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The Internet of Things (IoT) represents a paradigm shift in which the Internet is

connected to real objects in a range of areas, including home automation, industrial

processes, human health, and environmental monitoring. The global market for IoT

devices is booming, and it is estimated that there will be 50 billion connected devices

by the end of 2025. This explosion of IoT devices, which can be expanded more easily

than desktop PCs, has led to an increase in cyber-attacks involving IoT devices. To

address this issue, it is necessary to create novel approaches for identifying attacks

launched by hacked IoT devices. Due to the possibility that these attacks would

succeed, Intrusion Detection Systems (IDS) are required. IDS’ feature selection stage is

widely regarded as the most essential stage. This stage is extremely time-consuming

and labor-intensive. However, numerousmachine learning (ML) algorithms have been

proposed to enhance this stage to boost an IDS’s performance. These approaches,

however, did not produce desirable results in terms of accuracy and detection rate

(DR). In this paper, we propose a novel hybrid Autoencoder and Modified Particle

SwarmOptimization (HAEMPSO) for feature selection and deep neural network (DNN)

for classification. The PSO with modification of inertia weight was utilized to optimize

the parameters of DNN. The experimental analysis was performed on two realistic

UNSW-NB15 and BoT-IoT datasets that are suitable for IoT environment. The findings

obtained by analyzing the proposed HAEMPSO against the Generic attack in the

UNSW-NB15 dataset gave an accuracy of 98.8%, and a DR of 99.9%. While the benign

class revealed an accuracy of 99.9% and DR of 99.7%. In the BoT-IoT dataset, the DDoS

HTTP attack revealed an accuracy of 99.22% and DR of 97.79%. While the benign class

gave an accuracy of 97.54% andDRof 97.92%. In comparisonwith the state-of-the-art

machine learning schemes, our proposed HAEMPSO-DNN achieved a competitive

feat in terms of DR and accuracy.

KEYWORDS

autoencoder (AE), Internet of Things, machine learning, particle swarm optimization, deep

neural network

1. Introduction

The Internet of Things (IoT) is a unique concept in the field of computer networking that

enables the communication of various types of objects via the Internet (Fenanir et al., 2019).

These devices can be RFID tags, actuators, sensors, or mobile phones; all of which connect and

cooperate utilizing a single addressing technique (Abbas et al., 2019). The IoT allows the seamless
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FIGURE 1

The Internet of Things design pattern (Fenanir et al., 2019).

integration of all kinds of infrastructures, at all times, for all of

us, and on any object, as a result of ubiquitous computing (Atzori

et al., 2010). The IoT is a network of numerous networked things

that enables people and objects to communicate and build intelligent

environments in areas such as transportation, agriculture, healthcare,

energy, and cities (Marlow, 2018). The IoT architecture model

depicted in Figure 1 is comprised of three layers; the application, the

network, and the perception layers (Leo et al., 2014). The IoT is a

network of sensors-equipped objects or things. Sensors are placed on

goods or things and the Internet (usually wirelessly) to collect and

exchange data in the IoT (Askarzadeh, 2016).

IoT technologies present various previously unimagined

prospects for human interconnection. Hypertext transfer protocol,

message queuing telemetry transport (MQTT), and domain name

system are the internet protocol that runs IoT services under the

TCP/IP architecture (Saheed, 2022a). IoT has the potential to

improve people’s lives and also contribute to the development of

the smart city. The IoT provides a centralized stage for sharing of

information across the industry, environment, and society (Singh

et al., 2020). As a result, efficient coordination between promised

services and accessible resources is required for IoT-enabled

intelligent cities to function effectively (Arshad et al., 2020). Due to

the exponential growth of IoT devices, we require improved cellular

network architecture to deliver high-speed connections among such

IoT gadgets (Thamilarasu and Chawla, 2019). Mid-band, low-band,

and millimeter-wave frequency ranges enhance the rate at which

data is transferred over multi-hop connections in these designs. The

fast growth in the quantity and variety of intelligent devices linked

to the Internet has involved intruders looking to disseminate hateful

content over this network of things (Subham et al., 2022). Intrusion

behavior refers to an effort to violate the integrity, confidentiality,

and access to specified resources, and it is the core focus of the

Internet of Things Security Research Institute (Sicari et al., 2020). By

gaining access to users’ personal information, spying, and causing

financial losses, attackers may jeopardize their privacy and security.

Apart from compromising the security of the IoT, these intrusions

pose a threat to the entire ecosystem, including applications, sites,

servers, and social media via controlled smart objects such as robot

networks (Li et al., 2020).

The IoT gadgets are regularly organized in an unsafe and

hostile environment, increasing their susceptibility to various threats

(Sedjelmaci et al., 2016). As a result, security solutions are critical for

defending IoT gadgets against intruder attacks (Kayode Saheed et al.,

2022). An Intrusion Detection System (IDS) is a tool that analyzes

the activities and events of a system or network to detect attacks

against them (Raza et al., 2013). It may serve as a secondary line of

protection against intruders (Raza et al., 2013). The basic goal of an

IDS is to accurately identify as many attacks as possible while utilizing

the minimal energy feasible in resource-constrained circumstances

(Liang et al., 2020).

Surprisingly, IDS is recommended as an excellent tool for

monitoring network action, assisting in determining unauthorized

use, detecting system damage, and protecting systems from

internal and external invasions (Kayode Saheed et al., 2022).

IDS can be categorized into two types based on the monitored

environment: host-IDS (HIDS) and network-IDS (NIDS)(Habib

et al., 2020). The latter are strategically located throughout the

network, to cover all susceptible points. They must examine

network circulation by inspecting the payload and header fields

of each packet. Their composition is determined by the sensitivity

of the application. There is always a chance that an event will

be misclassified as negative due to configuration issues or the

existence of encrypted traffic. HIDS continuously collects and

evaluates all organizational network gadgets to identify insider

threats (Saheed et al., 2022a). They take a photo of existing

system logs and compare them to older ones to spot anything

unexpected (Ahanger et al., 2022). If something, suspicious occurs,

HIDS initiates the appropriate action based on its programming

(Subham et al., 2022). Thus, HIDS gain a better understanding

of internal traffic flow and are utilized to protect against

any intrusion that might be hidden by a NIDS during the

initial phase.

