) ∼ N(0, 102). Since our data label for each

pixel is binary while our model prediction ranges [0, 1], we adopt a

likelihood associated with the binary cross entropy:

p(yT |xT ,wD,wB) =
NT
∏

n=1

[

ynf (xn;wD,wB)

+(1− yn)(1− f (xn;wD,wB))
]

. (12)
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FIGURE 5

U-Net architecture with our naming system of the di�erent tunable layers considered for the pBNN.

TABLE 2 Summary of the deterministic U-Net training.

Performance Value

Training time 5 h

Model size 94.3 Mb

Trainable parameters 7.8 million

Validation accuracy 0.9915

Validation dice coefficient 0.8508

The variational posteriors are from the family of independent

Gaussians qi(wB; θB) ∼ N(µi, σ
2
i ), and so the variational parameters

are θ = {µi, σi}. We train this pBNN using the Nadam (Dozat,

2016) optimizer for 400 epochs with a learning rate of 10−4 and

batch size of 196, using 8 GeForce RTX 2080 Ti GPUs in parallel.

The ELBO training history of the pBNN is shown in Figure 7 (plot

with encoder_1a emphasized in red). While the plot indicates a

small rise around 150 epochs due to numerical instabilities with

the optimization algorithm, overall the curve steadies out by 350

epochs (note that the y-axis is logarithmic which amplifies the lower-

value fluctuations) and appears noticeably flatter compared to the

beginning of the optimization.

6. Validation of the pBNN

In this section, we provide validation for the pBNN procedure, by

illustrating whether the U-Net pBNN constructed with SA-selected

FIGURE 6

Sensitivity Index (SI) for all layers in the U-Net used for tumor

segmentation. The layer encoder_1a has the highest SI and is selected

for Bayesianization.

encoder_1a layer provides a good approximation to the uncertainty

of the full BNN. To achieve this, we also need to train a full BNN

where Bayesian inference is performed on all layers. Such attempt

to obtain the full uncertainty is highly expensive, and is in fact the
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original motivation for the new pBNN. We clarify that a full BNN

is not needed as a part of the regular pBNN procedure described in

Section 3.

We train the full BNN, where all 19 layers of the U-Net are

Bayesianized, using the full extent of our available computational

resources: 2000 epochs using the Nadam (Dozat, 2016) optimizer

with learning rate 10−4 and batch size of 196, 94.72 GB of memory,

8 GPUs in parallel, and it required 3 days of continuous computation

to arrive at a steadied ELBO. The best-performing model is saved

during the training process. Due to the tremendous size of this BNN,

expert experience is also relied upon for randomized initialization

and algorithm tuning to arrive at a reasonably converged full BNN.

Additionally, we also train the 19 pBNNs, each with one of the

19 layers targeted for Bayesian inference, but with shorter 400

epochs. The ELBO training history for all models are summarized

in Figure 7, with the pBNN using the SA-selected layer (encoder_1a)

emphasized in red. While we train the full BNN for significantly

longer than the pBNNs, we plot their ELBO to around 350 epochs

for better readability and comparison. All training curves gradually

decrease and start flattening around 150 epochs, after which they

become noisy. The plot suggests that all pBNN models we built have

converged reasonably well.

Since a good pBNN is one that faithfully approximates the

uncertainty in the full BNN, we measure the pBNN performance

using the normalized KL divergence between the pBNN’s posterior

push-forward to the full BNN’s posterior push-forward, Dnorm,

defined in Equation 11.

With each U-Net output being a 144 × 144 pixel values,

directly computing the KL divergence for the joint 144 × 144-

dimensional posterior push-forward PDF would be very difficult.

