
TYPE Original Research

PUBLISHED 26 April 2024

DOI 10.3389/fcomp.2024.1285244

OPEN ACCESS

EDITED BY

Masayuki Ohzeki,

Tohoku University, Japan

REVIEWED BY

Kosuke Tatsumura,

Toshiba Corportaion, Japan

Florin Leon,

Gheorghe Asachi Technical University of Ias. i,

Romania

*CORRESPONDENCE

Akihiro Yatabe

a.yatabe@nec.com

RECEIVED 29 August 2023

ACCEPTED 02 April 2024

PUBLISHED 26 April 2024

CITATION

Yatabe A (2024) Partitioning QUBO with

two-way one-hot conditions on traveling

salesman problems for city distributions with

multiple clusters.

Front. Comput. Sci. 6:1285244.

doi: 10.3389/fcomp.2024.1285244

COPYRIGHT

© 2024 Yatabe. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Partitioning QUBO with two-way
one-hot conditions on traveling
salesman problems for city
distributions with multiple
clusters

Akihiro Yatabe1,2*

1Secure System Platform Research Laboratories, NEC Corporation, Kawasaki, Japan, 2NEC-AIST

Quantum Technology Cooperative Research Laboratory, National Institute of Advanced Industrial

Science and Technology (AIST), Tsukuba, Japan

We introduce amethod for solving a quadratic unconstrained binary optimization

(QUBO) with the two-way one-hot constraints by dividing the QUBO into parts

and solving it with an Ising machine. The one-hot constraint is a constraint

condition in that only one binary variable takes the value one for a set of multiple

binary variables. The two-way one-hot constraint imposes one-hot constraint

conditions on every row and every column of a two-dimensional array of binary

variables with equal numbers of rows and columns. For example, traveling

salesman problems (TSPs) have two-way one-hot constraints. We propose two

methods to solve a TSP by dividing the cities into clusters based on information

in the QUBO matrix. The proposed methods decompose cities into clusters and

solve TSPs for each cluster. We solve TSPs such that the cities are distributed

in clusters and compare the results of the two proposed methods with the

results of solving the problem without partitioning. The results show that the

proposed methods are robust to the coe�cient parameters in the Hamiltonian

of QUBO and can obtain a solution closer to the optimal solution when solving

the problem without partitioning is hard. We also discuss the application of the

methods proposed in the TSPs to the quadratic assignment problems and to the

problems of ordering things.

KEYWORDS

Ising machines, combinatorial optimization problems, two-way one-hot constraints,

traveling salesman problems, problem partitioning

1 Introduction

Recently, Ising machines based on simulated and quantum annealing, etc., have been

actively used to solve combinatorial optimization problems (COPs) at high speed and are

beginning to be applied to realistic business problems (Neukart et al., 2017; Nishimura

et al., 2019; Ohzeki et al., 2019; Kanamaru et al., 2021; NEC Corporation, 2022a, 2023;

Yarkoni et al., 2022; Mori and Furukawa, 2023) as well as academic problems (Bando

et al., 2020; Abel et al., 2021; Mniszewski et al., 2021; Mukai and Kudo, 2021; Gaidai

et al., 2022). There have also been many studies on typical problems that have a wide

range of applications (Ushijima-Mwesigwa et al., 2017; Quintero et al., 2022; Salehi

et al., 2022; Suen et al., 2022), those on performance benchmarking to demonstrate

the usefulness of Ising machines (King et al., 2015, 2019; Lubinski et al., 2023) and

those on improving the performance of the Ising machine relating to pre-processing

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2024.1285244
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2024.1285244&domain=pdf&date_stamp=2024-04-26
mailto:a.yatabe@nec.com
https://doi.org/10.3389/fcomp.2024.1285244
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1285244/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

(Oku et al., 2020; Yachi et al., 2023), embedding (Okada et al.,

2019b; Bernal et al., 2020), and post-processing (Pudenz et al., 2015;

Borle and McCarter, 2019).

The quantum annealing machines currently in practical use

[e.g., D-Wave Advantage (D-Wave Quantum Inc., 2023b)] alone

can solve COPs with up to ∼120 bits in case of the complete graph

[equivalent to about 10 cities in the traveling salesman problem

(TSP) (Warren, 2020; Jain, 2021)]. However, real-world problems

are often large. Ising machines based on simulated annealing are

helpful for such applications.

In addition, quantum-classical hybrid algorithms that

combine quantum annealing with conventional computing

techniques are practical. One such example is D-Wave Hybrid (D-

Wave Quantum Inc., 2023a; Raymond et al., 2023). In the hybrid

algorithm with using quantum annealing, a problem is divided

and converted to the size that a quantum annealing machine can

compute. Therefore, it is essential to have an algorithm that solves

COPs with a good partitioning technique.

The earliest hybrid algorithm, qbsolv (Booth et al., 2017; D-

Wave Quantum Inc., 2021), combines tabu search and quantum

annealing and repeatedly solves the Ising or QUBO model to find

a solution. This allows us to solve COPs of a scale that cannot be

solved by quantum annealing alone. In the following, the hybrid

algorithms using Ising machines other than quantum annealing are

also called hybrid algorithms.

There are also hybrid algorithms that have algorithms for

partitioning the problem to a scale that can be solved by an Ising

machine (Atobe et al., 2021; Irie et al., 2021), and hybrid algorithms

that use the computation on an Ising machine as a subroutine

(Chancellor, 2017, 2023; Kitai et al., 2020; Ohzeki, 2020; Izawa et al.,

2022). Various hybrid algorithms have been proposed for particular

problems, and their effectiveness has been verified (Bian et al., 2016;

Abbott et al., 2019; Feld et al., 2019; Okada et al., 2019a; Shaydulin

et al., 2019; Ushijima-Mwesigwa et al., 2021; Liu et al., 2022).

On the other hand, even when solving with simulated

annealing, obtaining a near-optimal solution in a shorter time is

often easier if the number of variables is small than in the case of

a large problem. Because of this, even when solving COPs with

simulated annealing, it is considered important to partition the

problem and reduce the number of variables according to the

context of the problem to be solved.

However, to perform problem partitioning, users must be

familiar with simulated and quantum annealing. Users who need

to become more familiar with Ising machines will likely let

the Ising machine solve the problem as it is without dividing

the problem.

The large number of variables also makes the problem more

challenging to solve in terms of satisfying constraint conditions.

Constraints are conditions that must be satisfied by the solution

obtained by the Ising machine. For example, in the QUBO, a

constraint called the one-hot condition often appears, where only

one of the variables in a set has the value one and the others

have the value 0. COPs with constraints are more complex than

those without constraints because the obtained solution cannot be

interpreted as a meaningful solution unless all the given constraints

are satisfied. Methods of partitioning for specific problems with

one-hot conditions have also been proposed for the quadratic

assignment problem (Nishimura et al., 2019) and for the integer

programming problem (Okada et al., 2019a).

In this study, we consider how to partition the TSP, an example

of a problem with constraints, from a QUBO matrix, a commonly

used input format for Ising machines. In particular, we aim to

automatically divide the problem so that even users unfamiliar

with the Ising machine can benefit from the problem division. In

Section 2, we describe the two-way one-hot constraints and the

formulation of the traveling salesman problem. Section 3 deals

with concrete methods for splitting the traveling salesman problem.

We solve the traveling salesman problem of clustered cities by

our proposed methods in Section 4 and discuss the limitations of

the proposed method, a comparison with 2-opt and how to apply

them to other types of problems in Section 5. Finally, Section 6

summarizes the contents of this study.

2 Two-way one-hot constraints and
traveling salesman problems

2.1 Two-way one-hot constraints

To solve COPs by Ising machines, one inputs a Hamiltonian

formulated in an Ising model or a quadratic unconstrained

binary optimization (QUBO). An Ising model is represented by a

quadratic function in spin variables (σi ∈ {+1,−1}), and a QUBO

is expressed as a quadratic function in binary variables (xi ∈ {0, 1}).
An input Hamiltonian H contains information on the constraints,

which must be satisfied in the solution, and that on the objective

function, which reflects the state of the solution to be aimed for,

H = CCHC + COHO. (1)

In Equation (1) HC and HO represent Hamiltonians for the

constraints and the objective function, respectively, and CC and CO

stand for coefficient parameters of the constraints and the objective

functions.

