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Interactive landscape–scale cloud
animation using DCGAN

Prashant Goswami*†, Abbas Cheddad†, Fredrik Junede and

Samuel Asp

Department of Computer Science, Blekinge Institute of Technology, Karlskrona, Sweden

This article presents an interactivemethod for 3D cloud animation at the landscape

scale by employing machine learning. To this end, we utilize deep convolutional

generative adversarial network (DCGAN) on GPU for training on home-captured

cloud videos and producing coherent animation frames. We limit the size of input

images provided to DCGAN, thereby reducing the training time and yet producing

detailed 3D animation frames. This is made possible through our preprocessing of

the source videos, wherein several corrections are applied to the extracted frames

to provide an adequate input training data set to DCGAN. A significant advantage

of the presented cloud animation is that it does not require any underlying physics

simulation. We present detailed results of our approach and verify its e�ectiveness

using human perceptual evaluation. Our results indicate that the proposedmethod

is capable of convincingly realistic 3D cloud animation, as perceived by the

participants, without introducing too much computational overhead.

KEYWORDS

cloud animation, deep convolutional generative adversarial networks (DCGAN),

multimedia (image/video/music), machine learning, image processing

1. Introduction

Cloud animation at real-time or interactive frame rates is a challenging task in computer

graphics (CG). Procedural methods are capable of producing high-quality static clouds in

movies. However, in order to animate the clouds, a physics-based simulation (Eulerian

or Lagrangian) operating at a reasonably high resolution is required. In most cases,

these simulations are computationally and memory-wise too intensive for any real-time

considerations (Goswami, 2020). Furthermore, almost oblivious to the simulation method

applied, a rendering pass is needed to visualize the simulated cloud data. This makes the

overall process not only quite time-consuming (even on a GPU) but also dependent on

various factors that necessitate human intervention to define and adjust variables throughout

the simulation process.

Modern CG and multimedia applications are increasingly benefiting from using

artificial intelligence (AI) algorithms (Agrawal, 2018). This incorporation or blend has

several advantages. For example, it can automate several tasks and even computationally

accelerate the underlying model by learning and predicting from the data. In addition,

the enormous amount of available data that can be processed and used for training

and the growing hardware processing power add to the successful integration of AI and

CG-based approaches.

In this study, we introduce machine learning in the context of synthesizing landscape-

scale cloud animations. When trained on real-life cloud videos, the machine learning

model is leveraged to produce natural-looking cloud animations. To this end, we use deep

convolutional generative adversarial network (DCGAN), which is an unsupervised learning

algorithm. Contrary to several applications that have successfully employed DCGAN to
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generate images, we demonstrate the potential of generating

animations using a variant of DCGAN.

The main contributions of our approach are as follows:

• An efficient way of producing automatic, landscape-scale 3D

cloud animation at interactive frame rates with the help of a

state-of-the-art machine learning algorithm (i.e., DCGAN).

• A rich animation pattern inspired by real-life clouds by

employing DCGAN on the GPU for training and generating

coherent, sequential images.

• A high-resolution 3D animation produced from small-sized

image patches generated by a deep learning model.

• A new interpolation-based algorithm to generate new artificial

image sequences using the constructed DCGANmodel.

• Apreprocessingmethod that can easily rely on home-captured

videos for training to achieve high-quality results.

The proposed approach handles cloud evolution through

DCGAN, thereby eliminating the use of any underlying cloud

physics.We, therefore, save computations andmemory by avoiding

the expensive physics-based models that are otherwise employed

to generate these animations, albeit at a low resolution and for a

limited volume of cloud. Nevertheless, the user retains the ability

to modify some parameters, such as cloud coverage level in the

sky, without needing to alter training data sets. This gives us the

advantage that our method can easily be used for background cloud

generation while preserving a higher computational bandwidth for

the primary task. This advantage is essential as most applications

containing clouds require that they cover a detailed expanse of

the sky and only take a fraction of the computational frame time.

This contradictory requirement is a huge challenge for traditional

physics-based simulation methods, which we circumvent with the

proposed method.

We simplify preprocessing by limiting the size of input training

images given to the neural network while still obtaining high-

resolution animation sequences. Though we demonstrate our

technique for cumulus clouds, it could easily be generalized to

other cloud types by altering the training data sets and possibly the

renderer. Finally, we adopt the human-visual system scoring to help

compare the visual quality of our obtained cloud animations. We

have conducted a participant evaluation of 41 participants, most

of whom voted in favor of our proposed machine learning-based

method compared with an existing physics-based approach.

It is important to stress that our contribution is independent

of Generative Adversarial Network (GAN) architectures. Our

preprocessing approach to generate animations can be plugged

into any type of GANs. Following this, it basically boils down to

the training process and the algorithm generating the animation

sequences of clouds. However, we discuss and justify our choice of

DCGAN for the proposed approach (see Section 3.2.1).

2. Related work

Clouds in CG and multimedia have been studied from various

angles, including modeling, rendering, and animation. Here, we

will keep our discussion focused on the animation methods, which

is the aspect most related to ours. Up until recently, most of the

developed cloud animation methods were offline. Clouds have

been animated with the help of both procedural and physics-

based approaches. Recently, some physics-based methods have

been developed that can support real-time or interactive frame rates

on GPU. One limitation of most of these methods is that they

are forced to simulate a limited volume of the sky, often at a low

resolution, due to the sheer magnitude of computations and usage

of memory involved. We refer the reader to Goswami (2020) for an

in-depth survey on cloud modeling, rendering, and animation.

Related literature is grouped into different categories to ease

visualizing prior works.

2.1. Procedural methods

Procedural techniques have been proposed to produce the

effect of evolving clouds, wherein the illusion of animation is

produced without using any actual physics. In the method by

Dobashi et al. (1998) and Bi et al. (2016), simple transition

rules on cellular automata have been demonstrated to produce

offline clouds. Jhou and Cheng (2016) animated still landscape

photographs by animating the cloud cover present in them.

The animation produced, however, is limited due to the limited

variation between frames. Webanck et al. (2018) achieve cloud

modeling and animation clouds with a purely procedural, offline

approach that uses field functions to generate different cloud types.

