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Shape-selective processing in
deep networks: integrating the
evidence on perceptual
integration

Christian Jarvers* and Heiko Neumann

Institute for Neural Information Processing, Faculty for Engineering, Computer Science and Psychology,

Ulm University, Ulm, Germany

Understanding how deep neural networks resemble or di�er from human vision

becomes increasingly important with their widespread use in Computer Vision and

asmodels in Neuroscience. A key aspect of human vision is shape: we decompose

the visual world into distinct objects, use cues to infer their 3D geometries,

and can group several object parts into a coherent whole. Do deep networks

use the shape of objects similarly when they classify images? Research on this

question has yielded conflicting results, with some studies showing evidence for

shape selectivity in deep networks, while others demonstrated clear deficiencies.

We argue that these conflicts arise from di�erences in experimental methods:

whether studies use custom images in which only some features are available,

images in which di�erent features compete, image pairs that vary along di�erent

feature dimensions, or large sets of images to assess how representations vary

overall. Each method o�ers a di�erent, partial view of shape processing. After

comparing their advantages and pitfalls, we propose two hypotheses that can

reconcile previous results. Firstly, deep networks are sensitive to local, but not

global shape. Secondly, the higher layers of deep networks discard some of the

shape information that the lower layers are sensitive to. We test these hypotheses

by comparing network representations for natural images and silhouettes in which

local or global shape is degraded. The results support both hypotheses, but

for di�erent networks. Purely feed-forward convolutional networks are unable

to integrate shape globally. In contrast, networks with residual or recurrent

connections show a weak selectivity for global shape. This motivates further

research into recurrent architectures for perceptual integration.

KEYWORDS

convolutional networks, shape, Gestalt, recurrent connections, deep learning, perceptual

grouping

1. Introduction

The success of deep neural networks has led to a new convergence of research in

Computer Vision and Neuroscience (Kriegeskorte, 2015). Many motifs in neural network

architectures have been loosely inspired by the brain. For example, the local filters used in

convolutional neural networks resemble connections in the ventral visual stream of primate

cortex. This analogy is fruitful for both sides: on the one hand, further biological inspiration

may help improve deep networks by bringing them closer to the robustness and flexibility

of biological vision (Medathati et al., 2016). On the other hand, deep networks can serve

as models for neuroscience, allowing researchers to implement and test new hypotheses

(Kriegeskorte, 2015; Cichy and Kaiser, 2019; Richards et al., 2019). Several studies have
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used convolutional neural networks as models of the visual

system and been successful at predicting responses (Cichy et al.,

2016; Yamins and DiCarlo, 2016; Zhuang et al., 2021) and

representational geometries (Khaligh-Razavi and Kriegeskorte,

2014) in the ventral stream, culminating in efforts to find neural

network architectures that predict brain data well (Schrimpf et al.,

2020).

However, several pieces of evidence suggest that neural

networks classify images according to very different criteria

than primate vision. Small changes below the human perceptual

threshold can turn an image into an adversarial example, which

networks classify wrongly with high confidence (Szegedy et al.,

2014). More generally, deep networks are much less robust to image

corruptions than humans (Geirhos et al., 2018).

Clearly, there are some parallels between deep networks and

primate vision, but also crucial differences. The question is: what

are the similarities, precisely? And what causes the differences? The

answers to these questions are relevant for Neuroscience, since they

will circumscribe the extent to which deep networks are useful

as models of primate vision. They are also relevant to Computer

Vision, since they may help improve neural networks, for example,

by making them more robust against adversarial examples and

image distortions.

To identify similarities and differences, it is useful to start with

key properties of primate vision and test whether deep networks

share these properties. One fundamental aspect of human vision

is the perception of shape. Distinguishing different objects in our

environment, understanding where the boundaries of each object

lie, and how they are arranged in our 3D environment are some

of the main functions of primate vision. But what about deep

networks? A large body of work has been dedicated to this question

in recent years - with conflicting results. While neural networks

seem to classify images preferentially by shape in some studies

(Ritter et al., 2017; Tartaglini et al., 2022), other experiments show

that networks are biased toward texture (Baker et al., 2018; Geirhos

et al., 2019a). In some papers they can be made sensitive to shape

by changes to the training process (Geirhos et al., 2019a; Hermann

et al., 2020), whereas in others they are unable to learn about shape

(Baker and Elder, 2022). How should these conflicting findings be

interpreted?

In this paper, we review research that investigates shape

processing in deep networks trained to classify images1 and

compares it to primate vision. Our goal is to reconcile results that

appear contradictory. We argue that this is due to differences in the

experimental methods, which focus on different aspects of shape

processing. Some methods test whether networks are sensitive to

the global arrangement of object parts, others also treat local shape

1 We focus on networks trained for image classification or object

recognition, because (1) most work on shape processing in deep networks

has focused on this task and (2) object shape is an important factor in the

way humans recognize objects. However, recognizing objects is only one of

many capabilities of human vision. It is possible (and highly likely) that the

way humans perceive shape is influenced by the many other visual behaviors

they exhibit. Looking at shape processing in deep networks trained for other

tasks is an interesting direction for future research, but beyond the scope of

this paper.

cues (e.g., corners) as shape information. Some methods assess

whether networks can use shape cues, while others test whether

networks prefer shape over other features.

Taking these distinctions into account, we propose two

alternative hypotheses that explain the evidence from previous

studies: firstly, networks only use local shape cues, but are not

sensitive to global shape. Secondly, networks may process shape

in intermediate layers, but discard it in the final decision layers.

We argue that a combination of experimental approaches is

necessary to test these hypotheses and present evidence from

such an experiment, bridging previous studies. According to

the results, both hypotheses may be correct, but for different

network architectures. While purely feed-forward networks are

unable to process global shape, networks with residual or recurrent

connections show some selectivity for global shape in intermediate

layers, but discard this information at later stages in the network

hierarchy. This opens up new opportunities for research on

recurrent grouping in deep networks.

2. Do convolutional networks process
shape? Conflicting evidence

Human shape perception is a complicated process. According

to current theories in neuroscience, object features including cues

about local shape (such as corners or boundary contours) are

initially extracted in a feed-forward pass through the ventral

visual stream, establishing a base representation (Roelfsema and

Houtkamp, 2011; Elder, 2018). These cues may be sufficient to

support object recognition in simple scenarios. For example, to

recognize a cat it may be enough to see the distinctive local contours

of its ears. The ability to recognize objects quickly in such simple

circumstances has been dubbed core object recognition (Afraz et al.,

2014; but see also Bracci and Op de Beeck, 2023). However, in more

difficult viewing conditions (e.g., partial occlusion and multiple

objects), the brain has to group parts of the object together and

segment the object from the background. For this kind of robust,

flexible processing of object shape, lateral and feedback connections

are crucial (Roelfsema and Houtkamp, 2011; Elder, 2018), as they

support the grouping of object contours (Grossberg and Mingolla,

1985, 1987; Tschechne and Neumann, 2014), assignment of border

ownership (Craft et al., 2007), and segmentation of the object

from its background (Self and Roelfsema, 2014). Importantly, this

recurrent grouping is highly sensitive to the relative arrangement

of object parts, the global shape. The set of rules by which

object parts are grouped together has been studied extensively in

Gestalt psychology and its successors (Wagemans et al., 2012). The

cumulative effect of this grouping is that the object is perceived as a

unified whole, a Gestalt.

Do deep network represent shape in a similar manner? Initial

work tried to address the question directly by comparing responses

and representations between deep networks and primate vision.

Kubilius et al. (2016) tested whether human participants and deep

networks could recognize objects just by their silhouette. Since the

silhouette only contains information about object shape, this would

indicate shape processing. Indeed, both human participants and

deep networks could recognize some object classes by shape and

their performance was correlated. Deep networks performed more
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poorly on objects that were hard to classify for human participants.

In addition, Kubilius et al. (2016) tested how networks represented

images of artificial shapes. Notably, the outputs of hidden layers

weremore correlated for images of shapes that humans judged to be

similar than for shapes that were physically similar. Similarly, Kalfas

et al. (2018) used representational similarity analysis (Kriegeskorte

et al., 2008; Diedrichsen and Kriegeskorte, 2017, see also Section

2.4) to show that representations in deep networks were highly

similar to neural activity in macaque inferotemporal cortex when

viewing artificial 2D shapes and to human similarity judgements

about the same stimuli.

While these results are encouraging and support the view that

deep networks can serve as models of the ventral stream, they

do not tell us much about how deep networks process shape.