The one-hot constraint often appears when formulating COPs

in QUBO. It is a constraint where only one variable in a set of

variables has a value of one, and the rest have a value of 0, which

is shown as Equation (2) for N variables xi (0 ≤ i ≤ N − 1).

N−1
∑

i=0

xi = 1 (2)

It is used in situations where one of several items must be

chosen. For example, in a clustering problem, it is used to ensure

that each element is included in one of the clusters. It can also be

used to select one numerical value from several values (“one-hot

encoding").

Some COPs have the two-way one-hot constraint, which has

one-hot conditions for each row and each column in a two-

dimensional array variable with the same number of rows and

columns. It may be easier to understand if variables xij are written

in a table. For example, if the first index i corresponds to a row and

the second j to a column, it can be represented as shown in Figure 1.

The example is the case of a TSP for four cities, the variables of

which are shown by the table of four rows and four columns.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

For binary variables xij (0 ≤ i, j ≤ N − 1), a two-way one-hot

constraint is represented as the following set of equations:

N−1
∑

j=0

xij = 1 for 0 ≤ i ≤ N − 1, (3)

N−1
∑

i=0

xij = 1 for 0 ≤ j ≤ N − 1. (4)

These constraints are expressed as the Hamiltonian of the

QUBO formulation as follows:

N−1
∑

i=0





N−1
∑

j=0

xij − 1





2

, (5)

N−1
∑

j=0

(

N−1
∑

i=0

xij − 1

)2

. (6)

FIGURE 1

Four-city TSP variable have a two-way one-hot constraint. When

the variables are represented in a table, there are vertical and

horizontal one-hot conditions.

If one now arranges the variable xij in a two-dimensional

array as in Figure 1, where i corresponds to the rows and j to

the columns, Equations (3, 5) are the one-hot condition for the

horizontal direction. Represented in terms of an array of a QUBO

matrix, it corresponds to the components arranged in a triangular

form along the diagonal components of the QUBOmatrix as shown

in Figure 2, where QUBO matrices are upper triangular matrices.

On the other hand, Equations (4, 6) are the one-hot condition

for the vertical direction in Figure 1. TheQUBOmatrix represented

by the upper triangular matrix is shown in Figure 3 if one arranges

xij in a two-dimensional array as in Figure 2. The components are

aligned in the direction parallel to the diagonal components of the

QUBO matrix.

Problems that determine order or assignment, such as the TSPs

and the quadratic assignment problems (QAPs), are formulated

using the two-way one-hot condition.

2.2 Traveling salesman problems

A TSP aims to minimize travel distance while meeting these

two-way one-hot constraints. To minimize the total travel distance

to visit cities, Equation (7) is added to the Hamiltonian as the

objective function, where djk denotes the distance between city j

and city k.

N−2
∑

i=0

∑

j6=k

djkxijxi+1,k +
∑

j6=k

djkxN−1,jx0,k (7)

The QUBO matrix for the objective function is shown in the

lower table in Figure 4. In the QUBOmatrix, thematrix of distances

between cities (the upper table in Figure 4) appears with the first

subscript of the variable shifted by one. In addition, since the TSP

considers a circuitous route, a matrix of distances also appears in

the upper right part of the QUBO matrix to add the distance of the

route from the last city visited to the first city visited.

FIGURE 2

QUBO matrix components representing the one-hot condition for the horizontal direction corresponding to Equation (3).

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

FIGURE 3

QUBO matrix components representing the one-hot condition for the vertical direction corresponding to Equation (4).

FIGURE 4

QUBO matrix corresponding to the objective function of the TSP contains a series of matrices representing distances between cities.

The TSP Hamiltonian and QUBO matrices are a combination

of the one-hot constraint part (Equations 5, 6) and the objective

function part (Equation 7). Since we aim to minimize the objective

function under the constraints, the QUBO matrix should be

adjusted so that the constraint condition part is more significant

than the objective function part. Therefore, coefficients are applied

to the Hamiltonian or QUBOmatrix of the constraint and objective

function parts as Equation (1).

3 Method

3.1 Idea of division

In this study, we aim to allow users unfamiliar with Ising

machines to benefit from partitioning even when inputting the

QUBO matrix as is. For this purpose, we consider partitioning the

input QUBO matrix without explicitly stating that the input is the

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

Hamiltonian of the TSP or inputting information unique to the

TSP, such as the coordinates of cities. In addition, unlike problem

partitioning that clusters cities from their coordinates, the method

proposed in this article uses only information on the components

of the QUBO matrix. In this respect, this study differs from studies

about the clustering (Bauckhage et al., 2018; Kumagai et al., 2021;

Matsumoto et al., 2022).

The QUBO matrix of TSP contains submatrices of distance djk
between cities. We call these submatrices of distance values the

“distance matrices," an example of which is “distance matrix" of

Figure 4. Figure 5 illustrates the idea of clustering cities using the

distance matrix. This figure deals with a distance matrix for six

cities, where cities 0, 1, 2 and, 3, 4, 5 are distributed in clusters. The

distance matrix shows that the distance between one of the cities

0, 1, 2 and one of the cities 3, 4, 5 (circled in blue) is larger than

the distance between the cities 0, 1, 2 (circled in orange) and the

distance between the cities 3, 4, 5 (circled in green). Since TSP aims

to keep distances as small as possible, we can expect that pathways

corresponding to components within the orange and green regions

would be more likely to appear than pathways corresponding to the

blue region. For this reason, we will adopt the procedure of ignoring

the distance in the blue part, solving the TSP for the orange and

green parts independently, and considering the blue part later.

When dividing a TSP, it is useful to pay attention to the

objective function part of the QUBO matrix and the distance

matrix. The constraint conditions of TSP are only two-way one-hot

conditions, and the shapes of their QUBOmatrices are predictable,

as shown in Figures 2, 3. Therefore, it may be possible to extract

the part of the objective function from the QUBO matrix by

determining the coefficients of the constraint condition to remove

the diagonal component since there is no diagonal component

such as (x00, x00) in the objective function of the QUBO matrix.

Removing the constraint conditions is also possible by using

an Ising machine or middleware that allows the explicit input

of constraints and Hamiltonians that represent the constraint

conditions. “Flip option" in Ising machine “Vector Annealing"

(NEC Corporation, 2022b) and “Constraint" in middleware

“PyQUBO" (Zaman et al., 2021; Recruit Communications Co., Ltd.,

2022) are examples of such functions.

After extracting the objective function part of the QUBO

matrix, one obtains the distance matrix. The QUBO matrix of the

objective function part contains the matrices of distance, as shown

in Figure 4. Since each matrix is equal, any one of them can be used

as the distance matrix.

By the way, when cities included in the same cluster correspond

to adjacent indices as in Figure 5, clustering of cities is possible as

cities corresponding to orange and green areas within the distace

matrix. If cities not in the same cluster correspond to adjacent

indices, it appears that clustering is not possible using only the

information from the QUBO matrix, but it may turn out that

clustering of cities is possible by redefining the indices as in

Figure 6. In the example shown in Figure 6, one needs to repeat

sorting by distance from one city to the other cities in ascending

order starting from the 0’th city. In this way, redefining the indices

so that the indices of cities that are likely to be in the same cluster

are adjacent to each other, we get 0’→0, 1’→3, 2’→4, 3’→2, 4’→5,

5’→1 and the same distance matrix of Figure 5.

3.2 Partitioning using distance matrix

In the case of the TSP, removing the one-hot condition from

the QUBO matrix leaves the objective function part, as shown in

Figure 4. In general, the objective function of the QUBOmatrix has

two parts, one along the diagonal and one on the right, as shown

in Figure 7(1). This blocky submatrix is the distance matrix that

represents the distance between cities.

Figure 7 and the description below show the method of

clustering cities and partitioning the problem.

(1) Extract the distance matrix. For an N-city TSP, all distance

matrices appearing in the objective function are equal to each

other. For example, we can extract the part from row 0 to row

N − 1 and from column N to column 2N − 1 as the distance

matrix.

(2) If the indices do not line up well, as shown in Figure 6, sort the

indices so that the values are in ascending order concerning the

rows of the matrix. If the index changes, the variable or QUBO

matrix must reflect the change.