Logacheva et al. (2020) generate realistic time-lapse landscape

videos withmoving objects and other time-of-the-day changes with

the help of a StyleGAN-based model.

2.2. Physics-based methods

Most of the earlier cloud simulation work has focused on

Eulerian solvers coupled with simplified cloud dynamics. Schpok

et al. (2003) animated clouds using a two-level approach, wherein

larger movements are governed by the macro-level and smaller

changes are a function of the micro-level animation. Harris

et al. (2003) animated small changes in the cloud structure

handled with the help of GPU-sliced textures. Later, work also

explored the particle-based approach for cloud animation. Neyret

(1997) applied high-level physics-based variables to obtain an

approximate, perceptually convincing simulation of convective

clouds. A particle-based cloud simulation on GPU is presented

by Barbosa et al. (2015). The simulation is adaptive and relies

on position-based fluid dynamics and cloud physics to achieve

simulation in a small domain. A target-driven cloud evolution

method using position-based fluids on particles is developed

by Zhang et al. (2020a).

2.3. Hybrid methods

More recently, the idea of hybrid physics-based procedural

animation is introduced by Goswami and Neyret (2017). The

physics component, which constitutes a higher computational cost,

is carried out at the macro level, and procedural hypertexture

amplification is carried out at the micro level based on the

underlying physics parameters. This idea is further improved by
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FIGURE 1

Overview of our method. In the preprocessing stage, input video frames are extracted and cropped for regions containing cloud animation.

Subsequently, we applied other corrections to produce density cloud images, which are given as input to the DCGAN for learning. The output of

DCGAN is the sequential cloud images, which are plugged into a 3D rendering application.

Goswami (2019), wherein a cloud map is introduced to eliminate

volumetric amplification inside the spherical parcels. The obtained

benefits are more realistic cloud shapes at higher frame rates.

However, the animation pattern of such generated clouds is not

entirely realistic. Hädrich et al. (2020) have recently simulated a

variety of clouds using a set of lightweight higher level primitives.

Vimont et al. (2020) have employed a similar concept in Eulerian

settings instead of the Lagrangian framework. Duarte and Gomes

(2017) simulated air parcels in real time by using the sounding data

from dataSkewT/LogP diagrams.

The research gap to utilize AI algorithms to the end of cloud

animation is clearly outlined by Goswami (2020). Machine learning

has been used to automate cloud illumination (Kallweit et al.,

2017). In their method, radiance predicting neural network obtains

illumination hints from the lighted cloud images. Similarly, 3D

cloud shapes are modeled, taking inspiration from real-life cloud

shapes present in the images (Yuan et al., 2014). To the best of our

knowledge, no work, with the exception of Zhang et al. (2020b), has

adopted this approach for animating clouds. Zhang et al. apply a

combination of convolutional neural networks and computational

fluid dynamics to generate clouds with the desired shapes. However,

their method does not work in real time and is shown to generate a

limited volume of clouds.

The proposed work bridges the aforementioned research gap

by introducing a DCGAN-based machine learning method that

produces rich and realistic 3D cloud animations at interactive

frame rates for landscape-scale terrain cloud coverage. Unlike most

previous works, our method supports cloud visualization and its

time-based evolution for the scale of the entire visible landscape

and not just for a small, limited sky volume.

3. Methodology

Our method aims to generate realistic cloud animations for

a given landscape-scale sky by learning cloud evolution from

simple videos containing this information. Our definition of the

landscape-scale is consistent with that reported by Lee and Huh

(2020). Even though our technique learns the animation from

small-sized image frames, it is capable of producing a much higher

resolution 3D cloud animation with the help of learned image

animation sequences. Figure 1 shows the overview of our approach.

The input to our method is the user-captured videos containing

clear, gradual cloud evolution over a period of time during the day.

Given an initial input cloud image sequence, the output consists

of a sequence of coherent animation frames of the same size, as

the input image obtained with the help of our proposed pipeline.

To make the whole process efficient, we limit ourselves to videos

and images with small dimensions. This reduces the preprocessing

and machine learning overhead drastically. In addition, the chosen

frame size does not seem to pose any restriction on the quality of

generated cloud animation. The frame size, however, turns out to

be a limiting factor for the output visualization.We circumvent this

by using the output animation as a cloud map in an existing 3D

application. First, this helps us to animate a 3D cloud cover (using

output cloud images) over a much larger landscape than the image

dimensions on which the neural network is operating. Second, it

enables us to customize and create a 3D background of our choice

that can house animated clouds from our method independently.

We first introduce various preprocessing steps performed on

the source videos in the following Section 3.1. These steps are

essential to obtain a coherent and efficient training image sequence

that can be a clean input to the DCGAN algorithm. After extracting

frames from each source video, we crop the images to isolate the

area containing clouds and subject them to a perspective correction

phase. Furthermore, the processed frame’s intensity dynamic range

is then normalized, leading to the background and foreground

separation, and subsequently adjusted for factors such as contrast,

making the learning more robust while minimizing the influence

of irrelevant factors. In Section 3.2, the DCGAN-based machine

learning model is explained in detail, which is the next step after

obtaining the preprocessed frames.
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3.1. Data set: Video source and
preprocessing

A total of 13 video files of real-life cumulus clouds recorded

from ground level were collected, nine of which were obtained from

publicly available data sets (Setvak, 2003; Jacobs et al., 2013; 2016),

and the authors captured four videos. All but one of the 13 source

videos contained both sky and landscape. Each video from the

publicly available data sets contained brief details at the beginning

of the video (information about the photographer, the location, and

the camera lens used) (Setvak, 2003). Hereafter, we refer to this total

collection of videos as the cloud data set.

The source videos are clipped to include a continuous and

consistent sequence of cloud frames without any overlay text

or sudden jump to different time points. The frames of the

source videos, denoted as λsource, are then cropped to exclude any

landscape λcropped visible in the video (see also Figure 2). For our

purpose, we captured videos with a static camera, which simplified

the cropping process. In the following, we explain the sequential

preprocessing steps, which are required to produce the necessary

cloud-density images. These cloud-density images are supplied as

input for the deep learning model.