Network security is the primary concern in IoT networks because

the majority of manufacturers do not prioritize security standards

throughout the design. With its rapid expansion in numerous

domains like wearable gadgets, smart sensors, and home appliances,

the IoT is poised to touch numerous facets of our lives. The

pervasiveness, connectivity, and limited processing capability of IoT

devices define them.

As a result of the limits of IoT technologies, security has emerged

as a critical concern for IoT networks and services. The Internet of

Things devices are small, varied, and lack compatibility (Atlam et al.,

2022). These qualities broaden the attack surface and complicate

the development of any security solution (Ramadan and Yadav,

2020). Not only are IoT devices susceptible to network attacks (Putra

et al., 2020), but also powerful hackers from unauthorized internet

users. Cryptography algorithms are presented in some literature

for IoT authentication and confidentiality. However, cryptography

techniques are computationally and time-intensive, making them

unsuitable for IoT devices (Minh Dang et al., 2019). Additionally,

cryptography techniques aid in the authenticity and integrity of

networks and data. Additional technologies are critical to measuring

IoT network traffic to avoid the current network attacks. To maintain

such functionality, an IDS is critical. IDS are responsible for

monitoring, analyzing, and detecting network attacks.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.997159
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Saheed et al. 10.3389/fcomp.2023.997159

The literature discusses a variety of IDS strategies.

These strategies are classified as either anomaly or signature

(Blanco et al., 2019). The signature-based detection method

is founded on an account of pre-defined harmful activity

patterns (Saheed et al., 2022b), whereas the anomaly detection

approach is based on the observation of deviations from

normal behavior to indicate intrusions (Saheed and Hamza-

usman, 2020). As a result, the strategy based on anomalies

was capable of detecting unknown attacks that did not follow

predetermined activity patterns (Saheed, 2022b). We provide

an anomaly-based IDS methodology for IoT networks in

this paper.

Numerous solutions have been developed in the past that utilize

Machine Learning/Deep Learning methodologies to detect/prevent

invasions. Numerous of them placed a lesser emphasis on the

pre-processing stage, which is largely concerned with feature

selection. Therefore, it is possible to witness a direct effect on

the classifier of the supplied algorithm. Additionally, the time

needed for training the model is increased as a result of the

insufficient pre-processing stage. The training time is also increased

as a result of the current neural network algorithm’s back-

propagation technique. This work presents a hybrid optimization

and Deep Neural Network-based (DNN)-based better IDS model

for an IoT-enabled intelligent approach. This paper addresses

the aforementioned difficulties by presenting two techniques for

feature selection and a DNN for the model classification. In this

research, we propose a novel hybrid Autoencoder and Modified

Particle Swarm Optimization (HAEMPSO) for feature selection

and deep neural network (DNN) for classification. The PSO

with modification of inertia weight was utilized to optimize the

parameters of DNN. The experimental analysis was performed on

two realistic UNSW-NB15 and BoT-IoT datasets that are suitable for

IoT environment.

The following are the paper’s main contributions:

• A hybrid Autoencoder with the modification of Particle Swarm

Optimization (HAEMPSO) for feature selection is proposed in

this research.

• To minimize information leakage on the test set, an effective

hybrid IDS is constructed using the minimum-maximum

normalization strategy for feature scaling.

• The HAEMPSO approach combines autoencoder and modified

particle swarm optimization (global best position and self-best

position) to prioritize the features that contribute the most to

the output, hence resulting in a lightweight model.

• Additionally, a model based on Deep Neural Networks is

developed to improve classification accuracy.

• Leverages the realistic UNSW-NB15 and BoT-IoT datasets that

reflect modern-day attacks in the IoT ecosystem.

• The proposed hybrid feature selection DNN model

outperformed the traditional ML algorithms.

The remainder of the paper is structured as follows. The relevant

work was discussed in Section Related work. The approach is then

presented in Section Materials and methodology, followed by the

evaluation results obtained through experiments and comparative

studies in Section ProposedHAEMPSO-DNNmodel. Finally, Section

Results and discussion has the conclusion.

2. Related work

Thanigaivelan et al. (2016) provided a brief overview of

networked anomaly detection for the IoT. The suggested IDS works

on the premise of detecting network anomalies by analyzing the

properties of one-hop nearest neighbors such as packet size and

data rate.

Pongle and Chavan (2015) demonstrated the capability of an

intrusion detection system (IDS) to identify wormhole attacks in

IoT gadgets. The researcher shoulder that successful wormhole

assaults always leave traces on the system, such as a huge volume

of control packets transmitted between the two ends of the tube

or the establishment of a large number of neighbors following

the attack. Basis on this reason, the researchers presented three

ways of detecting such network anomalies. According to their

research, the approach yields a true positive of 94% for wormhole

attacks and 87% for identifying both the compromise and the

attacker. However, no information is provided regarding the rate

of false positives. Additionally, the scientists examined the power

and memory consumption of the nodes. Due to its low power and

memory consumption, the suggested system appears to be well-suited

for IoT devices. On the other hand, the data collected should be

compared to published literature to establish a baseline.

Aydin et al. (2009) showed a hybrid intrusion detection system

(HIDS) by integrating two approaches with the Snort signature-

based IDS. The proposed system is assessed using the IDEVAL data

set, which reveals a significant upsurge in the number of assaults

spotted when compared to signature-based systems when employing

the proposed hybrid IDS.

Wang et al. (2010) presented the FC-ANN approach for

intrusion detection, which is founded on the fuzzy clustering

method and ANN. The FC-ANN technique is composed of three

major modules: ANN, fuzzy aggregation, and fuzzy clustering. The

fuzzy clustering function is utilized to create clusters from a set

of given data. The ANN component is utilized to discover the

design associated with each subgroup. The FC-ANN technique was

evaluated on the KDD CUP’99 data and showed efficacy against

low-frequency attacks.