(3) Determine in advance the threshold tcl for clustering. If a

component in row 0 (d0,idiv−1) is tcl times larger than the

component one to its left (d0,idiv−1), let idiv be the index at which

it may be split.

(4) Consider only the upper triangular part of the distance

matrix, not including the diagonal components. For each row,

check whether all of the components on the right-hand side

[dj,idiv , · · · dj,N−1 (0 ≤ j ≤ idiv − 1), the green box of Figure 7(4)]

are tcl times larger than the maximum component on the left-

hand side [dj,0, dj,1, · · · , dj,idiv−1 (0 ≤ j ≤ idiv − 1), the orange

triangle of Figure 7(4)] to see if the left-hand part up to idiv −
1 column and the right-hand part from idiv column can be

partitioned. Once it is verified that the right-hand component

is tcl times larger than the left-hand component, a part of the

distance matrix to the idiv−1th row or idiv−1th column [orange

triangle of Figure 7(4)] is extracted. The distance information

of it is used as the distance matrix of the partitioned problem.

In this study, the partitioned problem is called a subproblem.

Extract the lower right part from the remaining idiv rows or idiv
columns.

(5) Repeat operations (2) to (4) as long as the division is possible.

3.3 Combining subproblem solutions

After the problem is divided into subproblems using the

distance matrix, one solves each subproblem as a TSP. However,

combining the subproblems’ solutions is necessary since the

original problem’s solution before the division cannot be obtained

simply by solving the subproblems. Figure 8 exhibits the method

for combining the solutions from solving the subproblems.

(1) TSPs are formulated and solved individually based on the

distance matrices of the subproblems (shown by triangles such

as yellow and green).

(2) After solving the TSPs for the subproblems, two adjacent

cities in each solution of subproblems are randomly

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

FIGURE 5

Idea of clustering cities using the distance matrix, which is part of objective function of the QUBO matrix.

FIGURE 6

Example when variable indices are not adjacent to each other in nearby cities.

FIGURE 7

Method of clustering cities from the objective function part of the QUBO matrix.

selected in each clusters (or one city if there is only one

city in a cluster). The selected cities compose the TSP

between clusters.

(3) We formulate and solve the TSP for the selected cities. The TSP

between these selected cities to determine the order in which

to visit the clusters is called the super problem in this study.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

FIGURE 8

Method to reconstruct the solution of the original problem from the solution of the subproblem.

The distance matrix used in the TSP is constructed from the

distance matrix of the original problem before splitting. Since

the number of cities is at most twice the number of clusters,

the problem should be much easier to solve than before the

splitting. In addition, the cities in the same cluster should be in

consecutive order.

(4) The solutions of the subproblem TSP are inserted between the

two cities of the same cluster in the super problem solution to

solve the original TSP. See the explanation of the following and

Figure 9 for the method of interpolation.

After solving the TSP (super problem) for clusters, the solution

of the subproblem is inserted into the solution of the super problem

to construct the solution of the original problem, as shown in

Figure 9.

Suppose the two cities selected from a cluster are the ith and

i + 1th cities of the solution of the subproblem for the cluster. The

ith and i+1th cities correspond to the orange nodes in Figure 9 (1).

These two cities are connected to two other clusters, one leading

to the previous cluster and the other to the next cluster in the

cluster-to-cluster super problem solution.

Since the solution of the original TSP is to go from the previous

cluster to the next cluster, the order of visits within each cluster

is determined by which city connects to the preceding cluster. In

the case of the previous (ith) city connects to the preceding cluster,

the order within the cluster appears in the reverse order of the

subproblem solution as shown in Figure 9 (2). If the latter (i+ 1th)

city is chosen as the connection, the order within the cluster is

the same as the order of the subproblem solution, as shown in

Figure 9 (3).

3.4 Local search for inter-cluster
connections

The method described in the previous section randomly

determines the paths connecting clusters. It may not be easy to

obtain the effect of the segmentation. Especially when the number

of cities is small, and the Ising machine can reach the optimal

solution, the situation is that a better solution can be obtained by

not dividing the cities. This section explains a method to find paths

connecting clusters by local search.

The method is shown in Figure 10 and described by

the following procedure. The local search is performed as a

continuation of the stage where the order among clusters is

determined by the super problem [Figure 8 (2)].

(1) Now that we know the order of the clusters from the previous

steps, the next step is to determine which two cities to choose

from each cluster. First, we choose three consecutive clusters

in order obtained by the super problem. Since the pathways

within each cluster are obtained from the subproblem results, we

prepare the variables corresponding to the pathways. For each

cluster, the number of pathways equals the number of cities.

(2) Define the distances between paths: four different distances

between cities are involved in two paths, and we use the average

of the four distances in this article. Construct a QUBO for the

three consecutive clusters with a routing scheme that reduces the

total distance concerning each cluster, and solve it with an Ising

machine. Add a one-hot constraint so the solution has only one

path for each cluster.

(3) Pickup of the paths of three consecutive clusters is done for all

clusters, splicing them together.

(4) Once the route is determined, two cities are obtained for each

cluster. Solve the TSP with at most twice as many cities as

the number of clusters as in Figure 8(3). Then, the solution is

obtained by interleaving as in Figure 8(4).

4 Numerical experiment

4.1 Benchmark problem

In this study, we consider the TSP benchmark problem as

shown in Figure 11, where cities exist in clusters, and the optimal

solution path is predictable. Each city cluster, distributed in a circle

of n clusters, has m cities. Let r be the radius of the circle (called

the small circle) in which the cities lie within each cluster, and R is

the radius of the circle (called the large circle) in which the clusters

line up. The coordinate of the jth (0 ≤ j ≤ m − 1) city in the ith

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

FIGURE 9

How to insert subproblem solutions between solutions of TSP between clusters (super problem).

FIGURE 10

Local search method to find two cities in a cluster.

FIGURE 11

Distribution of cities in the benchmark problem.

(0 ≤ i ≤ n− 1) cluster is defined as Equation (8).

(

R cos

(

2iπ

n

)

+ r cos

(

2iπ

n
+

(2j+ 1)π

m
− π

)

,

R sin

(

2iπ

n

)

+ r sin

(

2iπ

n
+

(2j+ 1)π

m
− π

)

(8)

To formulate this problem in the QUBO, we define xi,jm+k as

the variable whether to visit the kth city in the jth cluster at ith

order. When the salesman visits the city at the order, the variable

has the value of one xi,jm+k = 1. On the other hand, when the

salesman does not visit the city at the order, xi,jm+k = 0. Here,

0 ≤ i ≤ mn − 1, 0 ≤ j ≤ n − 1, and 0 ≤ k ≤ m − 1.

The formulation of the Hamiltonian is the same as that of the

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

TSP for mn cities, and one can get it by rewriting N as mn in

Equations (5–7).

In this study, we solve the TSP for 36, 64, and 100 cities,

corresponding tom = n = 6, 8, and 10, respectively. The threshold

of distance multiplicity in clustering tcl is tcl = 2, the radius of

the small circle is r = 1, and the radius of the large circle is

R = 1.1(tcl+1)r
sin(π/n) . Here, the radius of the large circle is determined

so that each small circle can exist as a cluster.

The optimal solution of the TSP for cities represented in

Figure 11 is to visit each small circle in turn through the

neighboring circles. For each small circle, the shortest path visits

the 0th city, the first city, · · · , and the (m − 1)th city in sequence.

For the paths between the small circles, the shortest path goes from

the (m−1)th city of the kth small circle to the 0th city of the (k+1)th

small circle. Finally, the shortest path is from the (m − 1)th city of

the (n− 1)th small circle to the 0th city of the 0th small circle.

4.2 Coe�cient parameter dependence

When using an Ising machine, the products of the coefficient

parameters and the polynomials representing the constraints and

objective functions are the terms in the input Hamiltonian. The

magnitude of the coefficient parameters of the constraints and the

objective functions affects the ease of obtaining an optimal solution

that satisfies the constraints. In this section, we examine how the

solutions obtained by the two proposed partitioning methods, one

of which is a method to randomly determine the paths between

clusters and the other of which is a method that determines the

paths between clusters by local search, differ in terms of quality

from the solution obtained by solving the problem as is while

varying the coefficient parameters.