For example, the similarity between network representations and

human or primate vision may be because the networks extract

similar features as the initial feed-forward sweep through the

ventral stream. This is supported by the fact that stimuli were

presented for only 100 ms by Kubilius et al. (2016), leaving little

time for recurrent processing (Thorpe et al., 1996). However, the

human similarity judgements reported by Kalfas et al. (2018) were

based on unrestricted viewing, so here the match to deep networks

might reflect that they are sensitive to global shape.

Since we are far from understanding human vision perfectly,

direct comparisons between humans and deep networks cannot

answer these detailed questions. Instead, several studies have

designed experiments to probe the characteristics of shape

processing in deep networks directly. These experiments can be

roughly subdivided into four different categories (see Figure 1):

1. Classification of diagnostic stimuli,

2. Classification of cue conflict stimuli,

3. Triplet tests,

4. And representation analysis.

Notably, each category operationalizes the concept "shape" in

a different way and tests different aspects of shape processing.

This can cause apparent contradictions when comparing results.

However, the results within each category are relatively consistent.

To demonstrate how the apparent contradictions can be resolved,

we look at each experimental approach in turn.We summarize their

respective findings and analyze what the advantages and limitations

of each approach are.

2.1. Classification of diagnostic stimuli

One way to test how deep networks process shape is

to create custom images in which shape information is

isolated from other confounding factors, or in which shape

information is manipulated selectively (see Figure 2). If

a network is able to correctly classify images in which all

information except shape is removed (for example silhouettes),

then the network must be using features that encode shape.

Conversely, if manipulating the shape information (e.g., by

shuffling image patches) affects the network output, this

indicates that the network used this information to classify

the image.

As noted above, Kubilius et al. (2016) showed that

convolutional networks can recognize some objects by their

silhouette, which indicates that they use at least some shape

information. Baker et al. (2018) replicated this result, but also

tested a wider range of diagnostic images (as well as cue conflict

stimuli—see Section 2.2). The neural networks tested (AlexNet

and VGG-19) performed much worse on line drawings of objects,

which contain at least as much information about object shape as

silhouettes. The only difference is that in a line drawing the interior

of an object has the same color as the background, whereas the

interior of a silhouette is filled with a uniform color that is different

from the background.

In addition, Baker et al. (2018) tested what kind of shape

information the networks used to classify silhouettes: local or global

shape. Human perception of shape partially uses local shape cues,

such as orientation or curvature (Elder, 2018). For example, the

characteristic shape of cat ears may be helpful in recognizing

a silhouette image as a cat. However, the evidence from these

local shape cues is not simply accumulated. Instead, human shape

perception is strongly influenced by the global arrangement of these

local cues, for example whether the parts of an object are in the

correct positions relative to each other and whether they form a

closed contour (Wagemans et al., 2012).

In order to test whether neural networks primarily rely on

local or global shape information, Baker et al. (2018) modified

the silhouette stimuli in two ways. First, they created scrambled

silhouettes (see Figure 2E), in which the original silhouette was

cut apart and pasted back together in a different arrangement.

This largely conserved local shape cues but completely altered

the global shape. Second, they manipulated the local boundaries

of the original silhouettes by adding a saw-tooth effect (see

Figure 2F). This changed the local shape features, but left the global

arrangement intact. Human participants showed low accuracy

on the scrambled silhouettes and high accuracy on the locally

perturbed silhouettes, indicating that they primarily rely on

global shape. In contrast, deep networks performed better on the

scrambled silhouettes than on the locally perturbed silhouettes,

indicating that they relied mainly on local cues and combined

them like a bag-of-features model, in line with Brendel and Bethge

(2019).

Similarly, Baker and Elder (2022) compared the performance

of human participants and deep networks on silhouettes and tested

several manipulations that altered the global shape. In fragmented

silhouettes (see Figure 2G), the shape was cut in half and the

two halves were moved apart. In Frankenstein silhouettes (see

Figure 2H), the upper half of the silhouette was flipped horizontally

and both halves were pasted back together. Finally, Baker and Elder

(2022) also used vertically inverted versions of all these stimuli.

The performance of humans and deep networks was worse on

fragmented silhouettes, which introduced a new local shape feature

(the horizontal cut). However, humans also performed worse on

the Frankenstein stimuli, in which global shape was altered while

keeping local cues largely identical. Deep networks performed

equally well on Frankenstein stimuli as on the original silhouettes,

indicating that they did not rely on global shape. This effect

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1113609
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jarvers and Neumann 10.3389/fcomp.2023.1113609

FIGURE 1

The di�erent types of experiments used to assess shape processing in neural networks. (A) Diagnostic stimuli restrict the amount of information

available in an image. For example, silhouettes only show the shape of an object. If a network can classify such stimuli correctly, it must be able to

use the available information. (B) Cue conflict stimuli combine features of two di�erent classes, for example, the shape of a cat with the texture of a

bicycle. If the network chooses one of these two classes, this indicates that it weights the respective feature more strongly. (C) In triplet tests, an

anchor stimulus and two matches are presented to the network. The matches di�er from the anchor along two di�erent feature dimensions. By

testing which representations are more similar, one can assess which features the network uses to group stimuli. (D) Methods to analyze network

representations record the outputs of intermediate layers across many images and asses which information is present in the representations. Image

credit: Silhouette reproduced from Baker et al. (2018), Figure 18 (CC-BY 4.0 attribution license). Cue conflict image reproduced from: https://github.

com/rgeirhos/texture-vs-shape (CC-BY 4.0 attribution license). Triplet stimuli reproduced from Tartaglini et al. (2022) (CC-BY 4.0 attribution license).

FIGURE 2

Diagnostic stimuli isolate or manipulate shape information. Artificial, abstract shapes allow tight control over which shape information is present: (A)

Kalfas et al. (2018) generated shapes in four categories: regular (top left), complex (top right), simple curved (bottom left), and simple straight (bottom

right). (B) Malhotra et al. (2022a) designed artificial shapes that could be classified according to their shape or another feature (e.g., the whether a red

segment is present). Shape-only stimuli depict real-world objects but remove all information except the shape, for example, by extracting a

silhouette (C) or line drawing (D). Shape corrupted stimuli additionally manipulate the shape information, for example by scrambling (E) the

silhouette or distorting its boundary (F). Similarly to scrambling, Baker and Elder (2022) used fragmented silhouettes (G) and re-aligned the parts to

create “Frankenstein” stimuli (H). Image credits: (A) reproduced from Kalfas et al. (2018) (CC-BY 4.0), (B) reproduced from Malhotra et al. (2022a)

(CC-BY 4.0), (C–F) reproduced from Baker et al. (2018) (CC-BY 4.0), and (G, H) adapted from Baker et al. (2018) (CC-BY 4.0).
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was constant across different network architectures, including the

biologically motivated, recurrent CORnet architecture (Kubilius

et al., 2019), a ResNet model trained on stylized ImageNet to

be more sensitive to shape (Geirhos et al., 2019a), and vision

transformers, which use self-attention to potentially integrate

information globally across the image and have been argued to

resemble human vision more closely than convolutional networks

(Tuli et al., 2021).

Inverting the silhouettes horizontally reduced the performance

for humans and deep networks (Baker and Elder, 2022), but in

humans this effect was less strong for inverted Frankenstein stimuli,

indicating holistic processing. For deep networks, there was again

no difference between original and Frankenstein silhouettes.

In sum, these experiments indicate that neural networks trained

on ImageNet are not sensitive to global shape of silhouettes. But

what can we infer from this about how neural networks process

natural images? A potential problem arises due to domain shift. The

networks examined in Kubilius et al. (2016), Baker et al. (2018), and

Baker and Elder (2022) were trained on natural images, silhouettes

were not part of their training set. Deep networks typically transfer

badly to data outside of their training distribution. It is conceivable

that a network uses both global and local shape in its training

domain (natural images), but when faced with a new domain

(silhouettes) only some of the features it has learned transfer

well enough to enable classification.2 To rule out the possibility

that networks use global shape, one would need to test them on

diagnostic stimuli inside their training domain.

Experiments closer to this requirement were conducted by

Baker et al. (2020), who used transfer learning to have networks

pre-trained on ImageNet classify images of circles and squares.