The study (Govindarajan and Chandrasekaran, 2011)

presented a hybrid neural-based IDS design that utilizes two

techniques: MLP and RBF. To improve robustness, accuracy,

and overall generalization, hybrid modeling approaches are

applied, including bagging classifiers. Additionally, this study

makes use of UNM Send-Mail Data, which is founded on a

University of New Mexico-developed system. The proposed

IDS attained an accuracy of 98.88% for normal traffic and

94.31% for abnormal traffic, outperforming the classifiers that

comprise it.

Chung and Wahid (2012) address the issue of decision rule

generation by combining an IDS-RS feature selection strategy with an

SSO–WLS data categorization technique. By weighing three specified

constants, the study proposes a comprehensive system approach for

optimizing the search process in SSO rule mining. The new results on

the KDDCUP 1999 data indicate that the presentedmethod for NIDS

utilizing an IDS-RS set achieves a 93.3% accuracy rate in an increase

of 20 runs.

Elbasiony et al. (2013) established a hybrid architecture for

combining misuse and anomaly detection using two methods:
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(1) the K-means algorithm and (2) RF. Precisely, this system

detects abuse intrusions using the RF approach and anomalies

utilizing the k-means algorithm. Because RF makes use of correlated

variables, this framework exhibits low-performance degradation

and interpretability.

Kim et al. (2014) connect a model for detecting misuse

with one for detecting anomalies in a breakdown structure.

This inquiry makes use of the C4.5 model technique and many

one-class SVMs. The NSL-KDD data experiments reveal that

the presented HIDS strategy outperforms typical intrusion

detection techniques in terms of testing time, training time, and

detection performance. Li et al. (2021a) suggested a machine

learning-based classification approach for attribution companies

utilizing APT malware in IoT. To more effectively identify

advanced persistent threat attack activities and safeguard the

security of IoT, the authors try to identify the actual attacking

organization entities. The approach could locate the group

responsible for sophisticated APT assaults against IoT products

and services. The SMOTE-RF model works well and has steady

performance when classifying APT malware, and the approach of

feature extraction provided obtained more than 80% accuracy in

general models.

An ensemble model was presented by Li et al. (2021b) for

identifying fraudulent mining codes on cloud platforms. For

the classification, they used bagging and boosting algorithms.

The experimental findings demonstrate that the values of AUC

and F1-score for the provided dataset can approach 99.2 and

98.7%, respectively.

Liu et al. (2021) provide a gradient descent-based particle

swarm optimization method (PSO-LightGBM) for IoT intrusion

detection. This technique employs PSO-LightGBM to extract the

data’s features before feeding it into one-class SVM (OCSVM) to

find and recognize harmful data. The intrusion detection model is

tested using the UNSW-NB15 dataset. The experimental findings

demonstrate that the suggested model is extremely reliable in

identifying both legitimate and different types of harmful data with

an accuracy of 86.68%.

An IDS for IoT was suggested by Alterazi (2022). This article

investigates various performance-based AI models to accurately

forecast attacks and issues with IoT devices. The efficiency of

the recommended method was demonstrated using ant colony

optimization, genetic algorithms, and particle swarm optimization

(PSO). The findings of the suggested method using PSO performed

about 73% better than those of the current systems.

The study (Lin et al., 2015) introduced CANN, a technique

for merging nearest neighbors and cluster centers. On the KDD

CUP’99 dataset, experimental results indicate that the CANN

technique outperforms SVM and K-NN classifiers. Thanigaivelan

et al. (2016) suggested a classifier technique based on a mixture

of three algorithms, namely the C4.5 DT algorithm, the NBTree

algorithm, and the random tree algorithm.

Pongle and Chavan (2015) introduced a HIDS in by combining

extreme learning machines, K-means clustering, and support vector

machines. Experiments on the KDD CUP’99 data indicate that the

hybrid NIDS has the potential to significantly increase performance

and attain an accuracy of 95.75 percent.

Aydin et al. (2009) developed the HCPTC-IDS IDS system, which

is founded on the aggregate probability of predictions from a large

number of algorithms. The HCPTC-IDS system consists of two

layers: (1) a tree of learners; and (2) a final classification that integrates

the first layer’s multiple probability predictions. Experiments with

NSL-KDD and KDD’99 demonstrate that the HCPTC-IDS system

outperforms previous similarity-based intrusion detection systems,

with an accuracy of 96.27% for KDD’99 and 89.75% on NSL-KDD.

The study (Wang et al., 2010) proposed a method for finding

anomalies that incorporate both an SVM and a GA to enhance the

classification performance of SVMs. Utilizing the KDD CUP 1999

data, the experimental findings suggest an extraordinary true-positive

of 97.3% and a false-positive of 0.017.

Derhab (2019) introduced the RSL-KNN IDS for detecting

simulated command attacks. The system is based on a technique

called random subspace learning and the KNN algorithm. The RSL-

KNN scheme is used in conjunction with blockchain to identify any

manipulation of the OpenFlow regulation in real time.

An autoencoder model for intrusion detection in an IoT

environment was proposed by Lahasan and Samma (2022). The

model has a shallow architecture, few hidden neurons, and few

input features. On the NBaIoT dataset, classification was performed

using the KNN technique. The proposed model obtained anomaly

detection accuracy of 99%, according to experimental results.

The limitation of this study is that the autoencoder used is

computationally expensive.

An autoencoder strategy for intrusion detection in the Industrial

Internet of Things was suggested by Zhang and Zhang (2022).

Dimensionality reduction was performed using the sparse

autoencoder. With an accuracy of 95.42 percent, the experiment

has shown that the suggested method has good network attack

identification and detection capability.