We introduce CC and CO as the coefficient parameters. The

parameter CC is a coefficient parameter on the Hamiltonian HC,

including the two one-hot constraints (corresponding to the sum of

Equations 5, 6). The parameter CO corresponds to a coefficient on

the HamiltonianHO of the objective function representing the total

distance traveled (corresponding to Equation 7). We set CC and CO

as Equation (9), where p is the coefficient parameter and max(dij)

is the maximum distance between cities and solve the Hamiltonian

CCHC + COHO of TSPs.

CC = p×max(dij), CO = 1. (9)

We evaluate the proposed methods using NEC’s Vector

Annealing (Takano et al., 2019; NEC Corporation, 2022b) (version

2.0.1), which is based on simulated annealing, on an NEC SX-

Aurora TSUBASA hardware with Intel Xeon Gold 6226 (2.7 GHz)

and NEC Vector Engine Type 20B, as the Ising machine. The

settings required for the Vector Annealing calculations in this

experiment are as follows: “num_sweeps," a parameter that controls

the number of calculation steps, is set to 100. “vector_mode,"

a parameter for prioritizing between speed and accuracy, is

set to “accuracy" for accuracy. “beta_range," which decide the

temperature parameter for simulated annealing, is set to the default

value.

We also use the “flip option" function of Vector Annealing,

which allows the annealing calculations to be solved while

considering constraints. In this study, we use the “One hot"

constraint function that considers one-hot conditions and the

“Fixed spin" constraint function that fixes the values of variables.

The “One hot" constraint function includes all one-hot conditions

in TSP. For the “Fixed spin" constraint function, the first city to be

visited is the city with the youngest index, and thus, the variables to

be determined are fixed. For example, when the variable is defined

as xij (0 ≤ i, j ≤ N − 1), the “Fixed spin" constraint function fixes

the variables as x00 = 1, xi0 = x0i = 0 (1 ≤ i ≤ N − 1).

The results of solving the TSP benchmark problem for m =
n = 6, 8, 10 as is and using the two division methods proposed

in this study while varying the coefficient parameters are shown

in Figure 12. In each panel, the blue plots and lines represent the

results of solving the problem without the division (“Orig"). The

orange plots and lines represent the results obtained using the

division method to randomly determine the paths between clusters

proposed in this study (“Div"). The green plots and lines are for

the division method that determines the paths between clusters by

local search (“Lcl"). The filled round plots and dashed circle plots

represent the average length of the TSP paths for the solutions that

satisfy all the constraints. We have 100 solutions of each case. A

filled circle indicates that all 100 solutions satisfy the constraints

(“Sat"), while a dashed circle plot indicates that some solutions do

not. Cross plots represent the shortest path lengths. Vertical bars

on the round plots indicate the standard deviation. There is no

plot if any solutions that satisfy the constraints cannot be obtained.

The path length in the optimal solution is the black dashed line

extending horizontally across the graph. We calculate the cases

from p = 0.1 to p = 2.0 in increments of 0.1, but for the p = 0.1

case, no solution satisfies the constraints except for one result. More

specific distances and computation time information are included

in Supplementary material.

The overall trend of the results, particularly noticeable when

the number of cities is large, is that the two proposed division

methods yield solutions closer to the optimal solution than the case

solved without division, regardless of the coefficient parameter p.

On the other hand, when solving without division, it is necessary

to determine the coefficients of the objective function and the

constraint part of the Hamiltonian as the values near the boundary

between satisfying and not satisfying the constraint conditions, e.g.,

p = 0.2.

Let us discuss the problem for the individual number of cities.

In the case of m = n = 6 (Figure 12A), the solutions obtained by

solving the problem as is are sometimes better than those obtained

by the splitting. The average distance is smaller when solving as is

than when splitting at p = 0.2. The situation where the solution is

better if solved without splitting is because the Ising machine used

is capable to solve the problem as is.

However, adjusting the parameters is essential, and as p

increases, the average of the distances when solving as is becomes

larger and larger. On the other hand, when solving by splitting, the

average distance does not increase much as p increases. This result

indicates that the method of solving by splitting is more robust than

the method of solving as is in terms of adjusting the parameters of

the constraints.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

FIGURE 12

Coe�cient parameter p dependence of the distance for the (A) 36, (B) 64, and (C) 100 cities benchmark problem.

In addition, in the case of splitting, the local search method of

path connection between clusters gives better results than that of

random connection. Due to local search, we can find better ways to

connect clusters.

The solutions of the partitioning method with random choices

produces satisfied the constraint condition for p = 0.1. The

constraint conditions are satisfied in five out of 100 cases, while the

other methods do not satisfy the constraint condition for p = 0.1.

This is related to the division resulting in a simpler TSP than

the original problem, making it easier to satisfy the constraint

conditions. In addition, the fact that the method with local search

for paths between clusters does not obtain the result for p = 0.1

is because the method with local search solves more TSPs than

the method with random choices of paths between clusters, which

makes the problem less likely to satisfy the constraint condition for

all TSPs.

In the case of m = n = 8, 10 shown in Figures 12B, C,

the lengths of the distances significantly differ when solving the

problem as is or when splitting the problem. This may be because

the number of cities is larger, making the problem more difficult,

but the problem becomes simpler by dividing the cities into

clusters. This is particularly evident in the results of m = n = 10.

In the results obtained by the two proposed methods, the average

value and standard deviation of the distances are larger at p = 0.2

when the constraint begins to be satisfied than those at p = 0.3.

On the other hand, when solved as is, the mean value and standard

deviation of the distances are smaller when p = 0.2 than when

p = 0.3.

4.3 “num_sweeps" dependence

Next, we show the dependence of the solution distance of

the TSP on the value of “num_sweeps," which is a parameter of

Vector Annealing and related to the Monte Carlo step of simulated

annealing. When num_sweeps becomes larger, the solution is likely

to be closer to the optimal solution. For smaller problems, a

solution close to the optimal solution can be obtained without

increasing num_sweeps too much.

Here, for each of the cases of m = n = 6, 8, and 10 without

and with splitting, respectively, the results are computed with

num_sweeps set to 10, 30, 50, 100, and 200, with the coefficient

parameter pwhich gives the shortest distance of the TSP solution in

the previous section. Note that the results when num_sweeps is 100

are the same as those in the computation of Figure 12. If more than

one parameters p give the shortest distance, the p with the highest

number of times for the shortest distance is adopted. Furthermore,

we use the p with the shortest average distance in case of the same

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

number of times. The following are the specific values. p = 0.4

(Orig), p = 0.7 (Div), p = 0.6 (Lcl) form = n = 6; p = 0.2 (Orig),

p = 1.3 (Div), p = 0.3 (Lcl) form = n = 8; p = 0.2 (Orig), p = 0.8

(Div), p = 0.4 (Lcl) form = n = 10.

The results are shown in Figure 13. Each case of the number

of cities and the parameter num_sweeps has 100 computed results,

and solutions that satisfied the constraints are obtained, except

for the case where num_sweeps was set to 10 in the results for

m = n = 8, 10 without splitting.

These results show that in the case of no partitioning, the

distance becomes shorter as the number of num_sweeps increases.

The constraints are more likely to be satisfied as shown in

Figures 13B, C, in which we obtained a solution that does not

satisfy the constraint conditions in case of small num_sweeps

values, but as increasing num_sweeps, all 100 solutions satisfy

the constraint condition. In addition, since the mean value of

the distance does not converge in the results without splitting,

a shorter distance may be obtained by increasing the number

of num_sweeps.

On the other hand, in the case of splitting, the distance

of the path does not depend on num_sweeps very much.

This is because the TSPs solved in the case of splitting are

small, and thus, a solution close to the optimal solution is

obtained even if num_sweeps is small. Thus, even a large-

scale problem with many variables can be treated as multiple

small-scale problems by dividing the TSP and solved without

increasing num_sweeps.

More specific distances and computation time information are

included in Supplementary material.

5 Discussion

5.1 Limitation of proposed method

In Section 4, we demonstrated the usefulness of the proposed

method by solving benchmark problems in which the effects of

clustering are easy to see. In this section, we discuss the limitations

of the proposed method and a comparison with 2-opt, which is

often used when solving TSPs, with particular attention to problem

splitting.