They then tested the network on images of squares composed

of small half-circles and circles composed of small corner-like

wedges. While this also presents a shift away from the training

distribution, it is less drastic than the shift from natrual images to

silhouettes. Importantly, a network that is only sensitive to local

shape features might distinguish squares from circles based on

their sharp corners - and should therefore miss-classify a circle

made up of small corner-like elements. This is exactly what Baker

et al. (2020) observed with networks trained on simple circles

and squares. When they instead trained the networks on circles

and squares made up of more diverse local elements (like crosses,

tilde signs, or thicker lines), networks responded in line with the

global shape of the stimulus: circles made up of small corners were

classified as circles, squares made up of half-circles were classified

as squares. However, when the networks were tested on shapes

made up of small, randomly oriented line segments, performance

was largely random (indicating that the networks still relied on

local shape) and the networks treated fragmented squares or circles

the same as whole shapes (indicating that changes to global shape

did not matter). Baker et al. (2018) concluded that the networks

still used local cues, but at a slightly larger scale: they ignored the

2 Hosseini et al. (2018) proposed using negative images (i.e., images with

inverted intensity values) to assess shape processing. Negative images may

su�er less from domain shift than silhouettes, but have the disadvantage that

they do not eliminate texture information, so their diagnostic value is less

clear.

very small elements (corners or half-circles) and instead checked

whether the overall orientation was constant (as for squares) or

changed gradually (as for circles). They did not use global shape.

Similarly, Malhotra et al. (2020, 2022a) trained networks on

custom datasets for which the network could either learn to classify

by shape or by another feature. Malhotra et al. (2020) added noise

or a single diagnostic pixel to natural images. The statistics of the

noise (e.g., the mean) or the color of the single diagnostic pixel

indicated the image class, so the network could classify the image

either by the appearance of the depicted object, or by the noise.

The networks relied heavily on the noise or pixel features, showing

drastically reduced or random performance on clean images. Even

if the manipulations were restricted to a subset of the training

classes, so that the network had to use object appearance to classify

the remaining classes correctly, networks relied on the noise/pixel

features for as many classes as possible.

Malhotra et al. (2022a) ran similar experiments with completely

artificial stimuli and compared the behavior of human participants

and deep networks. The stimuli could be classified according

to shape or one other feature (e.g., the color of one image

patch, see Figure 2B). Participants almost always learned to classify

the objects by shape, except for one experiment where the

other feature was the color of a large part of the stimulus.

When shape was not available as a cue, participants struggled

to learn the task at all, even when they were told what the

diagnostic feature was. In contrast, neural networks systematically

preferred all other features over shape. They appeared to

learn some shape information, since their accuracy was above

chance when the other feature was removed. However, when

faced with a stimulus where shape and the other feature were

in conflict, the networks always classified according to the

other feature.

Taken together, experiments with diagnostic stimuli show that

neural networks are sensitive to some shape information and

can use it to classify silhouettes. However, they rely on local

shape cues rather than global shape and if they have the choice

between shape and another informative feature, they typically

use the other feature, such as local color, texture, or even

noise statistics.

While this evidence seems compelling, it has to be taken

with a grain of salt. Diagnostic stimuli are usually far from

the training distribution, so we cannot just assume that neural

networks behave identically on the natural images they were

trained on. In addition, these experiments rely on the classification

output of the networks.3 It is possible that networks extract

shape information in earlier layers, but largely discard it in

the final layers because other features are more predictive

(see Section 2.3). Conversely, just because networks are able

to classify some diagnostic stimuli according to local shape

cues, this does not mean that they rely on these cues when

classifying natural images. Whether they do can be tested using

cue conflict.

3 Baker et al. (2020) also examined correlations among activities in earlier

layers. However, these seemed to be dominated by input similarity and did

not reveal much about shape processing.
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2.2. Classification of cue conflict stimuli

Whereas diagnostic stimuli can be used to assess whether neural

networks are able to use shape information, cue conflict stimuli are

designed to test whether they do use this information. In order to

test whether a network classifies an image by shape or by another

feature, for example texture, one can generate an artificial image

with the shape of one class, but the texture of another. This puts

the two features or cues in conflict. By observing which class

the network predicts, one can assess which feature it relies on

more strongly.

Baker et al. (2018) filled silhouettes of one class with surface

content of another (see Figure 3A). For example, the outline of a

camel was filled with the stripes of a zebra’s fur. Deep networks

had a low accuracy on this dataset, but still identified the shape

or texture of some images correctly. Notably, if the silhouette was

from a human-made object, the networks had a higher likelihood

of identifying the class of the shape, but if the silhouette was from

an animal, the networks were more likely to identify the texture.

This may be due to the fact that many human-made artifacts have

clear edges and corners, i.e., very distinctive local shape cues, but

relatively homogeneous surfaces with less texture information.

Since Baker et al. (2018) created images by hand, they could

only test a limited range of conflict stimuli. Geirhos et al. (2019a)

used neural style transfer (Gatys et al., 2016) to create stimuli

with the shape of one class and the texture of another (see

Figure 3B). They tested human participants and convolutional

networks (AlexNet, VGG-16, GoogLeNet, and ResNet-50) on 1,280

images, each of which belonged to one of 16 classes. Shapes and

textures were counterbalanced in their frequency of presentation.

The authors defined a measure of shape-bias and texture-bias as the

fraction of images classified by shape (or texture, respectively) out

of the total number of images classified according to either shape

or texture. The measure excludes images that were not classified

correctly according to either cue. While humans exhibited a strong

shape-bias, neural network mostly classified according to texture.

This definition of shape-bias as the fraction of shape decisions

made on cue conflict stimuli derived by style transfer has been

adopted widely in the deep learning community and has been the

main target of attempts to improve the way neural networks process

shape. For example, Geirhos et al. (2019a,b) showed that training

networks on randomly stylized images, for which the style/texture

is no longer predictive of the class, can increase shape bias and that

this increased shape bias also leads to higher robustness against

image distortions such as noise. While training only on stylized

images led to reduced performance on natural images, training on

a mix of natural and stylized images led to good performance on

both, as well as increased robustness. Hermann et al. (2020) showed

that networks could be explicitly trained to use the shape or texture

cue and that changes to the training procedure—longer training

with stronger augmentations and less aggressive cropping—could

lead to higher shape bias. In contrast, changes in architecture (e.g.,

using an attention layer or the biologically inspired CORnet model)

did not have a clear effect. Other methods to improve the shape

bias include mixing in edge maps as training stimuli and to steer

the stylization of training images (Mummadi et al., 2021), applying

separate textures to the foreground object and the background

(Lee et al., 2022), penalizing reliance on texture with adversarial

learning (Nam et al., 2021), training on a mix of sharp and blurry

images (Yoshihara et al., 2021), adding a custom drop-out layer

that removes activations in homogeneous areas (Shi et al., 2020),

or adding new network branches that receive preprocessed input

like edge-maps (Mohla et al., 2022; Ye et al., 2022).

Notably, most of these adjustments have to be carefully tuned,

otherwise the networks with improved shape bias perform worse

on natural (non-stylized) images. In addition, improvements in

shape bias do not always lead to improvements in robustness

(Mummadi et al., 2021). We should therefore be cautious in

interpreting these results: a higher shape bias may not mean more

human-like understanding of shape. As a case in point, Tuli et al.

(2021) included shape bias in a larger comparison of convolutional

networks and vision transformers (ViT) to human vision. While

the ViTs had a higher shape bias, the error pattern (which classes

were mistaken for which other classes) of ResNets resembled that

of human participants more closely.

Another potential problem comes from the method to create

the cue conflict stimuli in most studies. Neural style transfer (Gatys

et al., 2016) attempts to preserve the content (i.e., the shape) of

one image while applying the texture of another by performing

gradient descent with a content loss and a style loss. The content

loss ensures that the activations of one layer in a deep network

are kept close to the activations for the content image. Typically, a

layer higher up the network hierarchy is used in order to capture

high-level semantic features. The style loss is computed across

several convolution layers to capture both high- and low-level

image features. For each layer, it penalizes the distances between the

Gram matrix of activations in that layer for the style image and the

image that the style is transferred to. This means that the stylized

image will elicit the same correlations between feature detectors

in that layer of the network as the style source image. The result

is an image in which structures of the content image will still be

recognizable to humans.

For example, if the content source shows a house, the outline

or shape of the house will be largely intact. However, the color

and surface properties will be taken from the style source. For

example, if the style source is a painting, the walls may be painted

in brush-strokes. At least, this is what the resulting image looks

like to a human observer. The key point to keep in mind for this

discussion of shape bias is that a stylized image is generated by

gradient descent with respect to activations in a neural network.

Since neural networks can be sensitive to image features that are

not perceptible to humans (Szegedy et al., 2014), this process might

introduce features that strongly bias neural network responses,

but that are not visible to a human observer. Conversely, it could

destroy shape features that networks use to classify images - thereby

causing the low shape bias.

In summary, despite these caveats, evidence from cue conflict

largely corroborates the findings from diagnostic stimuli: neural

networks do not classify images according to object shapes. Rather,

they rely on texture cues. However, this preference for texture

can be weakened by modifications to the network architecture or

training procedure.