3.1.1. Perspective correction
Images or videos captured using any camera contain different

levels of perspective distortions. To generate a good training data

set over images, it is essential to correct this distortion as much

as possible. This is especially true in our case since we employ

2D cloud images containing no perspective distortion (akin to a

cloud map), to generate a 3D cloud cover. The corrected image,

denoted as λcorrected, is obtained by applying a 3× 3 transformation

matrix to λcropped. This matrix is calculated by using the projective

method for solving the homography decomposition problem

described theoretically by Malis and Vargas (2007) and Szeliski

(2010) and implemented in OpenCV using the findHomography

function (2020a). Four points in λcropped and their corresponding

points in λcorrected are required for the function to determine the

transformation and calculate the matrix (Figure 2). Two of the

image’s four points in λcropped are located in the top left and top

right corners. The other two are located along with the bottom

row, equal distances from the left and right edges. Their four

corresponding points in λcorrected are all located at the corners of

the image. As six of the eight total points were predetermined at the

corners of the images, only the two bottom points in λcropped are

needed to be calculated. Being located at the bottom row of λcropped
meant that only their horizontal positions are required, which is

performed according to the following sequential steps.Hcloud in the

following section is a pixel estimate of the height at the bottom of

the cloud, estimated by using elevation values for cumulus clouds

in the given frame.

• Determine the vertical and horizontal fields of view of the

camera lens; this is done by finding the specification of the

lens used and hence its focal length range. This step provides

us with vertical (θY ) and horizontal (θX) fields of view.

• Determine the pixel height of the horizon line in λsource. The

row closest to the horizon line determines its pixel height,

denoted asHhorizon, andHsource is the pixel height of the source

image λsource.

• Calculate the vertical angle between the ground and the

direction the camera is aiming (θcam) at as follows:

θcam = (
Hhorizon

Hsource
−

1

2
)θY , (1)

where θcam > 0 if Hhorizon >
Hsource

2 .

• Calculate the vertical angle between the top of clouds and the

middle of λsource. As the top of λsource has no landscape, the

angle between the center of λsource and the top part of clouds

on λsource, denoted as θtop, is equal to
θY
2 . The angle between

the center of λsource and the bottom of λcropped, denoted as

θbottom, is calculated as follows:

θbottom = (
1

2
−

Hcropped

Hsource
)θY , (2)

where Hcropped is the pixel height of λcropped.

• Calculate the vertical angle between the bottom of the clouds

and the middle of λsource.

• Calculate the depth of clouds in the image at the top and

bottom of λcropped. The horizontal depths of the clouds at

the top and bottom of λcropped, denoted as Dtop and Dbottom,

respectively, are calculated as follows:

Dtop/bottom =
Hcloud

tan(θcam + θtop/bottom)
(3)

Here, θcam+ θtop and θcam+ θbottom are the angles between

the ground and directions to the top and bottom of the clouds

in λcropped.

• Calculate the width of clouds, along the edges, at the top

and bottom of λcropped. Using the horizontal field of view, the

widths of clouds at the top and bottom of λcropped, denoted as

Wtop andWbottom, are calculated as follows:

Wtop/bottom = 2Dtop/bottom tan(
θX

2
) (4)

Wtop and Wbottom now represent an approximate distance

between the clouds, seen at the top and bottom of λcropped,

along its left and right edges.

• Let us calculate the ratio between the widths at the top and

bottom (R =
Wbottom
Wtop

) of λcropped. The formula for R is

rewritten and simplified by combining Equations (1)–(4) as

follows:

R =
tan(Hhorizon

Hsource
θY )

tan(
Hhorizon−Hcloud

Hsource
θY )

. (5)

• Calculate the two bottom points in λcropped. Finally, the

horizontal positions Xleft and Xright of the bottom points in

λcropped are calculated as follows:

Xleft/right =
Wcropped

2
(1∓

1

R
), (6)

whereWcropped is the pixel width of λcropped.
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FIGURE 2

λcropped with its four points forming the corners of a convex isosceles trapezium (top left). λcropped after perspective correction into λcorrected (bottom

left). Note how the bottom corners of the trapezium have been stretched to the bottom corners. Side-view visual representation of the calculations

of Equations (1)–(3), which later leads to determining the final two points in λcropped (right).

After passing the two sets of four points to findHomography, the

returned matrix is used with OpenCV’s warpPerspective on every

image λcropped to generate its respective λcorrected.

3.1.2. Grayscale conversion
In the cropped and perspective-corrected sky images, we need

to automate the separation of foreground cloud pixels from the

sky background. To this end, we first convert the color channels

of λcorrected to a grayscale image, clamping the values to a certain

threshold and brightening as well as blurring the image using the

normalized B/R ratio function proposed by Li et al. (2011).

λN =
b− r

b+ r
, (7)

where r and b represent the values of the red and blue channels

of the original image. Thus, λN becomes a flattened image with a

single channel, where each pixel is a rational value between−1 and

1. Pixel values of λN , in this case, are found to be close to−1 if their

probability to belong to cloud regions is high and close to 1. In this

step, subtraction in the numerator is flipped as the pixels of a cloud

need to be represented by high values. This mapped image is, then,

re-scaled to an interval between 0 and 1 and multiplied by 255 to

yield an 8-bit unsigned matrix.

λN =
λN + 1

2
× 255, (8)

resulting in the combined formula as follows:

λN =

r−b
r+b

+ 1

2
× 255. (9)

The matrix λ, thus, results in an image where the sky has

varying shades of dark gray and the clouds are in light gray.

3.1.3. Contrast adjustment
As λN contains the sky which is not uniformly black and clouds

not uniformly white, the contrast of pixels needs to be corrected for

easy discernment. Before normalizing the pixels of the cloud map

λN to values between 0 and 1, a threshold (T) is defined. All pixels

with values below T are to be considered as the sky with no cloud.

Pixel values are clamped to a range between T and 1,

λT = min(max(λN ,T), 1), (10)

where −1 ≤ T < 1. If the pixel values were to be normalized at

this stage using Equation (8), the lowest value of the resulting range

would be T+1
2 rather than 0. Instead, the following equation is used

to normalize λT to values between 0 and 1.