In this study, we propose amethod that automatically partitions

from a given QUBOmatrix without being aware of the distribution

of cities, but only if the breaks in the clusters are so clear that

it is apparent that the cities can be clustered when one looks

at the distribution of cities. This is because even if a candidate

city for a break of clusters is found from the distance matrix

in step (3) of Figure 7, it turns out in step (4) of Figure 7 that

there is no break of clusters because that city is close to a city

outside the clusters that have been constructed so far. For example,

distributions with no structure in two dimensions, such as evenly

or randomly distributed cities, cannot be divided, and the proposed

method cannot be applied.

In addition, the proposed method cannot be used for one-

dimensional continuous distributions. For example, the proposed

method is ineffective for cities distributed in a linear, ring, or

Figure 8 pattern, etc., as the cluster breaks cannot be determined.

However, constructing clusters by increasing the number of

elements one by one, such as agglomerative hierarchical clustering,

may be effective in such cases. It is also noted that although the

city distributions solved by the numerical experiment are ring-

shaped, the proposed method is effective because the small circles

are sufficiently far from each other and can be regarded as clusters.

Next, we compare the proposed method in this article with 2-

opt concerning the size of the solution space and discuss the pros

and cons of the proposed method over 2-opt. 2-opt is a well-known

local search algorithm for TSP, where it swaps two paths for a given

circuit if the distance between them becomes shorter.

First, let us consider the difference in the size of the solution

space explored by the Ising machine and 2-opt in TSP. When the

number of cities is N, the number of feasible circuits is (N −
1)!/2. Since 2-opt only searches for feasible circuits, the number of

elements in the solution space to be searched is the same as that of

feasible circuits, (N − 1)!/2.

On the other hand, in the formulation in this article of TSPs for

the Ising machine, N2 binary variables are prepared, so the number

of elements in the solution space to be searched is 2N
2
. Of these, the

number of solutions satisfying the two-way one-hot condition isN!.

The two-way one-hot condition is rather severe, and as the number

of cities increases when solving a TSP with the Ising machine, the

constraint becomes difficult to satisfy.

The number of elements in the solution space indicates that

as N increases, the solution space explored by the Ising machine

rapidly becomes larger than the solution space explored by 2-opt.

When solving a TSP as it is, if the Ising machine’s performance

in terms of solution speed and solution quality is so high that the

solution space size can be overcome, then it can be said to have

an advantage over 2-opt. However, such a situation is not obvious.

One advantage of Ising machines would be that a globally optimal

solution can be reached if the computation time is long enough

for simulated annealing (Geman and Geman, 1984) and quantum

annealing (Morita and Nishimori, 2008).

On the other hand, if TSPs can be solved for each cluster of cities
using the proposed method, the size of the solution space will be

smaller, which may have advantages over 2-opt in terms of solution

space size. For example, in the case where m clusters exist, and n

cities exist in a cluster, the number of elements in the solution space

of a cluster is 2n
2
when solving with the Ising machine, and the

number of elements in the solution space of the problem of finding

paths between clusters is 2(2m)2 .

These solution spaces would be smaller than the original TSP,
of which the number of cities is N > m, n. The solution space of

each solution would be smallest whenm, n ≃
√
N.

However, this situation is limited to cases where cities are

distributed in clusters, and the number of cities in a cluster and the
number of clusters are not too large. If the number of clustersm or
the number of cities n in a cluster is large, e.g., 2n

2 ≫ (N − 1)!/2,

then there is no advantage to the proposed method.

In addition, although the proposedmethod uses Isingmachines
to find a path after partitioning the problem, it is possible to replace

Ising machines with 2-opt. Strictly speaking, we can claim the merit
of the proposed method only for problems with clusters where 2-

opt would result in a locally optimal path. For such problems, using

simulated or quantum annealing to find paths has the advantage of

not falling into the local optimum if the computation time is as long

as necessary.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

FIGURE 13

Dependence of the distance on the parameter num_sweeps associated with the Monte Carlo step of simulated annealing. The legend is the same as

in Figure 12, and each plot uses 100 calculations. (A) 36 cities. (B) 49 cities. (C) 100 cities.

5.2 Application to other problems

The method proposed in this study can be applied to problems

with two-way one-hot conditions other than TSP. As application

examples, we deal with the problems of ordering things, which we

call “ordering problems," and the quadratic assignment problems

(QAPs).

5.2.1 Ordering problem
The ordering problem appears, for example, when choosing the

order in which products are produced. In a factory that produces

many types of products with the same equipment, it is necessary

to change the preparation of materials and parts and the settings

of manufacturing equipment when changing the products to be

produced, and these preparation and settings take time. Since the

time required for preparation and setting changes depends on the

combination of products before and after they are manufactured, it

is necessary to determine the order in which the preparation time

is reduced to utilize the manufacturing line efficiently.

The ordering problem can be formulated as QUBO with two-

way one-hot constraints, and the objective function is almost the

same as in TSP. We define the corresponding binary variable xij ∈

{0, 1}, which means that ith manufactured product is j (xij = 1)

or not (xij = 0). The Hamiltonian has elements of Equations (10)

and (11), where cij is the preparation time it takes to manufacture

product j after manufacturing product i.

HC =
N−1
∑

i=0





N−1
∑

j=0

xij − 1





2

+
N−1
∑

j=0

(

N−1
∑

i=0

xij − 1

)2

(10)

HO =
N−2
∑

i=0

∑

j6=k

cjkxijxi+1,k (11)

Since the cost of changing the product to be manufactured can

be regarded as the distance of the TSP, the matrix of the cost of

changing the product (hereafter referred to as the cost matrix) can

be arranged in the QUBO matrix as the distance matrix of the

TSP. However, the TSP requires the order of cities to travel around,

visiting all cities to be visited, and returning to the city from which

it started. The difference is that the ordering problem produces all

the products that need to be manufactured and does not require the

first product to be manufactured again. Therefore, in the QUBO

matrix of the objective function of the ordering problem, the upper

right part of the matrix that exists in the case of TSP does not exist,

as shown in Figure 14.

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

FIGURE 14

Di�erences in the structure of the objective function part of the QUBO matrix in the TSP (left) and the ordering problem (right).

Although there are differences in the objective function part

of the QUBO matrix, the ordering problem can be divided and

solved similarly to TSP. In the objective function part of the QUBO

matrix, the cost matrix to change the product appears with the first

index of the variable shifted by one, and they are all identical. When

dividing, we can choose only one of the cost matrices and divide it

as we do for the TSP (Figure 7). Based on each divided cost matrix,

the original ordering problem is solved as multiple subproblems.

The subproblem can then be solved as a TSP by arranging the

divided cost matrix in the QUBO matrix of the objective function

in block form as in the TSP. This is because, in the proposed

method for solving the TSP, the solution of the subproblem is used

to find the order of cities to visit by cutting through the path of two

neighboring cities.

Next, the first and last products in each subproblem are used

to order among the clustered product groups as a super problem.

Although the super problem of a TSP is constructed from the

distance matrix in the proposed method, the ordering problem is

not a problem in determining the cycle of manufacturing, so post-

processing is required to obtain the solution to the original ordering

problem. We can solve the ordering problem by cutting out the

most costly switching. In the solution for the original ordering

problem, the item immediately after the cutout is set as the first in

the order, and the item immediately before the cutout is set as the

last.

As for the application limits of the proposed method in the

ordering problem, a situation is similar to that of TSPs. It is

impossible to split the problem unless the break of the product

groups in the cost matrix is clear. Even if a candidate product for

a break of clusters is found from the cost matrix, it cannot be the

border of the cluster if the switching cost with the product outside

the cluster is small.

5.2.2 Quadratic assignment problem
The quadratic assignment problem (QAP) is another problem

with the two-way one-hot constraint, to which our proposed

method can be applied. QAPs ask which factory should be built

on which site to minimize the cost when building a factory on a

site. The cost is expressed as the product of the flow, representing

the amount of materials exchanged between factories, and the

distance between sites. The formulation into the QUBO has a

binary variable xij representing whether factory i is built on site

j, and the Hamiltonian has elements of Equations (12) and (13),

where fik represents the flow between factories i, k and djl represents

the distance between sites j, l.