In contrast to experiments with diagnostic stimuli, cue conflict

tests do not distinguish between local and global shape information.
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FIGURE 3

Stimuli used in cue conflict experiments. (A) Silhouettes filled with surface texture of another class. (B) Cue conflict generated using style transfer,

using an image of one class as content or shape and an image of another class as style. The left image has shape “cat” and texture “bicycle.” The right

image has shape “keyboard” and texture “elephant.” Image credit: (A) reproduced from Baker et al. (2018) (CC-BY 4.0), (B) reproduced from: https://

github.com/rgeirhos/texture-vs-shape (CC-BY 4.0).

Thus, it is not clear whether improvements in shape bias are due

to an increased reliance on local shape cues, or because networks

learn to integrate shape information globally [though the results

from Baker and Elder (2022) indicate the former, see Section 2.1].

In addition, just like experiments with diagnostic stimuli, cue

conflict tests rely on the classification output of the network. This

may skew the results. For example, it is conceivable that a network

trained on ImageNet learns to use both shape and texture to classify

natural images. When faced with a cue conflict, it has to base

its decision on one of the two features. It may prioritize texture

for various reasons, for example because the object surface takes

up a larger part of the image than the object outline such that

the texture evidence out-votes the shape evidence. To avoid this

potential confound, it is necessary to examine shape bias without

relying on the classification output alone. This can be achieved

using triplet tests.

2.3. Triplet tests

Shape bias in human participants has been extensively studied

in cognitive psychology. For example, when learning new words

children tend to group objects by shape, rather than texture or size,

exhibiting a shape bias, which increases with age (Landau et al.,

1988). In order to control for response bias, Landau et al. (1988)

adopted a forced-choice procedure: they showed participants one

object (the standard) and then had them choose among two other

objects that differed from the standard by different features. For

example, one might have a different size than the standard, but the

same shape. The other had a different shape, but the same size. The

participants had to choose the object that they thought belonged to

the same category as the standard.

Ritter et al. (2017) adopted an analogous procedure for testing

the shape bias of neural networks. They used a probe image that

showed an object, as well as color and shape matches. The color

match showed an object of the same color as the probe, but

with a different shape. The shape match showed an object with

the same shape as the probe, but a different color. The authors

computed the cosine distance between the activation of the final

layer of an Inception network (before applying the softmax) for

the probe image and the activation for each match image. If

the representation distance between probe and shape match was

smaller than between probe and color match, this was counted as

a decision for shape. Notably, for the Inception network and for

matching nets (an architecture designed for one-shot classification)

the distance between probe and shape match was lowest in most

cases: the networks were biased toward shape.

Since this approach uses triplets of images, it is referred to as

a triplet task. The term “task” is used in analogy to the forced

choice task for human participants, not to classification or other

tasks networks are trained for. The networks are not trained for

the triplet task. In this sense, the term “triplet test” may be more

appropriate.

Feinman and Lake (2018) used this approach to look at the

emergence of shape biases during training. They trained small

networks on artificial datasets of simple shapes, specifically an

MLP with a single hidden layer and a convolutional network

with two convolutional layers and one fully connected layer. The

authors observed a fast emergence of shape biases. However, since

shape was the only feature dimension that was predictive of image

classes in their datasets, it is unclear whether the same is true for

networks trained on natural images, where color and texture are

also predictive of object class.

Since the triplet test is based on similarity of activation patterns,

it is not restricted to the output layer of a network. Guest and

Love (2019) tested all layers of an Inception network with the

same triplets used by Ritter et al. (2017). They observed that lower

layers were biased toward color, whereas higher network layers

were biased toward shape. They also tested simple artificial stimuli,

for which the highest layers were biased toward shape. Notably,

the results in the lower layers varied drastically depending on

whether stimuli were presented in the same image location or not,

indicating that the distance function was dominated by low-level

pixel similarity.

These results from triplet tests seem to directly contradict

the results from diagnostic stimuli (Section 2.1) and cue conflict

(Section 2.2). However, this difference might be due to confounds.

For example, the resultsmight be specific to the image triplets tested

in Ritter et al. (2017) and Guest and Love (2019). A more direct

comparison is enabled by Tartaglini et al. (2022), who performed

triplet tests with stylized images like the ones used for cue conflict

experiments. Each probe stimulus was a cue conflict image and the

texture match was another image with the same texture style, while
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the shape match was an image with the same object but a different

texture. Interestingly, most networks exhibited a texture bias when

tested on standard cue conflict stimuli. However, this changedwhen

the background was masked out. The original shape images showed

objects on a white background, but the style transfer procedure

also added texture in this background region. Thus, the texture

arguably covered a much larger area than the shape object. When

the conflicting texture was restricted to the object by masking out

the background, all networks exhibited a shape bias. Unfortunately,

Tartaglini et al. (2022) did not report the classification-based shape

bias measure, so their results cannot be compared to Geirhos et al.

(2019a) directly. Nevertheless, their results illustrate that results

from the triplet test and cue conflict experiments are generally

compatible and that it is important to carefully consider details of

the experiment.

Two more important experimental variables that Tartaglini

et al. (2022) identified were the spatial alignment and size of the

stimulus. Shape bias was generally higher when the object was in the

same position in the probe and shape match image. This shows that

similarity in the triplet test partially just reflects similarity in pixel

space, rather than the processing of features like shape or texture.

This point was also raised by Guest and Love (2019) and requires

appropriate experimental control. Size also played a role: most

networks showed a stronger shape bias for smaller stimuli. This

might indicate that networks rely on local shape cues, as indicated

by experiments with diagnostic stimuli (Section 2.1). If a network

only extracted local shape cues with a certain receptive field size, a

smaller object would be covered by this receptive field to a larger

degree, increasing the diagnostic value of the features. However,

the size effect might also be due to an experimental confound,

e.g., because a smaller object means there will be less texturized

surface. Notably, even a ResNet with random weights showed a

strong shape bias in most experimental conditions (Tartaglini et al.,

2022), indicating that the shape bias measured in the triplet test

does not necessarily indicate a learned understanding of shape.

In addition, it is unclear whether the shape sensitivity that

neural networks show in triplet tests is due to local shape cues or

global shape processing. This would require diagnostic stimuli that

distinguish between local and global information, but diagnostic

stimuli are typically very different from the images a network was

trained on (see Section 2.1). Due to this domain shift, it becomes

even harder to control for confounds in the similarity-based triplet

measure. A step in this direction was made by Malhotra et al.

(2022b), who designed triplets of artificial shapes to test if networks

represented a relational change, i.e., a change in the relative

arrangement of object parts, differently from a coordinate change,

which did not change object part relations. Unless explicitly trained

to classify a certain type of relational change, networks did not show

selectivity for relational changes (i.e., smaller triplet distances). This

indicates a lack of global shape processing.

In summary, triplet experiments indicate that deep network

encode shape to a higher degree than cue conflict tests reveal.

This might mean that networks can use shape information

in their decision, but when they are forced to classify a

stimulus with conflicting features, they discard shape in favor

of another feature. In this view, their capacity for shape

processing would be masked by the experimental requirements in

classification tasks.

A key advantage of the triplet test is that it can also be applied

to earlier layers of the network. Thus, if certain kinds of shape

processing were restricted to earlier network layers, this could in

principle be revealed by triplet tests. However, since the test relies

on direct comparisons between image triplets, it is vulnerable to

experimental confounds, such as differences in spatial position,

size, etc. This problem can be overcome by methods that analyze

the content of representations across larger sets of images.

2.4. Analyzing representations

Two methods that have been used to analyze representations

in deep network layers are decoding and representational similarity

analysis.

Decoding tests whether a feature is represented in a network

layer by training a classifier for that feature. The better the classifier

performs, the better the featuremust be represented in that network

layer. Hermann et al. (2020) trained decoders for the texture and

shape classes of cue conflict stimuli for the final pooling layers and

fully connected layers of AlexNet and ResNet-50. They observed

that both shape and texture could be decoded with high accuracy,

indicating that both features were represented. However, while

texture was represented equally well across layers, the quality of

shape representations decreased across fully-connected layers in

AlexNet and after the global average pooling in ResNet-50.

In contrast, Islam et al. (2021) assessed the quality of shape

encoding for natural images (not cue conflict stimuli) by decoding

segmentation masks for the foreground object. They found that

shape could best be decoded from higher convolutional layers,

which also contained some information about object class (enabling

semantic instead of binary segmentation). However, the authors

also noted that the decoder often segmented the shape of an

object correctly, but assigned different semantic labels to different

object parts, indicating that the global shape of the object was not

represented. Islam et al. (2021) also quantified the dimension of

shape and texture representations in each layer, i.e., the number

of units that were selective to each feature. They assessed this by

measuring the mutual information between neuron responses for

pairs of cue conflict images that had the same shape or texture,

respectively. They noted that in most layers, more neurons were

selective for texture than for shape. The dimensionality of shape

representations was higher for higher network layers, for deeper

networks, and for networks trained on stylized images.