Ferrag and Maglaras (2020) established a unique energy

framework based on blockchain andDL, dubbedDeepCoin, for smart

grids. The architecture of DeepCoin employs two distinct schemes:

one based on deep learning and another on the blockchain. The

deep learning-based technique detects network threats via RNN,

whereas the blockchain-based method detects fake transactions. We

recommend the reader to the recent work in Ferrag et al. (2019a) for

additional details on DL methods used in cyber security intrusion

detection. Table 1 summarizes exemplary studies on hybrid IDS,

which incorporate ML, DL, and DM techniques. Additionally, it

discusses the security problem that each of these solutions attempts

to address, as well as the dataset used to assess their performance.

The majority of relevant papers make use of the old KDD’99

and NSL-KDD sets of data, which are of incomplete real-world

relevance for a current IDS. Since these datasets were produced

in 1999, both malicious and innocuous network traffic has evolved

significantly, and the results generated from them are typical

of limited utility. To address various limitations of previously

published approaches, such as low detection rate of infrequent

attacks, misclassification of attacks, and accuracy. We offer a

novel hybrid intrusion detection system (IDS) that incorporates

two distinct models, namely Autoencoder and Particle Swarm

Optimization. Additionally, we utilized the BoT-IoT (Shafiq et al.,

2020) and UNSW-NB15 (Choudhary and Kesswani, 2020) datasets,

which we divide into training and testing sets, to assess their

effectiveness in noticing network intrusions and to compare it to

the performance of other machine learning approaches given by

earlier researchers.
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TABLE 1 Summary of existing studies based on hybrid IDS.

References Cyber technique DM and ML methods Dataset utilized Results

Aydin et al. (2009) Hybrid IDS, which combines

anomaly-based and

signature-based IDS

Detection of packet header

anomalies-Detection of

abnormal network traffic

IDEVAL High DR

Wang et al. (2010) Hybrid IDS, in which the

results are aggregated using

the fuzzy aggregation module

ANN fuzzy clustering KDDCup 99 FC-ANN: Accuray= 96.71%;

BPNN: Accuracy= 96.65%

Govindarajan and

Chandrasekaran (2011)

Neural-based hybrid IDS MLP neural network RBF neural

network

UNM-Send mail data MLP: Accuracy= 98.88%;

RBF: Accuracy= 94.21%

Chung and Wahid

(2012)

Hybrid IDS Dynamic swarm intelligence

Reduced swarm optimization

KDD Cup 99 SSO–WLS: Accuracy= 93.3%;

SSO: Accuracy= 89.6;

PSO: Accuracy= 88.5%

Elbasiony et al. (2013) Creating a hybrid architecture

by combining abuse and

anomaly intrusion detection

Algorithm of random forests

Algorithm of K-means clustering

KDD Cup 99 Abuse: DR= 92.73%; Abuse:

FPR= 0.54;

Anomaly: DR= 95%;

Anomaly:FPR= 6.3

Kim et al. (2014) Creating a hybrid architecture

by combining abuse and

anomaly detection

Algorithm for C4.5 decision trees

SVMmodel

NSLKDD C4.5: Training time= 21.37;

SVM: training time= 403.27

Liu et al. (2021) Particle swarm optimization

for feature selection in IoT

One class SVM for classification UNSW-NB15 Accuracy= 86.68%

Alterazi (2022) PSO for feature

dimensionality selection in

IoT

Genetic algorithm and Ant

Colony Optimization

NSLKDD Accuracy= 73%

Lin et al. (2015) Consolidating cluster nodes

and their nearest neighbors

CANN and KNN classifiers KDD Cup 99 CANN: Accuracy= 99.76%; DR

= 99.99%, FPR= 0.00; KNN:

Accuracy= 80.6%, DR=

80.32%, FAR= 99.92

Aslahi-Shahri et al.

(2016)

Hybrid IDS GA for feature selection and

SVM for classification

NSLKDD SVM= 9.31%; Precision=

94.1%;

Recall= 93.1%

Kevric et al. (2017) Combining tree-based

classifier models

C4.5

Random Tree

NB

KDD Cup99 C4.5: Accuracy= 79.15%;

Random Tree= 71.46%;

NB= 75.54%

Ferrag et al. (2019b) Hybrid IDS SVM

ELM

K-means clustering

KDD Cup 99 High accuracy and precision

Ferrag and Maglaras

(2020)

Hybrid IDS, combining RNN

with blockchain technology

RNN BoT-IoT, CICIDS2017, and

Power system

DDoS Accuracy= 99.89%;

Heartbleed= 100%; XSS=

91.75%

Derhab (2019) The HIDS which adds

random subspace learning

with blockchain

Random Learning Subspace Power system RSL-KNN: Accuracy= 90.08%,

FPR= 0.3

Ferrag and Maglaras

(2019)

A HIDS which combines DL

approaches with blockchain

technology

Deep learning CIC-IDS2018 Improved accuracy

Ferrag et al. (2020) Adding tree-based classifier

methods to create a hybrid

IDS

Random forest

JRip classifier

REP Tree

CICIDS2017 RDTIDS Accuracy= 96.66%, DR

= 96.995%

Lahasan and Samma

(2022)

Autoencoder for feature

selection in IoT

KNN N-BaIoT Accuracy= 99%

Zhang and Zhang (2022) Autoencoder for feature

dimensionality reduction in

IIoT

Softmax NSLKDD Accuracy= 95.42

Ravi et al. (2022) Meta classifiers in IoT KPCA, RNN UNSW-NB15 Accuracy= 99%, Precision=

99%, Recall= 99%, and F1-score

= 99%

Chohra et al. (2022) Chamelleon RF, XgBoost NSLKDD UNSW-NB15 UNSW-NB: Accuracy= 89.52%,

NSLKDD:Accuracy= 90.1%
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2.1. The motivation for the present study

Security remains the primary concern while developing IoT

applications, as it cannot be overlooked due to the interconnectedness

and sensitivity of the acquired data. Additionally, the IoT is

restrained by several limits in terms of devices and components,

such as the limited capacity for processing, power consumption,

and memory, as well as by the IoT’s heterogeneous and ubiquitous

nature, compounding the concerns (Oh et al., 2014). As a

result, implementing a security policy for these systems is

critical. Along with the establishment of firewalls and increasingly

sophisticated authentication methods, such security policies must

be complemented with monitoring technologies that audit the

information system and detect potential intrusions. IoT networks

become possible due to advancements in sensing technologies.