HC =
N−1
∑

i=0





N−1
∑

j=0

xij − 1





2

+
N−1
∑

j=0

(

N−1
∑

i=0

xij − 1

)2

(12)

HO =
N−1
∑

i,j,k,l=0

∑

j6=k

fikdjlxijxkl (13)

For a TSP or an ordering problem, one of the indices of the

variables represents the order. Only one type of cost, e.g., the

distance between cities, needs to be considered in these problems.

On the other hand, QAPs are more complex than TSPs or ordering

problems because it requires the consideration of two factors:

factories and sites. In the objective function part of the QUBO

matrix of a QAP, the cost matrices, which are the products of the

distance matrix between factories and the flows, appear in blocks.

However, each block differs by a constant factor and exists where

the first and second indices of the variable are shifted unlike TSPs

and the ordering problems as shown in Figure 15A.

Nevertheless, clustering regarding distance is possible because

the cost matrices are constant multiples of the distance matrix by

the values of flows. Each block is considered a distance matrix

in the TSP, and these “distance matrices" are used to cluster

the variables. They represent the product of the distance matrix

between sites and a particular flow. Since the non-zero components

of the “distance matrices" differ only by a constant factor, we can

use a single “distance matrix" to cluster the sites by regarding them

as cities. One can partition sites into clusters, which correspond to

the second index of variables.

In TSPs and the ordering problems, only one of the two indices

is clustered. In contrast, in QAPs, there are cases where clustering is

possible for only one of the two indices (top panel) and cases where

clustering is possible for two indices (bottom panel). Clustering is

also possible for flows by reordering the indices (xij → xji). As in

the case of clustering the sites, the products of the flowmatrix and a

distance appear in the objective function part of the QUBO matrix

in the form of a block, so the next step is to cluster the factories by

considering constant multiple of the flow matrix as the “distance

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

FIGURE 15

Structures of the QUBO matrix of a QAP and how to post-process it using these properties. (A) The objective function part of the QUBO matrix of a

QAP. (B) In QAPs, there are cases where clustering is possible for only one of the two indices (top panel) and cases where clustering is possible for

two indices (bottom panel). (C) Unlike TSPs and the ordering problems, the variables for QAPs have two meaningful indices to consider, so it would

be fruitful to search for a better solution by switching the indices after solving the problem as TSP.

matrix." If only one of the indices can be clustered, the clustered

index should be the second.

Suppose clustering is possible concerning distance or flow

(Figure 15B), there may be a possibility that the solution obtained

by rearranging the index of clusters and dividing it into clusters as a

TSP may be a good solution for QAPs. Here, we propose a method

to solve the problem as a TSP, although it is a QAP problem. Using

the “distance matrix" used for the clustering and considering the

factories or sites as cities in TSPs, the order of the indices of the

variables in the clusters is determined by solving the TSP for each

cluster. Once the order is determined for each cluster, the order

between clusters is determined by taking two adjacent factories

or sites in order in the TSP solution for each cluster, defining

the distance between the clusters by using the original “distance

matrix," and solving the TSP. The order of the factories of sites in

the clusters is then interleaved to solve the original problem.

However, unlike TSPs, QAPs have two indices to consider, so

it may be better to check the post-processed solutions as solutions

rather than just using the solution solved as a TSP. The obtained

solution is cycled with the second index, and multiple solutions

are compared. For example, if the solution that x0i0 = x1i1 =
· · · = xN−1,iN−1 = 1 and the other variables xij have the value 0

are obtained, one need to consider the solutions with the first index

shifted, which are cycled from x1i0 = x2i1 = · · · = xN−1,iN−2 =
x0,iN−1 = 1, others = 0 to xN−1,i0 = x0i1 = · · · = xN−2,iN−1 =
1, others = 0, which is shown as the left part of Figure 15C. After

comparing the solution quality of all solutions, the best solution

should be considered as the solution. At this time, it is also essential

to cluster and redefine the other index that is not clustered in the

TSP, if clustering is possible (the right part of Figure 15C). This is

because by clustering the other index, we can expect to increase the

number of elements for which the product of distance and flow is

smaller.

However, the proposed method’s effectiveness is considered

evenmore limited inQAP than in TSP.When the proposedmethod

is applied to TSP, all the indices are equivalent in terms of order, so it

is effective only if the distribution of cities can be clustered. On the

other hand, in QAP, there are two perspectives, factories and site,

and even if the proposed method is optimized with respect to the

site using the TSP approach, the optimization does not necessarily

work well concerning flow.

6 Summary

In this article, we have proposed a method of problem

partitioning from the QUBO input of a traveling salesman problem

(TSP) with the two-way one-hot constraint, in which even users

unfamiliar with the Ising machines, who will likely let the Ising

machine solve the problem as it is, can take advantage of the

problem partitioning. Using the objective function part of the

QUBO matrix of the TSP, which can be brought out because

the two-way one-hot constraint has a characteristic structure in a

QUBO matrix, we partition the cities into clusters and solve TSPs

between cities in each cluster (subproblems) and a TSP between

clusters (super problem). It is found that solving the TSP between

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

cities in clusters and the TSP between clusters provides a better

solution than solving the problem as it is, especially for TSPs that

are so large that the Ising machine itself cannot provide an optimal

solution. Furthermore, when solving TSPs between clusters, it is

also found that determining the cities that serve as joint cities

between clusters by local search yields a better solution than when

the bond cities are chosen at random. Our proposed method can

be also applied to the problem of ordering things and the quadratic

assignment problem, which have the two-way one-hot conditions.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

AY: Writing – original draft.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

article was based on results obtained from a project, JPNP16007,

commissioned by the New Energy and Industrial Technology

Development Organization (NEDO), Japan.

Acknowledgments

The author thanks R. Miyazaki, T. Nishimura, and F. Takano

for helpful comments on the manuscript. The author also thanks

H. Chishima for discussion of the early stages of this study.

Conflict of interest

AY is employed by NEC Corporation and Vector Annealing is

a product of NEC Corporation. A patent application is pending for

this research.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2024.1285244/full#supplementary-material

References

Abbott, A. A., Calude, C. S., Dinneen, M. J., and Hua, R. (2019). A hybrid quantum-
classical paradigm to mitigate embedding costs in quantum annealing. Int. J. Quantum
Inf. 17:1950042. doi: 10.1142/S0219749919500424

Abel, S., Chancellor, N., and Spannowsky, M. (2021). Quantum computing for
quantum tunneling. Phys. Rev. D 103:016008. doi: 10.1103/PhysRevD.103.016008

Atobe, Y., Tawada, M., and Togawa, N. (2021). Hybrid annealing method based on
subQUBOmodel extraction with multiple solution instances. IEEE Trans. Comput. 71,
2606–2619. doi: 10.1109/TC.2021.3138629

Bando, Y., Susa, Y., Oshiyama, H., Shibata, N., Ohzeki, M., Gómez-Ruiz, F.
J., et al. (2020). Probing the universality of topological defect formation in a
quantum annealer: Kibble-Zurek mechanism and beyond. Phys. Rev. Res. 2:033369.
doi: 10.1103/PhysRevResearch.2.033369

Bauckhage, C., Brito, E., Cvejoski, K., Ojeda, C., Sifa, R., Wrobel, S., et al. (2018).
“Ising models for binary clustering via adiabatic quantum computing," in Energy
Minimization Methods in Computer Vision and Pattern Recognition: 11th International
Conference, EMMCVPR 2017, Venice, Italy, October 30-November 1, 2017, Revised
Selected Papers 11 (Cham: Springer), 3–17. doi: 10.1007/978-3-319-78199-0_1

Bernal, D. E., Booth, K. E., Dridi, R., Alghassi, H., Tayur, S., Venturelli,
D., et al. (2020). “Integer programming techniques for minor-embedding in
quantum annealers," in Integration of Constraint Programming, Artificial Intelligence,
and Operations Research: 17th International Conference, CPAIOR 2020, Vienna,
Austria, September 21-24, 2020, Proceedings 17 (Cham: Springer), 112–129.
doi: 10.1007/978-3-030-58942-4_8

Bian, Z., Chudak, F., Israel, R. B., Lackey, B., Macready, W. G., Roy, A., et al. (2016).
Mapping constrained optimization problems to quantum annealing with application
to fault diagnosis. Front. ICT 3:14. doi: 10.3389/fict.2016.00014

Booth, M., Reinhardt, S., and Roy, A. (2017). Partitioning optimization problems for
hybrid classical/quantum execution. Available online at: https://docs.ocean.dwavesys.
com/projects/qbsolv/en/latest/_downloads/bd15a2d8f32e587e9e5997ce9d5512cc/
qbsolv_techReport.pdf (accessed August 21, 2023).