Representational similarity analysis (RSA) captures the overall

geometry of representations in a network layer across a range

of stimuli. It can also be applied to recordings from biological

brains, or to response patterns and even makes it possible to

compare different systems (Kriegeskorte et al., 2008; Diedrichsen

and Kriegeskorte, 2017). The geometry of representations in a layer

is first characterized by recording the distance between each pair

of stimuli in a representation dissimilarity matrix (RDM). The

geometries of two systems (or of the same system on two sets

of stimuli) can then be compared by measuring the distance or

correlation between two RDMs.

Kalfas et al. (2018) used this method to compare the

representations of artificial two-dimensional shapes (see Figure 2A)
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between convolutional networks, recordings from IT cortex of

primates, and human similarity judgements. While representations

in early networks layers mainly reflected pixel-level image

similarity, representational geometries in higher layers were similar

to primate and human data. The comparison to pixel-wise

similarity is notable, since it overcomes one of the problems of

triplet tasks, namely the difficulty of controlling the potential

confounding effect of image similarity (Section 2.3). Kalfas et al.

(2018) also showed that the similarity to human and primate data

did not hold for untrained networks.

Singer et al. (2022) compared representations of photographs,

line drawings, and sketches (strongly simplified line drawings,

see Figure 4) of the same objects across layers of convolutional

networks. Since the contours in the line drawings matched the

object edges in the photographs to a high degree, this allowed for a

dissociation of shape (which was similar between photographs and

line drawings) from surface properties (line drawings and sketches

consisted of lines on a white background). In convolutional layers,

representations of photographs and drawings were more similar to

each other than to representations of sketches. This indicates that

representations were more selective to the shape features shared

between photographs and drawings than to the surface properties

shared between drawings and sketches. In fully connected network

layers, this similarity decreased and representations of drawings

and sketches were similar instead, indicating selectivity for texture.

This decrease in photo-to-drawing similarity was less severe in

networks trained on stylized images and could be overcome by

fine-tuning to a sketch dataset.

In summary, the evidence from decoding and RSA indicates

that networks do encode shape, especially in the higher

convolutional layers. This is consistent with observations

from triplet tasks. However, in contrast to triplet tasks, which also

found high shape bias in fully connected layers, representation

similarity analysis and decoding suggest that shape information

is discarded in fully connected layers. This could explain why cue

conflict experiments consistently find a texture bias.

2.5. Integrating the evidence: the holistic
picture

At first glance, the results from different experimental

methods seem to contradict each other. For example, cue conflict

experiments show that deep networks are biased toward texture,

whereas triplet tests indicate that they are biased toward shape.

However, these apparent contradictions may be largely due to the

fact that each method measures slightly different aspects of shape

processing.When these differences are considered carefully, a more

complete picture emerges.

Triplet tests, representational similarity analysis, and decoding

show that deep networks represent object shape. This is supported

by the observation that deep networks can classify silhouettes with

some accuracy. However, results from representation similarity

analysis and decoding indicate that shape representations are

discarded in the last network layers. This is consistent with the

tendency of networks to classify cue conflict stimuli by texture,

not shape. It is unclear why this reduction in shape information

is not evident in triplet tasks, but this might depend on how exactly

experimental confounds like pixel-wise similarity are controlled

(Guest and Love, 2019; Tartaglini et al., 2022). Thus, one possible

interpretation of the data is that deep networks do process object

shape, but this information is discarded or down-weighted in the

final layers and other features determine the classification output.

While this interpretation resolves most contradictions in the

data, it leaves one crucial question open: what kind of shape

representations do the intermediate network layers represent? Are

they limited to local shape cues, or does a global integration

of shape information take place? In experiments with diagnostic

stimuli, network responses do not show selectivity for global

shape. Adjustments to the training regime may increase the shape-

bias measured in cue conflict experiments (Geirhos et al., 2019a;

Hermann et al., 2020), but they do not seem to make networks

sensitive to global shape (Baker et al., 2020; Baker and Elder, 2022).

Thus, a second possible interpretation is that networks are unable to

use global shape information. Any shape selectivity shown in triplet

tasks, RSA, and decoding is based on local shape cues.

This interpretation may also appear attractive as a source of

further analogies to neuroscience. According to current theories

of human shape perception, global shape processing relies on

recurrence and feedback (Roelfsema and Houtkamp, 2011; Elder,

2018). A lack of global shape processing in feed-forward networks

would support this theory. However, some feed-forward network

architectures may be able to emulate recurrence (Liao and Poggio,

2016) and some networks incorporate them explicitly (Kubilius

et al., 2019). Other network motifs like the global self-attention

used in vision transformers (Dosovitskiy et al., 2021) may also

enable global grouping of information. Thus, it is important to

keep in mind that different networks may process shape differently.

So far, most studies on shape processing have focused on one or

two network architectures, most commonly AlexNet, VGG, and

ResNet. While some studies have explicitly compared different

architectures and found that they processed shape similarly (Baker

and Elder, 2022), additional systematic comparisons are needed to

complete the picture.

The current evidence is insufficient to confirm or falsify either

of the interpretations we proposed. To close this gap and to narrow

down what type of shape information is represented where and

how in which deep network architectures, we think it is necessary

to combine the different experimental approaches more explicitly.

Each of them offers a unique view of shape processing. To get

the full picture, we need to put these views together. For example,

diagnostic stimuli offer precise control over the features that are

available, while cue conflict or triplet tests allow to asses which of

two stimuli a network relies on more strongly. A combined set

of stimuli that restricts some cues and puts others in conflict, can

give a more nuanced view of which cues a network really uses.

Decoding or representational similarity analysis could then be used

to track these different cues across layers. No single experiment

will characterize shape processing in deep networks and there will

not be a single yes or no answer to the question if deep networks

classify images according to shape. But by connecting the dots we

will be able to understand perceptual organization in deep networks

in more detail.
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FIGURE 4

Stimuli used in Singer et al. (2022). Line drawings closely match the photographs, such that the represented shape information is similar while the

surface properties di�er. Line drawings and sketches have similar (absent) surface properties, but show di�erent degrees of shape information. Image

credit: reproduced from Singer et al. (2022) (CC-BY 4.0).

3. Experiments—Testing for local and
global shape in intermediate
representations

We have proposed two hypotheses that can explain previous

findings on shape processing in deep networks:

Hypothesis 1: Deep networks trained to classify images are not

sensitive to the global arrangement of object parts. Any shape

selectivity they exhibit (e.g., in triplet tasks or after shape-

biased training) relies on local shape cues, e.g., characteristic

parts of the object outline.

Hypothesis 2: Deep networks are sensitive to some shape

cues. However, they rely more strongly on other features like

texture when classifying images. As these other features are

more important or easier to discover in the training set, shape

features are down-weighted in the final layers of the network.

The networks appear to discard the shape information.

To test these hypotheses, we need to assess to what

extent intermediate layers represent shape, and whether the

representations reflect local or global shape properties. Baker et al.

(2018) and Baker and Elder (2022) designed diagnostic stimuli

to dissociate local and global shape processing: silhouettes (which

contain only shape information), scrambled or "Frankenstein"

silhouettes (in which the global arrangement is disrupted) and

jagged silhouettes (in which local shape cues are disrupted). We

adopt the same approach. However, instead of manually curating

a set of silhouettes, we generate them from natural images that are

annotated with segmentation masks. This results in a larger dataset

with more variation among object classes and views. In addition,

this procedure gives us access to different images of the same object:

a natural image, a silhouette, and degraded versions thereof. Due to

this one-to-one correspondence, we can compare representations

for the different image types using representational similarity

analysis, similar to Singer et al. (2022); see also Section 2.4.

Representational similarity analysis compares the similarity

structure across items between two representations (Kriegeskorte

et al., 2008; Diedrichsen and Kriegeskorte, 2017). We use it to

compare representations of diagnostic images with representations

of the corresponding natural images in the same network layer.

A high representational similarity value (for example, between

representations of silhouettes and natural images) means that if

the network layer represents two natural images similarly, the

representations of the two corresponding silhouettes will be similar

as well. This implies that the information available in the silhouette

images (i.e., object shape) is relevant for the geometry of the

representation in that layer.