However, IoT devices have a variety of restrictions, including

restricted energy sources and capabilities. Additionally, typical

cryptography and IDS approaches may be incompatible with such

a network. Moreover, as more people gain access to the Internet,

hacking tactics become more sophisticated and accessible (Ramadan

and Yadav, 2020). As a result, establishing an efficient monitoring

strategy for intrusion detection presents a difficulty. This results in a

variety of research suggestions aimed at improving the performance

of IoT intrusion detection. NSL-KDD cup is a well-known dataset

that has been widely explored. It evolved into a de facto standard for

evaluating new algorithms. Regrettably, the existing approaches have

the following shortcomings:

• Minimum attack categorization rate

• The minimum attack detection rate

• Overhead time

• The feature selection stage is costly as a result of the huge

dimensional data and

• Minimal accuracy.

Thus, the issue at hand is to propose an efficient IDS approach

that solves the following issues where the detection rate is critical,

particularly for the IoT runtime process. Due to the massive

dimension of the data, the feature selection process is time-

consuming. Additionally, accuracy is a concern when it comes to

IoT devices being employed in mission-critical areas such as military

systems or healthcare. In this research, we used the minimum-

maximum technique for feature scaling and a unique HAEPSO for

feature selection. There are, however, additional feature scaling and

selection strategies, such as the z-score methodology and LDA.While

the z-score technique does not necessarily require knowledge of

the standard deviation, the LDA technique is extremely sensitive

to outliers. As a result, we decided to preprocess the data using

minimum-maximum and to choose features in the second step using

a new hybrid AE-PSO. The final phase entails classifying the data with

the help of the DNN.

3. Materials and methodology

We present the proposed system, autoencoder, particle swarm

optimization, HAEPSO, and DNN in this section.

FIGURE 2

The framework of our proposed HIDS model.

3.1. Proposed system

One of our key objectives is for the IDS to be compliant

and lightweight with the processing capability of the constrained

nodes. As a result of the limited processing capabilities and power

consumption of an IoT node, an active intrusion detection sensor

cannot be deployed in each node. As a result, we built a central

IDS design to address the issues of diminished capabilities on one

hand and peripheral diversity on the other, with the IDS running

on the IoT’s network above the Gateway element. The activity

diagram in Figure 2 depicts our Hybrid Intrusion Detection System

(HIDS), which identifies intrusions by comparing observed behavior

to expected behavior. An alarm is raised if the two behaviors diverge.

It is divided into three stages:

a. Activity Receiver: During this phase, the HIDS component

activity receiver collects and records all IoT devices (such as

Alexa with IP address= 111.30.42.59.70; camera with IP address

= 128.145.78; Miscellaneous with IP address = 216.46.84.91;

mobile with IP address = 45; and outlet with IP address =

222.67) activities to construct the current actions, which will be

presented as a feature space.

b. Network Anomaly Detection: The detection stage is responsible

for analyzing and detecting intrusions. It is the central aspect of

our HIDS.

c. Alert: Following the identification of an attack, the suggested

system stops the user and terminates his session, before alerting

the administration to take appropriate action.

3.2. Autoencoder

The AE is a three (3) layer unsupervised neural network (NN)

with an input layer, a hidden layer, and an output layer. Figure 3
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FIGURE 3

The basic structure of an autoencoder.

FIGURE 4

Representation of an autoencoder (Yan and Han, 2018).

illustrates the general organization of AE, whereas the representation

is depicted in Figure 4.

The AE may gradually change individual feature vectors into

generic feature vectors, thus realizing the nonlinear transition from a

high to low-dimension data space. The automatic encoder’s operation

can be divided into two different phases (Yan and Han, 2018):

encoding and decoding, which can be characterized as follows: The

method of encoding from the input via the hidden layer is as follows:

E = f θ1(K) = σ (WxyK +∅1) (1)

The method of decoding from the hidden to the reconstruction

layer is as follows:

M = f θ2(K) = σ (WxyK +∅2) (2)

In the formulas above, K = (k, k,. . . , kn) is the data input vector,

M = (m1, m2, . . .mn) is the vector reconstruction of the data input,

and E = (e, e,. . . ,e) is the dimensional low vector output from the

hidden layer, K ǫ Sn, M ǫ Sn, E ǫ Sn (n is the input dimension vector

and m is the units hidden).

Wxy ǫ Snxm is the weight matrix for the linking between the

layer input and the layer hidden. Wyu ǫ Snxm is the connection

weight matrix between the output and layer hidden. To rebuild

the data input with the greatest accuracy feasible while minimizing

resource usage during model training, Wyu = WT
m typically is in the

experiments. ∅1ǫ Snxm and ∅2 ǫ Snxm are the vector basis of the

hidden and input layer. fθ1(.) and fθ2 (.) are the functions used for

activation of the output neurons and input neurons, whose roles are

responsible for mapping the outcome of the network summing to [1,

0]. In this investigation, we used the sigmoid activation function as

the activation function.

f θ1(.) = f θ2(.) =
1

1+ e− x
(3)

The discrepancy between both the output rebuilt data and the

original data can be reduced by adjusting the encoder and decoder

settings, indicating that AE reassembles the actual data via training.

At this point, we believe that the data produced by the hidden layer

units is the best low-dimensional approximation of the source data,

as it contains all of the information included in the original data.

Between H and Y, the reconstruction error function Ye(W, θ) uses

the mean squared error (MSE) function as specified in formula 4,

where N is the number of samples input. The autoencoder was used

for feature selection to select the significant feature from the two

datasets, then the selected features are then passed into DNN. As a

result of the slow performance of DNN, we then use the PSO with the

modification of inertia weight to optimize the parameters of DNN.