λTN =
λT − T

1− T
(11)

T is determined empirically by applying the cloud map steps on

a data set comprising different source video files collected locally

(i.e., 13 video files constituting our cloud data set). The lowest value

of T = −0.25 was chosen, which caused the entire background

sky to become black in most of these videos (i.e., the sky in λTN

is uniformly black). However, the cloud regions still needed some

brightness enhancements. The brightness-enhancing function we

used is a version of the SmoothStop (SS) function introduced by

Squirrel (Eiserloh, 2015), which is as follows:

SS(t) = 1− (1− t)8, (12)
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This was applied at the pixel level of the cloud map. The

exponent 8 was chosen, as it is the lowest integer causing the

brightest pixels to saturate. After brightening the cloud maps with

SS, they are passed through a 5 × 5 Gaussian blur filter to reduce

any potential noise introduced in the perspective correction step.

This is the final preprocessing step before cloud maps are used to

train the machine learning model.

It is worth noting that when constructing an algorithm to

separate clouds from the sky of ground-level footage, several

approaches have been suggested using a ratio or a difference

between the color channels of each pixel in the image. Heinle

et al. (2010) used the differences R − B between red and blue

channels to convert a colored image to a grayscale image, followed

by thresholding to distinguish cloud and sky regions. Kazantzidis

et al. (2012) used a multicolor criterion B < R+20 & B < G+20 &

B < 60, taking into account the green channel as well. However, in

our case, their method did not achieve the intended classification,

as it identified cloud areas not containing the direct solar glare as

sky regions. A Hybrid Thresholding Algorithm (HYTA) used to

detect clouds was put forward by Li et al. (2011). They propose

the normalized B/R ratio λN = (B − R)/(B + R) alongside an

adaptive threshold rather than a fixed one for increased accuracy.

This algorithm produced cloud maps with the most diverse colors

between the clouds and the sky in our case.

3.2. Deep learning

In the context of deep learning, GANs employ an adversarial

process to train and predict (Goodfellow et al., 2020). GAN is a

family of training and prediction of deep learning algorithms that

have proved to be an essential turning point in generative modeling

(Park et al., 2021), especially while dealing with image-based data.

GAN differs from other machine learning approaches in which

training is conducted by two different networks: the generator and

the discriminator. The generator model generates real-like data

from an input (e.g., random noise), and the discriminator evaluates

the generated data to decide whether it is natural or synthetic.

While the original GAN has shown promising results in

generating images from features it learned from input images,

the images it generated lacked quality and comprehensibility.

Furthermore, GANs often require hundreds of hours of training

time when tasked with, for example, learning the structure of faces

(Karras et al., 2018, 2019a). Larger networks can not only generate

images with higher fidelity but also require more hours of training

time and more data. DCGAN (Radford et al., 2016) was developed

to further improve upon GAN. DCGAN uses convolutional layers

in the network and employs batch normalization in between these

layers to stabilize the learning. Furthermore, dropout layers are

added between each convolutional layer with some connections

between layers, so the values of certain nodes are not fed-forward.

The generator uses Rectifier Linear Unit (ReLU) as the activation

function between the layers, which was shown to help the generator

to cover the color space of the training distribution more quicker.

We, therefore, preferred DCGAN over GAN for our purpose.

The input and output images to the DCGAN in all our cases

had 256 × 256 dimensions. The grayscale images obtained from

a preprocessing step are used for the purpose of training and

generating animation frames. The machine learning model takes

an input and generates a vector of 65,536 (256 × 256 × 1) 32-bit

floating point values, which are then converted into 8-bit unsigned

integer values.

3.2.1. Choice of GAN Model Variant
As has been noticed in (2022), the GAN family is constantly

growing, and at the time of writing this study, there are more

than 500 variants of GAN. To select a suitable GAN architecture,

we compared three of the most commonly used variants, namely,

the DCGAN (Radford et al., 2016), the simplified model (SGAN)

(Chavdarova and Fleuret, 2018), and the Wasserstein model

(WGAN) (Arjovsky et al., 2017). At the model architecture level,

GANs are challenging to compare. Goodfellow (the creator of

GANs) stated that GANs lack an objective function, which makes it

difficult to compare the performance of different models (Salimans

et al., 2016). A similar observation was made by Borji regarding the

existence of several measures and yet the lack of identification of a

precise measure that best captures the strengths and limitations of

models (Borji, 2019). Nevertheless, GANmodels could be evaluated

based on the quality of the images they generate, often by using

non-reference image quality metrics.

Our choice of using DCGAN is motivated by two important

factors. First, NVIDIA has integrated DCGAN into their GPU

library based on their successful experiments on images. Second,

in order to further reinforce our choice of GAN architecture, we

studied its relative performance with some of its competitors in

our animation settings (SGAN and WGAN, as mentioned earlier).

To this end, we adopted state-of-the-art quality metrics, namely,

the blind/referenceless image spatial quality evaluator (BRISQUE)

(Mittal et al., 2012) and the perception-based image quality

evaluator (PIQE) (Venkatanath et al., 2015). As shown in Figure 3

and Table 1, the choice of DCGAN is justified for this study since

its image output quality is proven to be better than those generated

by SGAN and the WGAN. In addition, DCGAN has the least

computational cost (on average per epoch, DCGAN is faster than

SGAN and WGAN by 1.41- and 4.6-folds, respectively). As stated

earlier, the proposed cloud animation approach is generic in that it

can be implemented with any other suitable GAN architecture.

3.2.2. Choice of DCGAN architecture
We considered and tested two different versions of DCGAN,

one from the TensorFlow (2020b) and the other from Radford

et al. (2016), hereafter referred to as T_DCGAN and R_DCGAN,

respectively. After an architectural base has been established based

on the results obtained, it needs to undergo a few configuration

iterations to improve the training performance. The video data

available for training was limited, and the original DCGAN

configuration was insufficient for our training. The two chosen

versions were compared in terms of the quality of the images and

the time required to train the model for that particular quality

by comparing their Fréchet Inception Distance (FID) scores. The

generated GIF (Graphics Interchange Format) files were evaluated

regarding how natural the animations looked.
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FIGURE 3

Image output quality assessment of di�erent GAN models trained on 40K cloud images with similar settings. (Left) Quality assessment using

BRISQUE and (right) PIQE.