This enables us to test our two hypotheses. If hypothesis

1 is true, i.e., networks do not represent global shape, then

representations for images that only contain global shape

information (i.e., silhouettes in which local shape cues are

corrupted) should not be similar to representations of natural

images. If hypothesis 2 is true, then there should be significant

similarity between representations of shape-only images in early

network layers, but not in the final layers of the network. We

perform these tests in several networks, to see if differences in

architecture affect shape processing.

3.1. Methods

3.1.1. Stimuli
We used images from the PASCAL visual object classes

(Everingham et al., 2015). We selected images from the training

and validation sets of the 2012 VOC challenge for which detection

annotations as well as semantic segmentations were available. We

used the detection annotations to remove images with multiple

objects and images for which the single object was occluded or

truncated. This filtering procedure resulted in 685 images with

single, well-visible objects.

To ensure that each object was in the center of the image

and all objects were of similar size, we enlarged the bounding

boxes provided in the detection annotations by a factor of 1.4

and cropped the image to the resulting window. We resized each

image to a resolution of 244-by-244 pixels. Based on these cropped

images, we generated a range of diagnostic stimuli (see Figure 5).

In foreground images (“fg”), the image background was filled with

white color, such that only the object was visible. In silhouette

images (“silhouette”), all object pixels were set to black color.

To disrupt global object shape, we used a similar method to the

“Frankenstein” images in Baker and Elder (2022): we split the image

into two halves at the y-coordinate of the center of mass of the

silhouette. We flipped the lower half of the image horizontally and

re-aligned the edges of the silhouette (“frankenstein”). To disrupt

local shape features (“serrated”), we corrupted the silhouette edges,
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similar to the jagged silhouettes in Baker et al. (2018). We used a

morphological dilation to enlarge the boundary of the object to a

width of five pixels. Pixels values in this area were replaced by noise,

which we generated by sampling independent, normally distributed

values for each pixel, smoothing the result with a Gaussian filter

with standard deviation 2, and thresholding at zero.

3.1.2. Networks
We tested a range of networks with different architectural

motifs that might influence shape processing. AlexNet (Krizhevsky

et al., 2012) and VGG-19 (Simonyan and Zisserman, 2015)

are examples of standard convolutional networks, without skip

connections or parallel paths. We included GoogLeNet (Szegedy

et al., 2015), which uses parallel paths with different kernel sizes,

and ResNet-50 (He et al., 2016), which contains residual blocks with

skip connections. To test the effect of increasing “shape bias,” we

also tested a ResNet-50 architecture trained on a mixture of natural

and stylized images (Geirhos et al., 2019a). We refer to this network

as ShapeResNet. We also evaluated CORnet-S (Kubilius et al.,

2019), which has a similar architecture to residual networks but

shares weights between residual layers, such that the architecture

is equivalent to an unrolled version of a recurrent network (Liao

and Poggio, 2016). In addition, CORnet-S was designed to predict

activations in the ventral stream of the primate visual system.

This makes it an interesting candidate for testing human-like

shape perception. We also include BagNet-17 (Brendel and Bethge,

2019), which mirrors the architecture of ResNet-50 but replaces

3×3 convolution kernels in most residual blocks by 1×1 kernels,

which restricts the receptive fields of the top-most units to 17×17

pixels. Finally, we evaluate a vision transformer [ViT; Dosovitskiy

et al. (2021)], which uses multi-head self-attention between image

patches instead of convolutions. As the self-attention operates

across the whole image, it could enable the ViT to more efficiently

learn global shape properties.

All networks were implemented in PyTorch (version 1.13.0).

For AlexNet, VGG-19, GoogLeNet, ResNet-50, and ViT-B-16,

we used the implementations and pretrained weights in the

torchvision library (version 0.14.0). For BagNet-17 and CORnet-S

we used the reference implementations and pretrained weights

at: https://github.com/wielandbrendel/bag-of-local-features-

models and https://github.com/dicarlolab/CORnet, respectively.

For ShapeResNet, we used the weights provided at: https://github.

com/rgeirhos/texture-vs-shape. Pretraining for AlexNet, VGG-19,

GoogLeNet, ResNet-50, BagNet-17, and CORnet-S was performed

on ImageNet-1K with simple image augmentations (random

resize and crop, random horizontal flip, and normalization).

ShapeResNet was pretrained using the same augmentations,

but on a mixture of stylized ImageNet and ImageNet, followed

by fine-tuning to ImageNet. ViT-B-16 was also pretrained

on ImageNet-1K, but using a more elaborate augmentation

pipeline including auto-augmentation, mix-up and cut-mix

operations.

3.1.3. Classification
Since all networks we used were trained for ImageNet-1k image

classification, their outputs are 1,000-element vectors assigning a

probability to each of the 1,000 ImageNet-1k classes. We used the

WordNet hierarchy to map each of these outputs to one of the

20 PASCAL VOC classes. Specifically, we translated each PASCAL

VOC class to a WordNet synset and collected all ImageNet classes

that were descendants of this synset in the WordNet ontology.

For example, the ImageNet class "magpie" was mapped to the

PASCAL VOC class "bird." For some PASCAL VOC classes, we

used hypernyms instead of the original class label in order to

capture a wider variety of ImageNet classes (for example, "bovid"

instead of "cow"). For each image, we took the top-1 prediction

of the network and mapped it onto the respective PASCAL VOC

class. If the resulting class matched the label, this was counted as a

correct classification. If the prediction was mapped onto the wrong

PASCAL VOC class, or if the ImageNet class did not correspond

to a PASCAL VOC class (e.g., there is no PASCAL VOC equivalent

of the class "envelope"), this was counted as a misclassification. We

quantified accuracy as the fraction of correct classifications.

To test if a network was able to use the information

in a type of diagnostic image, we compared its accuracy to

random performance. Since the number of images per class

was not balanced and since some ImageNet classes (which did

not have a PASCAL VOC equivalent) were always counted as

misclassifications, chance performance depends on the frequency

with which the network predicts each class. For example, a network

that classifies every image as a random type of bird would have an

accuracy of 11.8%, since 81 of the 685 test images were labeled as

birds, but a network that classifies every image as a random type of

fish would have an accuracy of 0%, since PASCAL VOC does not

contain a fish class.

We tested if a network’s predictions were significantly more

accurate than chance by estimating a null distribution of chance

predictions, similar to Singer et al. (2022). For each element in

the null distribution, we randomly shuffled the predictions of

the network across the 685 images and computed the resulting

accuracy. We repeated this procedure 10,000 times. The resulting

distribution of accuracies describes how well the network would be

expected to perform if it responded randomly, but with the given

frequency of each class. To test significance, we computed a p-

value as the fraction of elements in the null distribution that were

larger or equal to the true (non-shuffled) accuracy of the network.

We applied the Benjamini-Hochberg procedure to control the false

discovery rate (Benjamini and Hochberg, 1995) for each network.

Since this method requires a ranking of p-values, applying it across

networks might lead to unwanted interactions (a change in p-value

for one network might affect the significance of results for the other

networks). We applied a separate FDR-correction to the results of

each network and divided the target rate by the number of networks

(0.05/8 = 0.00625), which corresponds to a Bonferroni-correction

across networks.

3.1.4. Representational similarity analysis
We compared representations of different types of diagnostic

images using representational similarity analysis (Kriegeskorte

et al., 2008; Diedrichsen and Kriegeskorte, 2017).

For each network, we chose several layers of interest. For

AlexNet and VGG-19, we looked at each convolutional layer that

was followed by max-pooling, as well as the output of the final

average pooling and of each fully connected layer. For GoogLeNet,
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FIGURE 5

Examples of diagnostic stimuli used in our experiments. Rows show di�erent stimulus types for four example images (one per column). The original

image served as a reference for comparisons. Foreground images (“fg”) masked out everything except the object of interest. This enables us to

estimate how much responses and representations are influenced by the background. In silhouettes, all object pixels were filled with black color,

leaving only shape information. Frankenstein stimuli change the global arrangement of object parts, but leave local shape features largely intact. In

serrated silhouettes, local shape cues are corrupted, but the global shape remains intact.

we used the outputs of each inception block, average pooling, and

the fully connected layer. For ResNets and related architectures,

we used the outputs of each residual block, of the average pooling,

and the fully connected layer. For ViT, we used the output of each

encoder layer, as well as the classification head.

For each layer in a given network, we generated a

representational dissimilarity matrix (RDM) for each image

type, by calculating the Euclidean distance between the outputs of

that layer for each pair of images. We then compared the RDM

for each type of diagnostic image (fg, silhouette, frankenstein, and

serrated, see Figure 5) to the RDM for the original images. As a

measure of similarity, we used Spearman’s rank correlation under

random tie-breaking (ρa).