Ye(W, θ) =
1

2N

N∑

s−1

|Y − X|2 (4)

3.3. Particle swarm optimization

PSO is an evolutionary and optimization technique inspired by

nature that is used to address computationally difficult optimization

problems (Derhab, 2019). PSO is a robust technique inspired by

swarm behavior and intelligence (Lahasan and Samma, 2022). It was

created by James Kennedy and Russ Eberhart in 1995. PSO is a

computer method for optimizing problems by iteratively attempting

to improve candidate solutions in terms of a specified quality

metric (Zhang and Zhang, 2022). A particle is a candidate solution,

and the search space is improved by shifting the particles around.

The velocity and position of each particle are prejudiced by its

best-known position, which is updated in each iteration by better

positions discovered by other particles (Ferrag and Maglaras, 2020).

As illustrated in Figure 5, the modified PSO schema consumes fewer

resources than the conventional optimization approach. It is capable

of searching for enormous spaces of possible solutions (Ferrag et al.,

2019a). Because it does not rely on the gradient of the issue to

be optimized, as do traditional optimization methods, the problem

doesn’t need to be differentiable (Aslahi-Shahri et al., 2016).

The PSO is an evolutionary classifier founded on the predatory

behavior of birds (Kevric et al., 2017). As a result, identifying food

for birds can be comparable to determining the optimal particle

solution. There are two parameters in every particle: a position

variable indicated by X
j
u = [X

j
u1, X

j
u2, X

j
u3,. . . , X

j
ud] and a velocity

parameter indicated by V
j
u = [V

j
u1, V

j
u2, V

j
u3,. . . , V

j

ud
]. Throughout

the iteration, each particle’s velocity and location update formulas are

as follows:

V
j
u = wv

j

ud
+ e1n1(pbestud −−X

j

ud
)+ e2n2(gbestd −−X

j

ud
) (5)

X
j+1

ud
= X

j

ud
+ V

j+1

ud
(6)
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FIGURE 5

PSO algorithm schema.

TABLE 2 Position Parameters range of value.

Location Hyperparameters used Particle range

X
j
u1 E1-n- filter 100-600

X
j
u2 E1-filter-length 1-5

X
j
u3 E1-act Tanh(1), sigmoid (0), relu(2)

X
j
u4 E1-G2-droupout 0.4-0.8

X
j
u5 G2 -neuron 256-1024

X
j
u6 G2 -act Tanh(1), sigmoid (0), relu(2)

X
j
u7 G3-neuron 256-1024

X
j
u8 G3 – act Tanh(1), sigmoid (0), relu(2)

X
j
u9 Size-of batch 16-300

X
j
u10 Rate-of learning 0.01-1

where V
j+1

ud
indicates the d-th constituent of the speed of the

u-th fragment in the j + 1 repetition, V
j+1

ud
indicates the d-th

constituent of the speed of the u-th particle in the j repetition,

pbestud indicates the local optimal location of the i-th particle in

the present iteration, gbestd indicates the global best location of all

particles among the populace, w indicates the weight of inertia, j

means the present iteration, e1 and e2 are acceleration coefficients

referred to as social and cognitive characteristics, correspondingly,

n1 and n2 are consecutive random numbers dispersed consistently

throughout the range [0,1], X
j+1

ud
indicates the d-th constituent

of the location of the u-th fragment in the j+1 repetition, X
j

ud

indicates the d-th element of the u-th particle’s velocity in the

j repetition.

TABLE 3 Searching algorithm for the optimal hyperparameters.

Algorithm Searching for optimum hyperparameters

1. Start;

2. Fit the location parameter Kxdu

3. Fit the rate parameter Vxdu

4. While j < maximum iteration do

5. Compute the fitness value, determine the Gcur , Gavg , and

Gmin ;

6. Improve the global optimal position fbestd and local optimal

position qbestud concerning the value of the fitness;

7. Improve the inertia w weight;

8. Improve the velocity Vxd
u+1 and position Ku+1

xd

9. u= u+1;

10. End while

11. Output: optimal hyperparameters

4. Proposed HAEMPSO-DNN model

The HAEMPSO algorithm is used in this research to enhance the

parameter framework of a one-dimensional DNN and to determine

the suitable hyperparameters, avoiding the high labor cost associated

with physically changing the parameters used to discover the

detection process appropriate for the network attack scenario. To

begin, every layer of the one-dimensional DNN’s parameters is

formed of particle position parameters. Additionally, the position

parameters’ components for each dimension are initialized. Tables 2,

3 illustrate the parameter setting range for particle swarms.

Here, e1- n-filter is the kernel number in the E1 layer, E1-length-

filter is the filter length in the E1 layer, E1-act is the activation function

found in the E1 band, E1-F2- The probability of nodes remaining

functional between the E1 andG2 layers is called dropout, the number

of neurons in the G2 layer is denoted by the term “G2 neuron”, G2-act

is the activation function type in G2 layer, the number of neurons in

the G3 layer is called the G3 neuron, G3-act is the activation function

in G3 layer, the batch-size parameter specifies the size of the batch

sample of training and rate-of learning is the phase to improve the

weights oppositely.

4.1. Deep neural network

A DNN is a collection of multilayer perceptron’s (MLPs) with a

layer count >3. MLPs are a type of FFANN that are referred through

the n layers that comprise them and benefit one another, as illustrated

in Figure 6. The layer Yǫ [1, Z] of a DNN is described by DY (ay, αy,

ny). ay ǫ Z is the neurons number in the layer. α
ay−1
Y :R → Say is the

transformation affine describe through the matrix WY and the vector

cm.nm : Say → Say is the function transfer of the layer Y.

The matrix Wy is referred to the matrix weight between the Y –

1 layer and layer Y. The vector cy is referred to as the vector bias of

the Y layer. Figure 6 and Table 4 (Liu et al., 2017) reveal DNN located

on MLP.
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FIGURE 6

Deep neural network.