TABLE 1 Comparison of di�erent GAN architectures.

Method/Metric BRISQUE PIQUE

DCGAN 26.7589± 6.1819 28.2477± 8.1714

SGAN 36.4581± 6.5559 43.6238± 13.8679

WGAN 42.3614± 1.9472 35.4130± 3.8785

The image quality metrics’ values are measured as µ ± σ extracted from the plots shown in

Figure 3. The lower the value is, the better the quality.

Fréchet Inception Distance (FID) was first introduced by

Heusel et al. (2017) and is shown to be a more consistent method of

evaluating different GAN architectures’ performance (Karras et al.,

2018, 2019b, 2020). FID works by combining the Fréchet distance

to measure the difference between synthetic and real-world images

with the Inception score tomeasure the “objectness” and “diversity”

of a synthetic image (Salimans et al., 2016). When combined, they

give an evaluation of images that bear a closer resemblance to

the human evaluation system (Heusel et al., 2017). Given the two

activation feature vectors (2,048 lengths each), for the actual data

sample (Xr) and model generated sample (Xg) of the final layer

of the pre-trained Inception network, the FID can then be seen as

the Wasserstein distance (W) between the two multivariate normal

distributions,N (µr ,6r) andN (µg ,6g).

FID = W(N (µr ,6r),N (µg ,6g))

= ‖ µr − µg ‖
2 + Tr(6r + 6g − 2(6r6g)

1/2)
(13)

where Tr is the trace linear algebra operation, µr and

µg are the feature-wise mean values of the natural and

generated images, respectively, and 6r and 6g are the

covariance matrices for the natural and generated feature

vectors, respectively.

3.2.3. Training
The training part begins after the architectural configuration

is selected. Several aspects need to be taken into account when

training a machine learning model. This entails tuning the hyper-

parameters of the model (Kuhn and Johnson, 2013), supplying

sufficient data and testing the generated content manually or

automatically (Radford et al., 2016; Karras et al., 2018). The

hyper-parameters of the training process were tuned in order

to improve training efficiency. The most prevalent parameter

was the learning rate, which is set at 2 × 10−3, following

the default setup of common deep learning architectures (e.g.,

StyleGAN 2). To obtain a higher efficiency for learning, this

parameter was tuned several times, and each trial was trained for

several epochs. The testing consisted of a visual inspection of the

generated content to see if the model collapsed, in which case the

learning rate was too high and needed to be lowered. When a

collapse occurs (Figure 4), it generates identical or quasi-identical

images over and over again, independent of the input given to

the model.

The learning rate was initially altered using the following

equation Ln = Ln−1 ∗ 0.1 where Ln is the current learning rate

and Ln−1 is the previous learning rate. Once the model stopped

collapsing early in the training process, the equation Ln = Ln−1∗1.5

was used instead. By increasing the learning rate, the model can

converge more quickly, which results in a shorter training time.

Similar to a study by Meng et al. (2019), we have tried shuffling

the input data to improve training performance and convergence

in the setting of deep learning.

3.2.4. Generating animations
In a majority of the existing work on GAN and DCGAN, we

found that the learning is employed to produce static images and

not an animation sequence. However, a significant challenge in
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FIGURE 4

Images generated on cloud data set for training over 2,000 epochs with a learning rate of 5 × 10−5 using (left) TensorFlow (2020b) and (right)

Radford et al. (2016) demonstrating a collapse of the model by generating identical images.

Initialise v = Fr, for all v ∈ V

repeat

for all v ∈ V do

v = min(1,max(−1, v+ Fr ∗ a))

end for

Generate image using V

until (Enough images for GIF are generated)

Algorithm 1. Updating the input vector - First method.

our work is to utilize DCGAN to generate a coherent sequence of

smooth animation frames rather than a temporally uncorrelated

sequence of frames. An important factor discovered during

experimentation is that how input to the DCGAN is constructed

plays a vital role in generating smooth and consistent animations.

To this end, two different methods of generating the input values

were tested.

The first method is presented in Algorithm 1 where Fr is a

function that generates a random rational value between −1 and

1 each time it is called, a represents the absolute value of the

highest possible value change, and V represents the input vector

of the generator.

The main drawback we experienced with this method is its

inability to transition over a large section of the input space

smoothly. Instead, the values of the input vector transition back and

forth within a confined space.

The second method of generating input vectors is presented in

Algorithm 2. This method was chosen over the previous one, as

it did not have the drawback of the first method and was able to

generate consistent and smooth animations. A and B represent two

vectors of the same dimensions as V, which are linearly interpolated

Let dim(A) == dim(B) == dim(V)

Initialise a = Fr for all a ∈ A

Initialise b = Fr for all b ∈ B

Initialise t = 0

repeat

for all i ∈ dim(V) do

vi = ai ∗ (1− t)+ bi ∗ t

end for

Generate image using V

t = t + 1t

until (t ≥ 1)

Algorithm 2. Updating the input vector - Second method.

between them. Here, t represents a value between 0 and 1 for the

percentage of time that has passed between two time points, and n

represents the dimension of the vectors. 1t is an incremental value

defined in Equation (14) whereNum is the number of cloud images

we target to generate using DCGAN.

1t =
1

Num
(14)

The cloudmap is updated by supplying the neural network with

a 100-dimensional vector of pseudorandom rational values between

−1 and 1. Over time, the cloud map is updated by generating two

different 100-dimensional vectors and then linearly interpolating

between them with the following equation:

vn = an ∗ (1− t)+ bn ∗ t (15)
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where vn is the n:th value in the input vector V, an is the n:th value

in vector A, bn is the n:th value in vector B, and t is a rational value

between 0 and 1. Such vectors are produced at set intervals on the

CPU and passed on to the GPU to refresh the cloud map.