Therefore, we further simplify the computation of Dnorm through an

independence approximation, breaking the 144 × 144-dimensional

KL into 20,736 pixel-wise one-dimensional KL computations. For

a given prediction image, each pixel’s KL is estimated by first

generating 100 samples of the DNN parameters wpartial,B from the

optimized variational posterior qpartial(wpartial,B; θ∗B ), combine it with

the other deterministic parameters and evaluate the corresponding

pixel predictions f (x;w∗
D,wpartial,B), and for each pixel fit its 100

samples to a Beta distributions to approximate its posterior push-

forward PDF. Beta distributions are often used to model the

uncertainty of Bernoulli distributions and suitable for our problem

to ensure pixel-wise prediction values reside between [0, 1]. Once the

Beta PDFs are extracted, KL divergence can be calculated analytically.

The pixel-wise KL divergence values are then summed to obtain the

estimate to the joint PDF’s KL value (since the KL divergence between

two joint PDFs that are independent factors into the sum of KL

divergences of individual marginals). The final Dnorm are shown in

Figure 8, and they show a correlated, inverse trend compared to the SI

values in Figure 6, supporting that SI is a good inexpensive indicator

of the KL performance metric.

Figure 9 shows a scatter plot for all 19 pBNNs the KL divergence

(not yet normalized by Nℓ) vs. Nℓ the number of parameters of

the layer targeted for Bayesian inference; the pBNN with the SA-

selected layer (encoder_1a) is marked in red. Ideally, we would like

to select a layer for Bayesianization that has low KL divergence

and small number of layer parameters (i.e., toward the bottom-left

corner). However, these two desirable properties generally conflict

and a tradeoff needs to be made. This can be seen by the Pareto

optimality front by the plot’s lower-left convext hull. In this case,

we see our SA criterion indeed identifies one of the Pareto points in

layer encoder_1a. The output_layer also resides on the Pareto, and

would also serve as a reasonable selection for Bayesianization; indeed,

the SI values presented in Figure 6 does show the output_layer to

be the runner-up. However we point out that the nature of how

the two layers are good choices are different: encoder_1a achieves a

lower KL than output_layer, but output_layer has a smaller number

of parameter.

7. Looking toward uncertainty maps
and their interpretation

Although the main contribution of our work is to provide a

scalable method for Bayesian UQ in large DNNs, here we illustrate

one way that our uncertainty information could be used in practice.

We introduce uncertainty maps as a tool that communicates how

confident (uncertain) a model is in its prediction. Figure 10 illustrates

these maps for one such example: top row displays the 4 modalities of

MRI; bottom row displays the ground truth, prediction, uncertainty

and truth-prediction discrepancy respectively for the SA-guided

pBNN (Section 5.3).

7.1. Construction

We describe how we compute and visualize the uncertainty of

the pBNN’s prediction for a specific use case (Figure 10). We chose

this image from our test dataset as an example because the ground

truth indicated a large percent of the pixels belonging to the tumor

class (25%). First, we obtain 100 samples from the posterior push-

forward distribution of our trained pBNN for this MRI. To construct

the prediction map, we take the mean of these 100 samples. We then

map the continuous values [0,1] to their dominant class (tumor or

non-tumor) with thresholding (value of 0.5).

We build the uncertainty map with the same 100 samples, by

computing within-pixel standard deviation. The range of uncertainty

displayed is unique to the image and is not a global uncertainty

measure. To visualize the truth-prediction discrepancy map, we

subtract the prediction map from the ground truth. The negative

extreme value (−1) indicates regions where the model predicts tumor

when the tumor is absent in ground truth (false positive, or over-

prediction). The positive extreme value (+1) indicates regions where

the model does not predict tumor when the tumor is present in the

ground truth (false negative, or under-prediction).

7.2. Interpretation

We show a use-case scenario on how to interpret and analyze

uncertainty maps.We asked one of the co-authors who is a researcher

in radiation oncology, and a collaborator with routine knowledge of

MRI image interpretation to conduct a preliminary interpretation

and analysis of the MRI and the uncertainty map in Figure 10.

Note that this interpretation was not performed by board-certified

radiologists, so it only serves as a guiding example.

According to their interpretation, it was clear to them that

the pBNN was fairly confident in distinguishing the tumor

core from the background, but was highly uncertain at the
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FIGURE 7

1ELBO training history for all models.