TABLE 4 DNN based on multilayer perceptron.

Algorithm DNN grounded on multilayer perceptron

1: Select a training pair (k, c);

2: h0 = k;

3: For Y= 1 to Z do

4: gY = ny (hy-1)=WY−1 + cY ;

5: hY = αM (gM)

6: end for

TABLE 5 Parameters of DNN.

Hyperparameter Rate Hyperparameter Rate

Learning rate 0.01 Input units 85

Size of the batch 32 Dropout 0.1

Training epochs 10 Activation Function Tanh

Layers number 5 Optimizer Stochastic

gradient

Units of Hidden layer 127, 63, 32

5. Results and discussion

The hyperparameter setting of the DNN is given in Table 5

in terms of the learning rate, batch size, layers number, training

epochs, input units, dropout, hidden layer units, activation, and

the optimizer.

5.1. Experimentation

For the experiments, we employed two new real-world traffic

databases, specifically the UNSW-NB15 data (Moustafa and Slay,

TABLE 6 A subset of the UNSW-NB15 dataset distribution.

Category Train set Test set

Benign 56,000 37,000

Backdoor 1,746 583

Exploits 33,393 11,132

Generic 40,000 18,871

Shellcode 1,133 378

Analysis 2,000 677

DoS 12,264 4,089

Fuzzers 18,184 6,062

Worms 130 44

Reconnaissance 10,491 3,496

Total 175,341 82,332

TABLE 7 Attack distribution in Bot-IoT data.

Category Type of Attack Train Test

Benign Benign 7,634 1,909

Information OS Fingerprinting 28,662 7,166

Gathering Service scanning 117,069 29,267

DoS DoS TCP 985,280 246,320

Attack DoS HTTP 2,376 594

DoS UDP 1,652,759 413,190

Information Data theft 94 24

Theft Keylogging 1,175 294

DDoS DDoS UDP 1,517,208 379,302

Attack DDoS TCP 1,563,808 390,952

DDoS HTTP 1,582 395

Total - 5,877,647 1,469,413

2016), and the Bot-IoT data (Shafiq et al., 2021). The statistics on

threats in the Train and Testing sets in both datasets are summarized

in Tables 6, 7. The experiment is carried out on Google Colaboratory

using TensorFlow and the Graphics Processing Unit (GPU).

The process of constructing the training/testing sets from the

UNSW-NB15 data set is illustrated in Table 6; a portion of the data

set entries has been separated into training/testing sets at a ratio of

around 60%:40%. To ensure the validity of NIDS evaluations, there

should be no duplicate entries in the training/test sets.

Table 7 depicts the distribution of attacks that is available in the

BoT-IoT dataset. The category of attacks is stated in the first column,

and attack types in the second column, with the training size and

testing size for each of the attack types.
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TABLE 8 Confusion matrix.

Negative class Positive class

Class positive False negative (FN) True positive (TN)

Class negative True negative (TN) False positive (FP)

TABLE 9 Performance of the DNNmodel relative to the di�erent attack

types and benign in terms of DR, accuracy, and training time on the BoT-IoT

dataset.

Type of Attack DR Accuracy Training Time

Benign 97.92 97.54 57.5

OS Fingerprinting 97.14 97.65 67.6

Service scanning 97.53 97.65 89.1

DoS TCP 97.31 97.61 89.1

DoS HTTP 97.79 97.88 101

DoS UDP 97.62 97.66 170

Data theft 100 97.86 251

Keylogging 97.86 98.92 302

DDoS UDP 97.21 98.22 600

DDoS TCP 97.72 98.50 711

DDoS HTTP 97.79 99.22 991

5.2. Performance evaluation

We evaluate key performance parameters such as detection rate

(DR), and accuracy (ACC). Table 8 illustrates the four probable

classification errors.

DR =
TP

TP + FN
(7)

TNRBenign =
TN

TN + FP
(8)

Accuracy =
TP + TN

TP + FN + FP + TN
(9)

Where FN, TN, TP, FP, and FN mean false negative,

TN means true negative, TP denotes true positive, FP

connotes false positive, and TN denotes true negative,

respectively.

5.3. Results

Table 9 indicates the performance of the DNN model relative to

the benign and different types of attacks using the BoT-IoT dataset. It

shows that the proposed HAEPSO-DNN on DoS data theft showed a

DR of 100%, an accuracy of 97.86%, and a training time of 251. The

OS fingerprinting showed a DR of 97.14%, an accuracy of 97.65%,

and a training time of 67.6. Service scanning gave a DR of 97.53%, an

accuracy of 97.65%, and a training time of 89.1. DoS TCP gave a DR

of 97.31%, an accuracy of 97.61%, and a training time of 89.1. The

DoS TCP gave a DR of 97.31%, an accuracy of 97.61%, and a training

TABLE 10 Performance of the DNNmodel relative to the di�erent attack

types and benign in terms of DR, accuracy, and training time on the

UNSW-NB15 dataset.

Type of attack DR Accuracy Training time

Benign 99.7 99.9 70.7

DoS 98.3 98.5 92.6

Back door 96.2 97.3 102

Worm 82.7 83.8 92

Shellcode 91.2 92.2 120

Probe 91.3 93.4 82

Exploits 99.0 98.10 31

Fuzzer 88.1 89.2 77

Analysis 93.3 94.4 51

Generic 99.0 99.9 66

Reconnaissance 93.0 94.1 41

time of 89.1. DoS HTTP revealed an accuracy of 97.79%, an accuracy

of 97.88%, and a training time of 101. The DoS UDP gave a DR of

97.62%, and an accuracy of 97.66. The Data theft gave a DR of 100,

an accuracy of 97.86%, and a training time of 251. The keylogging

gave a DR of 97.86%, an accuracy of 98.92%, and a training time of

302ms. The DDoS UDP gave a DR of 97.21%, an accuracy of 98.22%,

and a training time of 600. The DDoS TCP gave a DR of 97.72%, an

accuracy of 98.50%, and a training time of 711 s. The DDoS HTTP

gave a DR of 97.79%, an accuracy of 99.22%, and a training time of

991 s. As seen in Table 9, the data theft attack gave the highest DR

at a relatively high training time of 251 s. Whereas, the keylogging

attack gave a high accuracy of 98.92% at the expense of the training

time of 302 s.