3.2.5. Application
As noted earlier, any neural network takes much longer to

train on and produce large images. We have, therefore, restricted

ourselves to an image dimension of 256 × 256 obtained after

preprocessing (see Section 3.1), which is a good trade-off between

size and training time. However, this size is still too small to produce

a video with reasonably large frame dimensions.We have addressed

this shortcoming by treating the trained and output image samples

as cloud maps to be an input for our interactive animation method

(Goswami, 2019). In the latter reference, a single 2D cloud map

is mapped to the 3D world, and 3D clouds are obtained by

raymarching the cloud regions. Though this method runs at high

frame rates, the animation quality is somewhat restricted since a

single cloud map is animated by altering opacity as time progresses.

We, therefore, have eliminated this problem by supplying the

sequential cloud images generated by DCGAN as cloud maps to

this application. However, instead of relying on the computed

noise, the output images from DCGAN directly provide density

values to the rendering engine. Cloud animation is obtained by

concatenating these 3D ray-marched frames obtained by supplying

DCGAN-generated time-varying cloud maps.

3.3. Qualitative questionnaire

A qualitative questionnaire was deployed to answer the

question as to which of the two approaches (i.e., machine learning-

based or physics-based approaches) is closer to generating the

naturalism of a cloud formation phenomenon. Um et al. (2017)

showcased how videos can be compared with one another in

a qualitative questionnaire. Their questionnaire served as an

inspiration for this work, albeit with some changes to it. However,

unlike their research, this study did not attempt to mimic a specific

real-life cloud scene; hence, no real-life reference videos were

used in our questionnaire. A consent form was given to all the

participants prior to the questionnaire. Furthermore, we ensured

that the results obtained from the participants’ responses could not

be linked to any individual.

The participants of our study (41 adults) were asked to

watch three sets of videos. Each set consisted of a pair of videos

representing the two different methods, as shown in Figure 5.

The first two pairs of videos compared the base method (i.e.,

physics-based approach) with the proposed method (i.e., machine

learning-based approach) at medium and high cloud coverage,

respectively, and the last pair compared two different versions of

the proposed method. All videos were recorded at higher speed

than real-time speed so that they could be regarded as time lapses.

To avoid bias toward the placement of the videos, their order was

shuffled for each pair. However, the video label on the left-hand

side was always presented as “Video A” and the one on the right-

hand side presented as “Video B”. The participants were asked

to compare the natural look of the clouds in the two videos by

choosing one of seven response options along with a Likert scale

(Likert, 1932; Derrick and White, 2017), as opposed to the binary

response options used by Um et al. (2017). Using a Likert scale

rather than a binary scale allowed the participants to provide more

precise answers and enabled a more detailed analysis afterward.

The response options were presented below each pair of videos, as

shown in Figure 5, and allowed the participants to rate a video in

comparison to the other video.

All participants had to be 18 years or older to participate in

the questionnaire. Since the participants were required to rate the

look of different phenomena, choosing participants with normal

or corrected to normal eyesight was imperative. They should also

have no color deficiencies that could impair their perception of

the videos and skew the experiment results. The participants were

informed of this on the introductory page, and their consent to

participate in this study was obtained.

4. Results

4.1. System Specifications

The method is implemented and tested on a machine with a 4

GHz CPU and an AMD Ryzen 3600, Nvidia RTX 2060 FE GPU at

standard clock speed, and 32GB of DDR4 RAM (2133 MHz). All

measurements were captured at a screen resolution of 1280 × 720.

Each cloud map is stored as a texture on the VRAMmemory.

For the preprocessing of source videos into cloud maps,

OpenCV was used with Python 3.6.9 through Google Colaboratory

(2020c). Figure 6 displays the resulting cloud maps from three

different source videos. The solid cloud regions in the source image

become nearly mono-colored bright white in the cloud map with

little detail, and the clear sky becomes solid black. The cloud maps

take a gray shade for the areas where the sky blends with thin cloud

sections. However, the resulting cloud maps contain a few gray

sections, mostly black or white. The gray sections at the bottom half

of the cloud maps contained noise and had some rough edges.

4.2. Machine learning

In Figure 7, the results of three different training configurations

can be seen on the cloud data set. These three images were generated

after 2,000 epochs of training with a learning rate of 5× 10−5. The

left-most image is clearly not depicting clouds but could instead be

viewed as some form of noise, while the second and third images

exhibit a closer resemblance to real clouds. R_DCGANmethod not

being able to generate clouds meant it could not sufficiently and

quickly learn cloud patterns from the amount of data that had been

collected. T_DCGAN, however, managed to learn some features

of the data set and was, therefore, able to generate images that

better resembled natural clouds. This can be attributed to the fact

that T_DCGAN has approximately 1
24 of the number of trainable

parameters to that of R_DCGAN, which lets it swiftly learn from

small data sets.

The time complexity estimates presented in Table 2 have

been calculated based on training using the cloud data set, and
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FIGURE 5

Sample screenshot of the questionnaire page presented to the participants.

FIGURE 6

Source images (top), perspective corrected and scaled images (middle), and final cloud maps (bottom). Each column represents a di�erent video.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.957920
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Goswami et al. 10.3389/fcomp.2023.957920

FIGURE 7

R_DCGAN (Radford et al., 2016) on the cloud data set (left), T_DCGAN (2020b) with perspective correction (middle), and T_DCGAN without

perspective correction (right).

TABLE 2 Average epoch times of T_DCGAN and R_DCGAN with 1

channel (grayscale) and 3 channels (RGB) for the self-recorded data set.

Conf.\ Res. 256 by 256
(grayscale)

256 by 256 (RGB)

T_DCGAN 6.52s 8.4s

R_DCGAN 6.74s 9.07s

they depict the average of over 1,000 epochs of training. This

elapsed time represents the average number of seconds the specific

configuration runs per epoch for a specific data set resolution.

T_DCGAN took roughly 0.67s less time per training epoch

compared with R_DCGAN when looking at the three-channel

colored images with a resolution of 256 × 256. The difference in

training time is most likely due to the difference in the architectural

complexity of the models, as more parameters generate more

variable changes per operation. However, the results of training on

the grayscale data set with a resolution of 256× 256 show that there

is not much difference in the average training times per epoch.