FIGURE 8

Normalized KL Dnorm, for all 19 pBNNs each built with Bayesian inference on one of the layers in the U-Net.

boundary regions of the tumor. This is consistent with manual

segmentation. For example, even when a single radiologist

performs multiple segmentations on the same image, the most

differences (intra-rater variability) are often present in the

boundary region.

In this particular example, the necrosis, enhancing, and

non-enhancing parts of the tumor are surrounded by edema.

Since the model predicts the whole tumor and does not

perform subclass recognition, it predicts the edematous region

of the tumor. However, since edema has a distinct contrast

in FLAIR, there is a possibility that this FLAIR modality is

contributing largely to the observed uncertainty. This is in line with

segmentation by radiologists, which also has the most uncertainty in

FLAIR modality.
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FIGURE 9

Scatter plot of KL divergence sum vs. number of parameters in the Bayesian layer.

FIGURE 10

Uncertainty map accompanying a prediction made by the pBNN.

Further, comparing the uncertainty map with the truth-

prediction discrepancy revealed that the pBNN is highly uncertain

where it under-predicts and had low uncertainty where it over-

predicts. A possible reason for this is in the context of the model’s

ability to correctly call out all of the tumor pixels in the ground truth.

For over-prediction, the model covered the tumor region and went

beyond it (which does not count as a “miss”), so the uncertainty is

low. Whereas for under-prediction, the model failed to correctly call
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out tumor (which counts as a “miss”), thus the uncertainty is high.

One such area of under-prediction is in the lateral ventricle of the

right hemisphere. This region is darker than the rest of the tumor (in

FLAIR modality), but is still a part of the tumor due to the presence

of edema.

One possible explanation of this model behavior is that the

model has learned to distinguish tumors based on pixel intensity

and contrast. As the algorithm “sees” the lateral ventricle of the right

hemisphere to be significantly darker than the rest of the tumor, it

thinks this is not a tumor. While this seems like a reasonable mistake

for the model to make, a radiologist would have no problem marking

this as a tumor as they have a firm understanding of anatomy.

Example regions of over-prediction are near the middle frontal gyrus

and near the necrotic region in the right hemisphere. This region is

craggy, and it seems like the model smoothed over these intricacies to

get a “good enough” prediction.

8. Discussion

The results of our empirical validation in Section 6 illustrate the

effectiveness of the pBNN: the pBNN where Bayesian inference is

performed on the SA-selected layer achieves the lowest normalized

KL divergence—that is, compared to if a different layer were chosen,

it provides the best capturing of the full BNN uncertainty. Our three-

step pBNN methodology in Section 3 is set up with implementation

considerations in mind. Step 1 allows the leveraging of pre-existing

trained DNNs, but also describes the procedure if a new DNN

needs to be trained from scratch. Step 2 assesses and identifies the

portion of DNN for Bayesian inference on a layer-by-layer basis

(i.e., keeping “layer” as the unit), since accessing and replacing

an entire layer (e.g., from a Dense layer to DenseFlipout layer) is

very convenient in programming infrastructure such as TensorFlow

Probability. Such modifications do not need the user to program

new layers, or to Bayesianize portions of a layer. The gradient-based

sensitivitymeasure adopted is also inexpensive to compute and can be

readily extracted from a deterministic DNN. Step 3 takes advantage

of existing implementations of Bayesian inference algorithms, such

as the Flipout VI that can be specified and used together with

non-Bayesian layers.

Our method is particularly valuable for high-dimensional

problems (e.g., DNNs with millions of parameters), where

performing a full Bayesian inference would be extremely expensive.

Our work enables principled approximate Bayesian inference

to be scaled up to millions of dimensions. While other related

partial Bayesian strategies compare test error performance (Zeng

et al., 2018), we explicitly compute closeness to the fully Bayesian

model, with the aim of faithfully capturing the true uncertainty

that we are justified to have. Our overarching goal is provide a

transparent quantification of uncertainty of our AI system (not to

only optimize accuracy).