Borle, A., and McCarter, J. (2019). “On post-processing the results of quantum
optimizers," in International Conference on Theory and Practice of Natural Computing
(Cham: Springer), 222-233. doi: 10.1007/978-3-030-34500-6_16

Chancellor, N. (2017). Modernizing quantum annealing using local searches. New.
J. Phys. 19:023024. doi: 10.1088/1367-2630/aa59c4

Chancellor, N. (2023). Modernizing quantum annealing II: genetic
algorithms with the inference primitive formalism. Nat. Comput. 22, 737–752.
doi: 10.1007/s11047-022-09905-2

D-Wave Quantum Inc. (2021). QBSOLV. Available online at: https://docs.ocean.
dwavesys.com/projects/qbsolv/en/latest/ (accessed August 1, 2023.).

D-Wave Quantum Inc. (2023a). D-wave Hybrid. Available online at: https://docs.
ocean.dwavesys.com/projects/hybrid/en/latest/ (accessed August 1, 2023.).

D-Wave Quantum Inc. (2023b). The most connected and powerful quantum
computer built for business. Available online at: https://www.dwavesys.com/solutions-
and-products/systems/ (accessed August 1, 2023.).

Feld, S., Roch, C., Gabor, T., Seidel, C., Neukart, F., Galter, I., et al. (2019). A hybrid
solutionmethod for the capacitated vehicle routing problem using a quantum annealer.
Front. ICT 6:13. doi: 10.3389/fict.2019.00013

Gaidai, I., Babikov, D., Teplukhin, A., Kendrick, B. K., Mniszewski, S. M., Zhang,
Y., et al. (2022). Molecular dynamics on quantum annealers. Sci. Rep. 12:16824.
doi: 10.1038/s41598-022-21163-x

Geman, S., and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6,
721–741. doi: 10.1109/TPAMI.1984.4767596

Irie, H., Liang, H., Doi, T., Gongyo, S., and Hatsuda, T. (2021). Hybrid quantum
annealing via molecular dynamics. Sci. Rep. 11:8426. doi: 10.1038/s41598-021-87676-z

Izawa, S., Kitai, K., Tanaka, S., Tamura, R., and Tsuda, K. (2022). Continuous black-
box optimization with an ising machine and random subspace coding. Phys. Rev. Res.
4:023062. doi: 10.1103/PhysRevResearch.4.023062

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://www.frontiersin.org/articles/10.3389/fcomp.2024.1285244/full#supplementary-material
https://doi.org/10.1142/S0219749919500424
https://doi.org/10.1103/PhysRevD.103.016008
https://doi.org/10.1109/TC.2021.3138629
https://doi.org/10.1103/PhysRevResearch.2.033369
https://doi.org/10.1007/978-3-319-78199-0_1
https://doi.org/10.1007/978-3-030-58942-4_8
https://doi.org/10.3389/fict.2016.00014
https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_downloads/bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf
https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_downloads/bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf
https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_downloads/bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf
https://doi.org/10.1007/978-3-030-34500-6_16
https://doi.org/10.1088/1367-2630/aa59c4
https://doi.org/10.1007/s11047-022-09905-2
https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/
https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/
https://docs.ocean.dwavesys.com/projects/hybrid/en/latest/
https://docs.ocean.dwavesys.com/projects/hybrid/en/latest/
https://www.dwavesys.com/solutions-and-products/systems/
https://www.dwavesys.com/solutions-and-products/systems/
https://doi.org/10.3389/fict.2019.00013
https://doi.org/10.1038/s41598-022-21163-x
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1038/s41598-021-87676-z
https://doi.org/10.1103/PhysRevResearch.4.023062
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Yatabe 10.3389/fcomp.2024.1285244

Jain, S. (2021). Solving the traveling salesman problem on the D-wave quantum
computer. Front. Phys. 9:760783. doi: 10.3389/fphy.2021.760783

Kanamaru, S., Kawamura, K., Tanaka, S., Tomita, Y., and Togawa, N. (2021).
Solving constrained slot placement problems using an ising machine and its
evaluations. IEICE Trans. Inf. Syst. E104-D, 226–236. doi: 10.1587/transinf.2019EDP
7254

King, J., Yarkoni, S., Nevisi, M. M., Hilton, J. P., and McGeoch, C. C. (2015).
Benchmarking a quantum annealing processor with the time-to-target metric. arXiv
[Preprint]. arXiv:1508.05087. doi: 10.48550/arXiv.1508.05087

King, J., Yarkoni, S., Raymond, J., Ozfidan, I., King, A. D., Nevisi, M. M., et al.
(2019). Quantum annealing amid local ruggedness and global frustration. J. Phys. Soc.
Jpn. 88:061007. doi: 10.7566/JPSJ.88.061007

Kitai, K., Guo, J., Ju, S., Tanaka, S., Tsuda, K., Shiomi, J., et al. (2020). Designing
metamaterials with quantum annealing and factorization machines. Phys. Rev. Res.
2:013319. doi: 10.1103/PhysRevResearch.2.013319

Kumagai, M., Komatsu, K., Takano, F., Araki, T., Sato, M., Kobayashi, H., et al.
(2021). An external definition of the one-hot constraint and fast QUBO generation
for high-performance combinatorial clustering. Int. J. Netw. Comput. 11, 463–491.
doi: 10.15803/ijnc.11.2_463

Liu, X., Ushijima-Mwesigwa, H., Mandal, A., Upadhyay, S., Safro, I., Roy, A., et
al. (2022). Leveraging special-purpose hardware for local search heuristics. Comput.
Optim. Appl. 82, 1–29. doi: 10.1007/s10589-022-00354-2

Lubinski, T., Coffrin, C., McGeoch, C., Sathe, P., Apanavicius, J., Neira, D. E. B.,
et al. (2023). Optimization applications as quantum performance benchmarks. arXiv
[Preprint]. arXiv:2302.02278. doi: 10.48550/arXiv.2302.02278

Matsumoto, N., Hamakawa, Y., Tatsumura, K., and Kudo, K. (2022).
Distance-based clustering using QUBO formulations. Sci. Rep. 12:2669.
doi: 10.1038/s41598-022-06559-z

Mniszewski, S. M., Dub, P. A., Tretiak, S., Anisimov, P. M., Zhang, Y.,
Negre, C. F., et al. (2021). Reduction of the molecular hamiltonian matrix
using quantum community detection. Sci. Rep. 11:4099. doi: 10.1038/s41598-021-
83561-x

Mori, N., and Furukawa, S. (2023). Quantum annealing for the
adjuster routing problem. Front. Phys. 11:1129594. doi: 10.3389/fphy.2023.
1129594

Morita, S., and Nishimori, H. (2008). Mathematical foundation of quantum
annealing. J. Math. Phys. 49:125210. doi: 10.1063/1.2995837

Mukai, K., and Kudo, K. (2021). Pattern formation simulated by an Ising machine.
J. Phys. Soc. Jpn. 90:025004. doi: 10.7566/JPSJ.90.025004

NEC Corporation (2022a). NEC and NEC Fielding introduce a delivery planning
system for maintenance parts utilizing quantum computing technology. Available online
at: https://www.nec.com/en/press/202209/global_20220909_03.html (accessed August
1, 2023).

NEC Corporation (2022b). NEC to launch simulated annealing service with up
to 300,000 bits. Available online at: https://www.nec.com/en/press/202208/global_
20220829_01.html (accessed August 1, 2023).

NEC Corporation (2023). NEC and NEC Platforms introduce a production planning
system for ICT equipment utilizing quantum computing technology at four NEC
Platforms business sites. Available online at: https://www.nec.com/en/press/202301/
global_20230120_02.html (accessed August 1, 2023).