The minor differences in training time mean a high amount of

overhead during the training phase.

Figure 8 presents three columns generated by both DCGAN

variants, T_DCGAN (top) and R_DCGAN (bottom), after 0,

1,000, and 2,000 epochs, respectively. The first image in this

series, generated with T_DCGAN, exhibits more randomness when

compared with the one with R_DCGAN since the former is

initialized with Gaussian noise. As the training progresses (second

and third columns), we see that the generator for T_DCGAN has

learned some significant features and thus converges quickly.

4.2.1. FID scores
In Figure 9, the FID scores of both T_DCGAN and R_DCGAN

measured over 3,000 epochs can be seen. The cloud data set with

three color channels and a resolution of 256 × 256 was used for

these measurements. Both these methods start with an initial FID

score of approximately 370. The score of the R_DCGAN variant

goes down after approximately 800 epochs to a value of 300, which

means that the statistics of the generated images are closer to those

of the original data set. However, the score, then, goes back up

to approximately 370, where it stays for the rest of the training

session. The T_DCGAN variant quickly increases from 370 to 550

after 600 epochs. After the 600th epoch, however, it decreases over

time until it reaches a score of sub 140 after 3,000 epochs. As

shown, it is trained for more epochs than the R_DCGAN variant,

since after 2,000 epochs, it showed a significant improvement over

the latter.

R_DCGAN showed greater stability at the start of the

training. However, this resulted in the model being unable to

learn the data quickly enough before it collapsed. T_DCGAN’s

initial result was worse than that of R_DCGAN. Over time,

T_DCGAN improved significantly, reaching an FID score

of 137 after 2,000 epochs, and the images generated were

more realistic and natural than those of R_DCGAN. After

5,000 epochs of training, the FID score of T_DCGAN had

reached 107. From this point onward, we will consider only

T_DCGAN for all experiments and analysis, as it emerged as

the clear winning candidate. Henceforth, we will cease using

the R_DCGAN.

We have trained the models on both data sets, containing

pre-processed cloud maps and intact real-life cloud images from

the cloud data set. The animations generated using a model

trained on cloud maps are shown at the top of Figure 10,

while the animations generated using a model trained on real-

life cloud images can be seen at the bottom. The grayscale

cloud map-based animations retain a lower amount of noise

when compared with the three channel-colored animations. This

observation can be attributed to the fact that the real-life-based

model requires three times as much data as the cloud map-

based one since the real-life cloud images have three dimensions

per pixel rather than one (i.e., more information needs to

be learned).
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FIGURE 8

Images generated after 0, 1,000, and 2,000 epochs (columns from left to right, respectively) using T_DCGAN (top) and R_DCGAN (bottom) variants

of DCGAN. As shown in Figure 9, R_DCGAN outperforms T_DCGAN at the beginning of training (up until approximately 800 epochs).

FIGURE 9

Comparison of the FID scores of T_DCGAN and R_DCGAN variants of DCGAN over time (the lower the FID score is, the better the model).
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FIGURE 10

Images generated by models based on T_DCGAN trained on cloud maps (top) and real-life clouds (bottom). Columns represent three di�erent

inputs which could be seen as three di�erent timestamps, with no direct correlation to real time.

4.3. Time complexity performance

We plug in our DCGAN-generated cloud maps to the

framework by Goswami (2019) and measure the rendering

performance. The neural network governs the temporal variation

of cloud maps, thereby eliminating the need for any underlying

physics. The average execution time of the rendering step was 1.56

ms (see Figure 11, top). Furthermore, an analysis of the graph in

Figure 11 (bottom) shows that the execution time of updating the

machine learning cloud map is, on average, approximately 1.36 ms

per frame. When put in a broader application-sized perspective,

a penalty of 1.36 ms is added to each frame. This is an increase

of 87% compared with the base execution time for the rendering,

assuming all other overheads remain similar. Overall, there is an

increase of 6% when compared with the base execution time for the

rendering, which makes for a total increase of 93% when combined

with the per-frame updating of the cloud map. The total per-

frame execution time of the proposed method is an average of

3.02 ms, with the base method sitting at an average of 1.64 ms.

Our method would be, therefore, considered interactive in terms

of performance. It is worth noting that even though the DCGAN

network is learning about and generating cloud maps of resolution

256× 256, the 3D rendering framework is able to display animating

3D clouds on a screen size of approximately four times larger with

the help of these cloud maps.

4.4. Qualitative visual analysis

In Figures 12, 13, we compare the cloud animation obtained

by our deep machine learning-based approach against the physics-

based method reported by Goswami (2019) for medium and high

levels of cloud coverage in the sky, respectively. As stated earlier, we

have used the GPU-based renderer in a study of Goswami (2019) to

this end, a recent, highly efficient physics-based method. The initial

level of cloud coverage is tuned in the renderer, and this first frame

is provided as input to the DCGAN. This is important in order to

study the different cloud evolutions of themachine learning vs. base

method given the same initial cloud state.

The method of updating the input vectors had an essential

role in creating smooth and consistent animations during the

experimentation. It is possible to continuously generate animating

clouds; however, eventually, a loop would be presented in which the

same animation has been played before. Our method can generate

animations for a more extended time when compared with a study
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FIGURE 11

Graphs depicting (left) the execution time of the render step for our approach vs. the base method (Goswami’s method, Goswami, 2019) at di�erent

frames, (right) the execution time of the machine learning step for the machine learning method.

FIGURE 12

Time-lapse of cloud evolution (medium sky coverage) using (top) the proposed method and (bottom) the base method (Goswami, 2019). Each

column represents a 15-s o�set in time between adjacent columns, with time increasing from the left to the right.

of Clark et al. (2019), which was only able to generate videos with a

few length frames (see videos online).1

4.4.1. Human perceptual evaluation
Human visual system (HVS) scoring often assesses

performance when ground truth data are lacking. For the

HVS-based qualitative questionnaire, 41 participants provided

their opinions. Of these, 35 were male, 4 were female, and 2 did

not specify their gender. Their ages ranged from 19 to 45 years.