We illustrate how our computational framework could be used

to visually represent prediction uncertainty in Section 7. While

uncertainty communication is not the primary goal of our paper, we

demonstrate how our work can advance an understanding of AI in a

healthcare context. We conduct preliminary analysis on these maps

to demonstrate how a radiologist might interpret these images. The

maps allow one to correlate the model’s mistakes and how confidently

the model fails. With clinical insights and interpretation, one can

also explore the model’s behavior on specific use cases. For example,

model predictions on out-of-distribution data can be potentially

flagged based on uncertainty (Ovadia et al., 2019) to caution the

radiologist about model’s reliability in those regions. This would be

especially useful for healthcare contexts where models are highly

domain-dependent and localized (Finlayson et al., 2021). Apart from

it’s potential to enable flagging of unreliable cases, our Bayesian

framework can allow for construction of an expert-informed pBNN.

It permits a flexible choice for prior and likelihood, potentially

allowing practitioners to inject their specialized knowledge. For this,

we refer to a branch of Bayesian statistics called expert knowledge

elicitation (O’Hagan et al., 2006).

While our work produced promising results, limitations still exist.

While we provided a detailed validation by brute-force computation

of the full BNN, one would not do so in practice. Assessing the

quality of posterior approximation is a challenge in general for all

BNNs, where inexpensive and effective diagnostics are needed to

monitor the algorithm progress especially for largemodels. Analyzing

ELBO curves is one such approach, but one cannot know when the

ELBO is stuck in a local minimum. Furthermore, the magnitude

of ELBO value does not directly indicate how far the variational

approximation is to the true posterior, since ELBO differs from the

KL divergence by an unknown constant (i.e., one should not expect

ELBO does not converge toward zero withmore epochs, as one would

with mean-squared-error). We also have not explored performing

Bayesian inference on multiple layers, or portions of layers, which

may offer further improvements. Such expansions would require

the development of efficient strategies to optimize SI across various

combinations of multiple layers, and additional benchmarking and

validation to assess the tradeoffs between their computational cost

and ability to approximate the full BNN. Despite these limitations,

our work demonstrates the effectiveness of SA-based pBNN in

Bayesian UQ of large, million-dimensional DNNs.

9. Conclusion and future work

In this paper, we proposed an approach to compute the

Bayesian uncertainty of million-dimensional DNNs for medical

image segmentation. Starting from a deterministic DNN, we used

gradient-based sensitivity analysis to identify a layer to perform

Bayesian inference, thereby creating a partially Bayesian neural

network (pBNN) that is computationally much less expensive to

construct than a full BNN. We demonstrated the pBNN method

on state-of-the-art 7.8-million parameter U-Net for brain tumor

segmentation. Our validation indicated that the pBNN based on SA-

selected layer provided the best approximation to the uncertainty

from a full BNN, compared to other layer choices.

Our methodology enables model developers and practitioners to

compute the Bayesian uncertainty for large deep learningmodels. In a

life-critical domain such as healthcare, deep learningmodels can have

far-reaching impact, but also can make mistakes leading to disastrous

consequences. Communicating uncertainty in model predictions

help encourage clinicians to engage with the AI-based DSS with a

healthy dose of skepticism and failure-centric mindset. Additionally,

UQ mitigate “super-human” perceptions of AI that can lead to

unjustified over-reliance. Thus, quantifying and communicating

uncertainty would allow for safer and responsible deployments of

AI-based CDSS in clinical workflows.
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For future work, we plan to conduct a large scale evaluation

of the impact of uncertainty communication to radiologists for the

task of tumor segmentation. In this paper, we conduct preliminary

interpretation of these maps and demonstrate the possibility of such

a study. We would further like to understand if these maps can be

used as a tool for model explanation, and whether these maps are

more useful than conventional metrics. It can also be a useful tool in

reducing alarm and click fatigue, as the model can only predict when

absolutely certain, and refrain from predicting otherwise.
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