To estimate the uncertainty of the RSA comparisons, we

performed bootstrapping. For each comparison between two

RDMs, we performed 1,000 bootstrap runs. In each run, a

random subset of RDM indices (i.e., image pairs) was selected

and the rank correlation computed over the sub-sampled RDMs.

To test whether a given similarity was above chance, we

performed a direct bootstrap test, computing the p-value as

(n>0 + 1)/N where N is the total number of bootstrap runs

and n>0 is the number of runs with similarity larger than

0. To correct for multiple comparisons, we used the same

procedure as for the classification results, controlling the false

discovery rate for each network at a level of 0.00625 (Benjamini

and Hochberg, 1995). All RDMs and comparisons between
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them were computed using the Python package rsatoolbox

(version 0.0.5).

3.2. Results

3.2.1. Classification of diagnostic images
Classification performance is shown in Figure 6.

All networks perform best on natural images and somewhat

worse on foreground images. This indicates that part of their

performance relies on features in the background. For example,

they may have learned from the dataset that airplanes are often

depicted in front of a blue background. All networks performmuch

worse on shape-only images (silhouettes, frankenstein silhouettes,

and serrated silhouettes). Generating silhouettes from masked

images removes the texture that defines the region interior of

the depicted object. The drop in performance indicates that the

networks strongly rely on such information. This is in line with

results reported previously about silhouettes and silhouette-derived

stimuli that corrupt local or global shape (Baker et al., 2018),

though better performance was reported by Baker and Elder (2022).

Performance on our stimuli may be lower because the images we

used aremore challenging since we generated them programatically

from a benchmark image set, whereas previous studies curated

stimulus sets manually. In addition, our method of computing

accuracy (using only the top-1 prediction of the network) is

relatively strict.

The networks differ with respect to their performance on the

shape-only stimuli. BagNet-17 is the only network that does not

classify silhouettes and frankenstein stimuli above chance level.

This may either mean that it suffered more strongly from domain

shift than other networks, or that it is unable to process shape. It

also performs at chance level for serrated stimuli.

AlexNet and VGG-19 perform above chance for silhouettes and

frankenstein images, but not for serrated images. This is the pattern

of performance expected for networks that use local, but not global

shape cues.

GoogLeNet, ResNet-50, Shape-ResNet, CORnet-S, and ViT

classify all image types above chance level, indicating that they are

able to use shape cues to some extent. To classify frankenstein

silhouettes, the networks have to be tolerant to disruptions in

global shape, suggesting that they rely on local shape features.

Conversely, to classify serrated silhouettes, they have to be robust

against disruptions of local shape cues, indicating that they use

shape cues at a larger scale than that of the local noise.

3.2.2. Representational similarity analysis
Figure 7 shows the similarities between representations of

original images and diagnostic stimuli for each network.

In all networks except for the vision transformer (ViT), the

representations of foreground images (“fg”) were highly correlated

with representations of the original image in all layers. This shows

that large parts of the network representations are dedicated to

processing the relevant object. Similarities for shape-only stimuli

were generally lower. In many layers, representational similarities

for diagnostic stimuli are not significantly above zero. This

may either mean that shape does not play a big role in these

representations, or that these diagnostic stimuli present too much

of a domain shift, such that the network cannot interpret them

correctly. Both interpretations are consistent with the low accuracy

of all networks on diagnostic stimuli.

In ViT, similarities for shape-only stimuli drop to zero in the

final layer (the classification head), which matches the hypothesis

that shape information is discarded in the final layers. However, the

pattern of results in intermediate layers is less clear. Similarities for

foreground images decrease throughout the initial encoder layers

and are not significantly different from zero in encoder layers

5–9. In encoder layers 5, 6, and 7, none of the similarities are

significantly above zero. Similarities for all types of stimuli grow

again in the final layers. A possible explanation is that the self-

attention mechanism was misled by the large white regions in our

images that resulted from masking out the background. Since self-

attention aggregates information globally, an image largely devoid

of structure may alter the representations in unexpected ways.

Note, however, that ViT has the highest accuracy on foreground

images out of all networks (65.1%). Thus, the lack of background

did not render it unable to make accurate classifications.

For AlexNet and VGG-19, the similarity between original

images and shape-only is chance level in most layers. Similarities

for silhouettes and frankenstein stimuli are above chance in the

final fully connected layers. This is consistent with the results from

our classification experiments and with previous studies that found

that AlexNet and VGG are not sensitive to global shape (Baker

et al., 2018, 2020; Malhotra et al., 2020; Baker and Elder, 2022).

However, in layers conv2 to conv4 of AlexNet, similarities for

serrated silhouettes are above chance level.

In GoogLeNet, similarities for shape-only stimuli were not

significantly above chance in the first two max-pooling layers,

which follow after standard convolutions. In all subsequent layers,

i.e., inception blocks, average pooling, and the fully connected layer,

all similarities were significantly above chance.

ResNet-50, Shape-ResNet, and CORnet-S showed similar

patterns of results: in all three networks, similarities for shape-

only stimuli were significantly above chance level after the third

residual/recurrent block ("layer3" in the ResNets, "V4" in CORnet-

S), which is the block with most repeated applications of the

residual/recurrent motif. Similarities for some shape-only stimuli

dropped back to chance level in the final block (“layer4"/“IT") and

the subsequent average pooling layer (original and frankenstein

silhouettes for ResNet-50, serrated silhouettes for CORnet-S, and

all three types for Shape-ResNet). However, all similarities are

significantly above chance in the final fully-connected layers.

In BagNet-17, similarities for silhouettes and frankenstein

stimuli were significant in the first and fourth residual block

and in the average pooling layer. In addition, the similarity for

frankenstein images was also significant in layer 3. However,

similarities for serrated silhouettes were only above chance in the

average pooling layer. This suggests that the residual layers in

BagNet-17 did not extract global shape information, in contrast to

the other ResNet-like architectures.

If this is true, how can the significant similarity in the average

pooling layer of BagNet-17 be explained? Average pooling discards

information about where in the image a certain feature occurred,

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1113609
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Jarvers and Neumann 10.3389/fcomp.2023.1113609

FIGURE 6

Classification accuracy of each network. Bar height indicates performance on the respective dataset. The violin plot to the right of each bar shows

the corresponding null distribution. Stars indicate that accuracy is significantly higher than chance.
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FIGURE 7

Results of representational similarity analysis. Height of bars indicates average rank-correlation over bootstrap runs. Error bars indicate 95%

confidence intervals from bootstrap runs. Stars mark similarities that are significantly larger than 0.
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since it averages activations of each feature map across all image

locations. Therefore, average pooling should make a representation

less informative about global shape. At the same time, it may mask

a lack of selectivity for global shape in the RSA: if the same feature

is detected in two different locations, comparing the resulting

representations before pooling would lead to a low similarity, but

after average pooling the difference in location vanishes, increasing

the similarity. For this reason, the RSA results for average pooling

layers should be taken with a grain of salt.

In summary, our results show a difference between network

architectures. Classical convolutional networks such as AlexNet

and VGG-19 have low shape selectivity in most layers and show

a dissociation between serrated silhouettes and other shape-only

stimuli without local shape corruptions (original and frankenstein

silhouettes). In contrast, GoogLeNet and ResNet-like architectures

showed no systematic differences between the shape-only stimulus

types, with significant representational similarity for all three

types in intermediate inception/residual blocks and in the final

layers, though for the ResNet architectures there was a drop in

shape selectivity for the final residual blocks. An exception to this

pattern was BagNet-17, which had some selectivity for original and

frankenstein silhouettes, but not serrated silhouettes, in the residual

blocks, but showed no shape selectivity in the fully-connected layer.

Finally, the shape selectivity in ViT varied strongly across layers and

suddenly dropped in the classification head.

4. Discussion

We have reviewed previous research on shape representations

in deep networks and argued that apparent contradictions in their

results are largely due to differences in methods. Each method

operationalizes the concept "shape" differently and tests different

aspects of network processing. Experiments with diagnostic stimuli

can show that a network is in principle able to use a specific type

of shape cue. They allow for fine-grained control over different

types of shape cues, for example the availability of local or

global shape. However, they induce a strong domain shift, which

makes results harder to interpret, and they are limited to the

network output. Cue conflict experiments can directly compare

the influence of two different features over network outputs.

But like diagnostic stimuli, they require custom images which

leads to domain shift. In contrast, triplet tests can be done with

natural images and can also directly compare two different features.

They can also be applied to intermediate network layers, though

this requires strict experimental control of confounding variables.