Neukart, F., Compostella, G., Seidel, C., von Dollen, D., Yarkoni, S., Parney, B.,
et al. (2017). Traffic flow optimization using a quantum annealer. Front. ICT 4:29.
doi: 10.3389/fict.2017.00029

Nishimura, N., Tanahashi, K., Suganuma, K., Miyama, M. J., and Ohzeki, M. (2019).
Item listing optimization for E-commerce websites based on diversity. Front. Comput.
Sci. 1:2. doi: 10.3389/fcomp.2019.00002

Ohzeki,M. (2020). Breaking limitation of quantum annealer in solving optimization
problems under constraints. Sci. Rep. 1:3126. doi: 10.1038/s41598-020-60022-5

Ohzeki, M., Miki, A., Miyama, M. J., and Terabe, M. (2019). Control of automated
guided vehicles without collision by quantum annealer and digital devices. Front.
Comput. Sci. 1:9. doi: 10.3389/fcomp.2019.00009

Okada, S., Ohzeki, M., and Taguchi, S. (2019a). Efficient partition of
integer optimization problems with one-hot encoding. Sci. Rep. 9:13036.
doi: 10.1038/s41598-019-49539-6

Okada, S., Ohzeki, M., Terabe, M., and Taguchi, S. (2019b). Improving solutions
by embedding larger subproblems in a D-wave quantum annealer. Sci. Rep. 9:2098.
doi: 10.1038/s41598-018-38388-4

Oku, D., Tawada, M., Tanaka, S., and Togawa, N. (2020). How to reduce the bit-
width of an Ising model by adding auxiliary spins. IEEE Trans. Comput. 71, 223–234.
doi: 10.1109/TC.2020.3045112

Pudenz, K. L., Albash, T., and Lidar, D. A. (2015). Quantum annealing correction
for random ising problems. Phys. Rev. A, 91:042302. doi: 10.1103/PhysRevA.91.042302

Quintero, R., Bernal, D., Terlaky, T., and Zuluaga, L. F. (2022). Characterization of
QUBO reformulations for the maximum k-colorable subgraph problem. Quantum Inf.
Process 21:89. doi: 10.1007/s11128-022-03421-z

Raymond, J., Stevanovic, R., Bernoudy, W., Boothby, K., McGeoch, C. C., Berkley,
A. J., et al. (2023). Hybrid quantum annealing for larger-than-QPU lattice-structured
problems. ACM Trans. Quantum Comput. 4, 1–30. doi: 10.1145/3579368

Recruit Communications Co. Ltd. (2022). pyqubo 1.4.0. Available online at: https://
pypi.org/project/pyqubo/ (accessed August 2, 2023).

Salehi, Ö., Glos, A., and Miszczak, J. A. (2022). Unconstrained binary models of the
travelling salesman problem variants for quantum optimization. Quantum Inf. Process
21:67. doi: 10.1007/s11128-021-03405-5

Shaydulin, R., Ushijima-Mwesigwa, H., Negre, C. F., Safro, I., Mniszewski, S. M.,
Alexeev, Y., et al. (2019). A hybrid approach for solving optimization problems on small
quantum computers. Computer 52, 18–26. doi: 10.1109/MC.2019.2908942

Suen, W. Y., Parizy, M., and Lau, H. C. (2022). “Enhancing a QUBO solver via data
driven multi-start and its application to vehicle routing problem," in Proceedings of the
Genetic and Evolutionary Computation Conference Companion (New YorkNY: ACM),
2251–2257. doi: 10.1145/3520304.3533988

Takano, F., Suzuki, M., Kobayashi, Y., and Araki, T. (2019). QUBO solver for
combinatorial optimization problems with constraints. IEICE Tech. Rep. 119, 15–20.
Available online at: https://ken.ieice.org/ken/paper/20191128b1rz/eng/

Ushijima-Mwesigwa, H., Negre, C. F., and Mniszewski, S. M. (2017). “Graph
partitioning using quantum annealing on the D-wave system," in Proceedings of the
Second International Workshop on Post Moores Era Supercomputing (New YorkNY:
ACM), 22–29. doi: 10.1145/3149526.3149531

Ushijima-Mwesigwa, H., Shaydulin, R., Negre, C. F., Mniszewski, S. M., Alexeev,
Y., Safro, I., et al. (2021). Multilevel combinatorial optimization across quantum
architectures. ACM Trans. Quantum Comput. 2, 1–29. doi: 10.1145/3425607

Warren, R. H. (2020). Solving the traveling salesman problem on a quantum
annealer. SN Appl. Sci. 2:75. doi: 10.1007/s42452-019-1829-x

Yachi, Y., Tawada, M., and Togawa, N. (2023). An efficient combined bit-
width reducing method for Ising models. IEICE Trans. Inf. Syst. E106-D, 495–508.
doi: 10.1587/transinf.2022EDP7017

Yarkoni, S., Raponi, E., Bäck, T., and Schmitt, S. (2022). Quantum annealing
for industry applications: introduction and review. Rep. Prog. Phys. 85:104001.
doi: 10.1088/1361-6633/ac8c54

Zaman, M., Tanahashi, K., and Tanaka, S. (2021). PyQUBO: python library for
mapping combinatorial optimization problems to QUBO form. IEEE Trans. Comput.
71, 838–850. doi: 10.1109/TC.2021.3063618

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2024.1285244
https://doi.org/10.3389/fphy.2021.760783
https://doi.org/10.1587/transinf.2019EDP7254
https://doi.org/10.48550/arXiv.1508.05087
https://doi.org/10.7566/JPSJ.88.061007
https://doi.org/10.1103/PhysRevResearch.2.013319
https://doi.org/10.15803/ijnc.11.2_463
https://doi.org/10.1007/s10589-022-00354-2
https://doi.org/10.48550/arXiv.2302.02278
https://doi.org/10.1038/s41598-022-06559-z
https://doi.org/10.1038/s41598-021-83561-x
https://doi.org/10.3389/fphy.2023.1129594
https://doi.org/10.1063/1.2995837
https://doi.org/10.7566/JPSJ.90.025004
https://www.nec.com/en/press/202209/global_20220909_03.html
https://www.nec.com/en/press/202208/global_20220829_01.html
https://www.nec.com/en/press/202208/global_20220829_01.html
https://www.nec.com/en/press/202301/global_20230120_02.html
https://www.nec.com/en/press/202301/global_20230120_02.html
https://doi.org/10.3389/fict.2017.00029
https://doi.org/10.3389/fcomp.2019.00002
https://doi.org/10.1038/s41598-020-60022-5
https://doi.org/10.3389/fcomp.2019.00009
https://doi.org/10.1038/s41598-019-49539-6
https://doi.org/10.1038/s41598-018-38388-4
https://doi.org/10.1109/TC.2020.3045112
https://doi.org/10.1103/PhysRevA.91.042302
https://doi.org/10.1007/s11128-022-03421-z
https://doi.org/10.1145/3579368
https://pypi.org/project/pyqubo/
https://pypi.org/project/pyqubo/
https://doi.org/10.1007/s11128-021-03405-5
https://doi.org/10.1109/MC.2019.2908942
https://doi.org/10.1145/3520304.3533988
https://ken.ieice.org/ken/paper/20191128b1rz/eng/
https://doi.org/10.1145/3149526.3149531
https://doi.org/10.1145/3425607
https://doi.org/10.1007/s42452-019-1829-x
https://doi.org/10.1587/transinf.2022EDP7017
https://doi.org/10.1088/1361-6633/ac8c54
https://doi.org/10.1109/TC.2021.3063618
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Partitioning QUBO with two-way one-hot conditions on traveling salesman problems for city distributions with multiple clusters
	1 Introduction
	2 Two-way one-hot constraints and traveling salesman problems
	2.1 Two-way one-hot constraints
	2.2 Traveling salesman problems

	3 Method
	3.1 Idea of division
	3.2 Partitioning using distance matrix
	3.3 Combining subproblem solutions
	3.4 Local search for inter-cluster connections

	4 Numerical experiment
	4.1 Benchmark problem
	4.2 Coefficient parameter dependence
	4.3 ``num_sweeps" dependence

	5 Discussion
	5.1 Limitation of proposed method
	5.2 Application to other problems
	5.2.1 Ordering problem
	5.2.2 Quadratic assignment problem


	6 Summary
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