The performance of the DNNmodel against benign and different

types of attacks is shown in Table 10 using the UNSW-NB15

dataset. It demonstrates that the proposed HAEPSO-DNN on Benign

achieved a DR of 99.7%, an accuracy of 99.9%, and a training time

of 70ms. The DoS gave a DR of 98.3%, an accuracy of 98.5%,

and a training time of 92.6%. Backdoor had a detection rate of

97.14%, an accuracy of 97.65%, and a training time of 67 s. The

Worm resulted in a DR of 82.7%, an accuracy of 83.8%, and 92%

training time. The shellcode had a DR of 91.2%, an accuracy of

92.2%, and a training time of 120 s. The probe yielded a DR of

91.3%, an accuracy of 92.2%, and a training time of 82 s. The exploits

gave a DR of 99%, an accuracy of 98.10%, and a training time of

31 s. The fuzzer gave a DR of 88.1%, an accuracy of 89.2%, and

a training time of 77 s. The analysis revealed a DR of 93.3%, an

accuracy of 94.4%, and a training time of 51 s. The Generic gave

a DR of 99.9%, an accuracy of 98.8%, and a training time of 66 s.

The reconnaissance gave a DR of 93%, an accuracy of 94.1% s,

and a training time of 41 s. The findings showed that the generic

attack gave the highest DR reaching 99.9%, accuracy of 98.8%, and

training time of 66 s out of all the attack classes. The benign class

gave the highest accuracy of 99.9%, DR of 99.7%, and training time

of 70.7 s.

The performance of the DNN approach in terms of DR, training

time, and accuracy on BoT-IoT and UNSW-NB15 datasets is shown

in Figure 7.
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FIGURE 7

Performance of HAEPSO-DNN model concerning DOS attack on the

UNSW-NB15 and BoT-IoT datasets.

FIGURE 8

Comparison with the traditional ML algorithms.

5.4. Comparison with the machine learning
model

We compare our suggested DNN technique with traditional

ML classifiers. As shown in Figure 8, we employed a 10-fold cross-

validation (CV) technique to test the efficiency of the RF, LR, KNN,

and DNNmodel. As can be seen from the data, KNN has an accuracy

of 86.11, 93.02% for RF, 83.12% for the LR model, and 97.41% for

the DNN classifier on the UNSW-NB15 dataset. The LR classification

algorithm does not work well since its performance is dependent on

the feature design of the raw data.While RF produces higher accuracy

than a linear model since it can learn more through the bagging of

TABLE 11 Comparison with recent studies.

Authors Dataset Accuracy DR

Ravi et al. (2022) UNSW-NB15 99% x

Chohra et al. (2022) UNSW-NB15 89.52% x

Proposed UNSW-NB15 99.9% 99%

several decision trees, it is unable to extract deep information from

the training data. As a result, the DNNmodel defeats it.

5.5. Comparison with the existing DL models

As seen in Table 11, we compared the performance of our

proposed model in this section with the recent work (Chohra et al.,

2022; Ravi et al., 2022). Ravi et al. (2022) proposed a DL model for

attack detection in CPS. The simulation findings gave an accuracy

of 99%, precision of 99%, recall of 99%, and f1-score of 99%.

However, Ravi et al. (2022) did not pay attention to DR which is

an important metric in IDS. Also, Ravi et al. (2022) considered the

problem as a multi-class classification problem. Chohra et al. (2022)

adopted PSO for feature selection and used an ensemble model

for classification. The experiment was performed on the UNSW-

NB15 dataset. The findings gave an accuracy of 89.52% on a binary

classification problem. In our proposed model, our model gave an

accuracy of 99.9%, DR of 99%, and training time of 66 s. Additionally,

our model addressed the problem as a multi-class problem that

outperformed the multi-class problem of Ravi et al. (2022), and

binary problem as suggested by Chohra et al. (2022) in terms of

accuracy and DR.

6. Threats to validity

This study utilized two public datasets from distinct

sources that are suitable for an IoT setting to evaluate

the performance of the suggested solution. Due to

the use of open-source assessment and classification

tools, the results cannot be generalized to closed-source

techniques or proprietary data, which may result in

performance variation.

Also, 10-fold cross-validation was used as validation

to eliminate bias in the proposed work. Other validation

methods (such as K-fold or five-fold) may not yield

the same results. Different splits rate can also result in

varied performances.

7. Conclusion and future work

This research proposes a new HAEPSO-DNN algorithm

and successfully applies it to the detection of multiple types

of intrusions in IoT networks. However, the inertia weight

component is adaptively modified in response to the fitness

value to avoid PSO entering the local extremum problem and

obtaining the appropriate DNNoverall parameters. The experimental
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analysis was performed on two realistic UNSW-NB15 and BoT-

IoT datasets that are well suited for the IoT ecosystem as

against outdated datasets used in previous research. Additionally,

the suggested approach reduces communication overhead and

eliminates the necessity for a foreign key, which is essential

for IoT network security encryption solutions. Our findings

indicate that the proposed technique delivers greater accuracy,

with DR indicating a more robust detection performance. Based

on experimental findings from network and testbed simulations,

we can conclude that implementing the proposed HAEPSO-DNN

algorithms for successful NIDS in the IoT ecosystem is both

practicable and feasible. The infrastructure can be organized in

such a way that it detects threats in the IoT ecosystem as a unit

including healthcare devices and smart homes. The future study

will involve experimenting with more DL models for noticing

IoT network intrusions, including CNN, LSTM, and recurrent

neural networks.
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