Finally, representational similarity analysis and decoding offer the

most detailed view of representations in intermediate network

layers. They can be done using natural images, and typically involve

large stimulus sets, making them less vulnerable to domain shift and

confounds.

Notably, the strengths of the different approaches are

complementary. By combining them explicitly, future research

can gain a more detailed understanding of shape processing in

deep networks. Some steps in this direction have already been

made. Baker et al. (2020) used diagnostic stimuli and also reported

correlations between stimulus pairs in intermediate layers, similar

to a triplet test. Singer et al. (2022) used RSA to compare

representations for photographs, line drawings, and sketches. The

latter two stimulus types isolate shape information, similar to

diagnostic stimuli. Tartaglini et al. (2022) performed triplet tests

with cue conflict stimuli. Nevertheless, many more informative

experiments are possible in this combined experimental space.

As an example, we reported results from an experiment

that combined representational similarity analysis with diagnostic

stimuli designed to distinguish between local and global shape

processing. The goal was to test whether (1) intermediate

network layers represent global shape features and whether (2)

shape features are discarded in final network layers. Both of

these hypotheses may explain some apparent contradictions in

previous results.

Our results support both hypotheses to some degree.

Hypothesis 2 (that networks down-weight shape information

in later layers) predicts that a network should have significant

representational similarity between original images and shape-only

stimuli in intermediate layers, which drops back to chance level in

later layers. This is the case for ViT and BagNet, for both of which

similarities for shape-only stimuli are at chance in the final fully-

connected layer. The results for the ViT should be taken with a

grain of salt, however, since it classified shape-only stimuli with

above-chance accuracy and the RSA for intermediate layers did not

fit either of our hypotheses.

The results for ResNet-50, Shape-ResNet, and CORnet-S also

partially match hypothesis 2, as their third residual block showed

significant selectivity for shape, which dropped to chance for some

types of shape-only stimuli in the final residual block and the

average pooling layer. This matches observations by Hermann et al.

(2020) that shape could be decoded less accurately after the average

pooling layer of ResNet-50. On the other hand, they found the same

effect in the fully connected layers of AlexNet, which does not show

a similar effect in our RSA.

Hypothesis 1 (that networks only use local shape cues) predicts

that networks classify original and frankenstein silhouettes (in

which local shape remains intact) above chance level but should

fail for serrated silhouettes (in which local shape information

is corrupted). AlexNet and VGG-19 match this prediction, both

w.r.t. classification and representational similarity in their fully

connected layers. This is in line with several previous experiments

that used these networks and found a lack of global shape selectivity

(Baker et al., 2018, 2020; Baker and Elder, 2022; Malhotra et al.,

2022a). However, AlexNet showed above-chance representational

similarity for serrated stimuli in early layers. In the top-most

convolutional layer and the fully connected layers, this similarity

drops back to chance, which either means that AlexNet discards

this shape information (as predicted by hypothesis 2) or that other

confounding factors play a role, as we discuss below.

In contrast, GoogLeNet, ResNet-50, Shape-ResNet, and

CORnet-S classified all stimulus types above chance level and

showed significant representational similarity for all shape-only

stimuli in intermediate layers. Thus, they represent some shape

information, in line with previous results (Hermann et al., 2020;

Islam et al., 2021), but which kind of shape information they rely

on remains unclear. Since these networks are not affected by the

frankenstein manipulation, they seem to be insensitive to global
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shape. This confirms the results of Baker and Elder (2022) and

is in line with Islam et al. (2021), who observed that decoding

with a semantic segmentation objective suffered from errors where

different classes were assigned to parts of the same object. This may

reflect a lack of global shape understanding.

These four networks were also robust against distortions

of local shape cues in serrated silhouettes. Does this mean

that they perform some non-local integration of shape features?

Alternatively, they may still rely on local cues, but at a larger

spatial scale than the corruptions in the serrated images (see e.g.,

Baker et al., 2020). Since these networks are deeper than AlexNet

and VGG-19, their hierarchically organized convolutional layers

aggregate input over a larger spatial extent, such that the local

noise in the serrated images has a smaller impact. According to this

interpretation, our stimulus design would simply not distinguish

between local and global shape processing as well as intended.

However, this explanation is not entirely convincing: CORnet-S,

which exhibited the same shape selectivity as the other ResNet

architectures, is considerably less deep and its convolutions have

a smaller spatial span than those in VGG-19.

One feature that GoogLeNet and ResNet-like architectures

share is the presence of parallel paths. GoogLeNet uses inception

blocks, in which the same input is processed by convolutions

with different kernel sizes, and the result is concatenated. ResNets

and CORnet-S use residual blocks, in which the input to a set of

convolutions is added to its output via a skip-connection. As noted

by Liao and Poggio (2016), this is equivalent to a one-step temporal

unrolling of a recurrent network, in which the convolution spreads

information to neighboring locations. Both of these motifs enable

a comparison of the image content at one location with the

surrounding area. Therefore, they might implement a simple

form of lateral grouping, unrolled for a fixed number of steps.

This interpretation is supported by three observations. First, the

inception modules in GoogLeNet exhibit shape selectivity, but

the preceding convolution layers do not. Second, the layers with

the clearest selectivity for shape were layer 3 in ResNet-50 and

Shape-ResNet and V4 in CORnet-S. These are the blocks which

contain the most repetitions of the residual/recurrent motif. Third,

BagNet-17 has the same depth as ResNet-50, but replaces the 3x3

convolutions in most residual blocks by 1x1 convolutions, thus

restricting the range of lateral connectivity. In contrast to the other

ResNets, none of the residual blocks in BagNet-17 had significant

representational similarity between original images and serrated

silhouettes, suggesting that restricting lateral connectivity impacts

non-local shape processing.

If ResNets and GoogLeNet do indeed perform a rudimentary

form of lateral grouping, this would constitute another parallel to

primate vision, where recurrence is critical for global integration

of shape (Roelfsema and Houtkamp, 2011; Self and Roelfsema,

2014; Elder, 2018). The utility of recurrent connections for deep

networks has been proposed repeatedly (Kriegeskorte, 2015; Peters

and Kriegeskorte, 2021) and several recent network architectures

have incorporated it with promising results (Linsley et al., 2018,

2020; Kubilius et al., 2019). Our results suggest that this line of work

may enable networks to form more global representations of object

shape, reducing the gap between human and machine vision.

Another interesting question for future work is the role of the

training objective in shaping the shape selectivity of such networks.

Most work to date has focused on characterizing shape processing

in deep networks trained to classify images of objects. This is a

reasonable starting point, firstly because image recognition on large

datasets has been one of the main drivers in the development

of deep networks, and secondly because shape is a key factor in

how humans recognize objects. When networks learn to classify

objects according to human labels, it is tempting to assume that

they use the same criteria as humans. The evidence reviewed above

clearly shows that this is not the case for shape. Deep networks are

still far from using shape information in a human-like manner to

recognize objects. A key reason may be that human vision is not

limited to object recognition. It supports many other behaviors

like visual search, navigation, etc., many of which involve and

constrain visual representations of object shape (Ayzenberg and

Behrmann, 2022; Bracci and Op de Beeck, 2023). The task of image

classification may simply be too under-constrained, allowing deep

networks to learn shortcuts (Geirhos et al., 2020). Accordingly,

networks trained with self-supervised methods show higher shape

bias in some experiments (Hermann et al., 2020; Tartaglini et al.,

2022). Future studies examining a broader range of tasks and other

types of visual input (e.g., stereo images or video) could deepen our

understanding of the constraints that shape the processing of visual

shape in hierarchically organized deep networks.

5. Conclusion

Previous research on shape processing in deep networks has

yielded conflicting results with some studies showing evidence

for shape selectivity, while others showed clear deficiencies. After

reviewing the experimental approaches used in these studies,

we proposed two hypotheses that can reconcile these results.

Firstly, deep networks may rely on local, but not global shape

cues to classify objects. Secondly, networks may discard shape

information in their final layers and weigh other features more

strongly in their classification output, masking their shape

selectivity. We tested these hypotheses by combining two of the

previously established methods: diagnostic stimuli that restrict

the information available in an image, and representational

similarity analysis that assesses whether different stimulus sets

are represented similarly in a network layer. Our results support

both hypotheses—but for different networks. Purely feed-forward

convolutional networks like AlexNet and VGG represented local

but not global shape. In contrast, networks with inception

modules or residual blocks show some selectivity for shape

in the presence of local corruptions, which may reflect a

simple form of non-local shape processing. This highlights the

importance of exploring the effects of different architectural

motifs on shape processing. Incorporating more extensive lateral

and recurrent connectivity may enable networks to perform

iterative grouping and process shape in a more holistic, human-

like manner.
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