The seven text-based response options in the questionnaire were

1 Video Clips: https://ardisdataset.github.io/Cloud/.

mapped to identifying values between “1” and “7”, where “1”

would mean being heavily in favor of the base method (Goswami,

2019), “7” being heavily in favor of the proposed method, and

“4” being neutral. Among the total 82 answers (for both medium

and high cloud coverage sets), 52 votes were in favor of the

proposed method, 27 were in favor of the base method, and 3

were in favor of neither of the methods. Figure 14 shows the

number of votes for the two comparisons. The most frequently

obtained score (a.k.a mode) for the medium cloud coverage was

“6,” and for the high cloud coverage, it was “7”. The median was

“6” for both comparisons. In other words, the proposed method

(machine learning-based) was perceived as more natural than

the base method (physics-based) with a score of 69.2 and 62.5%
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FIGURE 13

Time-lapse of cloud evolution (high sky coverage) using (top) the proposed method and (bottom) the base method (Goswami, 2019). Each column

represents a 15-s o�set in time between adjacent columns, with time increasing from the left to the right.

FIGURE 14

Number of votes per response option in the questionnaire (response options as given in Section 4.4.1). The two comparisons consisted of two videos

each, with (left) medium cloud coverage and (right) high cloud coverage, as shown in Supplementary material.

(ignoring the neutral scores) for the medium and high cloud

coverages, respectively.

We, furthermore, have quantitatively assessed the videos

presented to the participants for visual inspection. The

measurements, shown in Figure 15, using BRISQUE and

PIQE, validate the performance in favor of the proposed method

for the high cloud coverage scenario while having a comparable

performance for the low cloud coverage case. Another remark we

can infer from these plots is the importance of introducing the

perspective correction stage to the overall performance, notably in

the high cloud coverage.

4.4.2. Statistical significance
To test for the statistical significance of users’ perceptions

favoring either the base method or the proposed method, we

conducted a hypothesis testing as follows:

• H0 (null hypothesis): There is no positive shift in the median

of observed scoring from the base method to the proposed

method at the 1% significance level.

• H1 (alternative hypothesis): There is a positive shift in the

median of observed scoring from the base method to the

proposed method at the 1% significance level.
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FIGURE 15

Quantitative quality measurements using known image quality metrics (i.e., BRISQUE and PIQE). The plots depict these measurements calculated for

both high and low cloud coverages.

TABLE 3 Re-mapping of responses obtained from the questionnaire.

Favored
method

Response
value

Response
meaning

Remapped
value

Assigned
set

Base 1 Significantly 3 A

Base 2 A good bit 2 A

Base 3 Slightly 1 A

Neither 4 None - -

Proposed 5 Slightly 1 B

Proposed 6 A good bit 2 B

Proposed 7 Significantly 3 B

Responses are placed in either set A or B, depending on whichmethod they favor. Their values

after the re-mapping represent the strength with which they favor their respective method.

As the results from human perceptual evaluation show

(Figure 14), the proposed method was considered more natural

than the base method for both medium and high cloud coverages.

We further conducted a statistical significance test on the

obtained participants’ responses. Any t-test requires the data to be

approximately normally distributed (Japkowicz and Shah, 2011).

Since this was not the case for our data, the Mann–Whitney U-test

(also known as the Wilcoxon Mann–Whitney test or the Wilcoxon

rank–sum test) (Gibbons and Chakraborti, 2011) was used instead.

Before determining the statistical significance of the results, the

responses are converted to the same range and re-mapped as shown

in Table 3. All responses in favor of the base method (response

options 1–3) were placed in set A, and their values were flipped

according to 4 - X, where X ∈ 1, 2, 3. Similarly, all votes in favor

of the proposed method (response options 5–7) were placed in

set B and transformed to the range of 1–3 with Y - 4, where

Y ∈ 5, 6, 7. Votes in favor of neither the base method nor the

proposed method (response option 4) were excluded from the

analysis. The two sets, A and B, thus contain exclusive votes in

favor of only one of the methods, and the values of the votes

represent the strength with which the vote is in favor of that

method. To determine the statistical significance of the results,

Matlab’s rank-sum function was used at the 1% significance level.

The statistical significance test, at α = 1%, indicates that there

is significant statistical evidence (p = 3 ×10−3) to reject the null

hypothesis. From this, a conclusion is drawn that there is a positive

shift in the median of observed scores from the base method to the

proposed method.

5. Conclusion

We have presented an efficient method to generate landscape-

scale 3D cloud animation using deep machine learning. Our

DCGAN-based approach learns the cloud evolution pattern

from simple real-life videos. It can produce realistically

evolving clouds at a much higher resolution and interactive

frame rates without introducing significant computational

overhead. We have employed an efficient preprocessing pass,

which helps us to reduce the training time for DCGAN by

limiting the size of input images containing cloud evolution

information. Nonetheless, the generated output can support a
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much higher resolution of animation sequences, as demonstrated

in the images and videos. We also motivated our choice of

DCGAN over other GAN architectures for our problem. We

have demonstrated that cloud evolution is easily obtainable

purely through machine learning without the use of any

underlying physics. Our method circumvents the limitations

of most physics-based cloud simulation methods. Whereas

the physics-based methods demand a high computational

cost and memory storage to provide cloud animation for a

limited volume of the sky, our method can easily achieve this

animation for a much larger scale and at a higher resolution

without very much affecting the frame rates. We have also

qualitatively verified our method’s improved perceived realism

value against the physics-based approach with the help of

participants’ evaluation.

There are a few promising research directions for our current

work. In future, we would like to experiment with our technique to

produce animations using other cloud types to produce animations

using DCGAN. We would also like to explore the incorporation

of lightweight physics to capture certain phenomena that pure

machine learning alone cannot capture (saturation level, dew point

altitude, etc.). Currently, our method produces cloud animation,

which is background invariant. In future, background dependant

cloud evolution could be explored with the help of a larger

data set. Another promising direction would be to automate the

rendering of animated clouds and use artificial intelligence to

this end.
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