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Long-term sustainable and resilient populations is a key goal of conservation. How to

best achieve this is controversial. There are, for instance, polarized views concerning

the fitness and conservation value of hybrid populations founded through multi-origin

translocations. A classic example concerns Apteryx (kiwi) in New Zealand. The A. mantelli

of Ponui Island constitute a hybrid population where the birds are highly successful in their

island habitat. A key dilemma for managers is understanding the reason for this success.

Are the hybrid birds of Ponui Island of “no future conservation value” as recently asserted,

or do they represent an outstanding example of genetic rescue and an important resource

for future translocations? There has been a paradigm shift in scientific thinking concerning

hybrids, but the ecological significance of admixed genomes remains difficult to assess.

This limits what we can currently predict in conservation science. New understanding

from genome science challenges the sufficiency of population genetic models to inform

decision making and suggests instead that the contrasting outcomes of hybridization,

“outbreeding depression” and “heterosis,” require understanding additional factors that

modulate gene and protein expression and how these factors are influenced by the

environment. We discuss these findings and the investigations that might help us to better

understand the birds of Ponui, inform conservation management of kiwi and provide

insight relevant for the future survival of Apteryx.

Keywords: hybridization, outbreeding depression, heterosis, translocation, conservation management,

evolutionary potential, epigenetics, Apteryx

INTRODUCTION

The arrival of humans to New Zealand and the accompanying deforestation and predation
by introduced mammals have decimated many native and endemic species (Holdaway, 1989;
Robertson et al., 2016). In responding to this catastrophic development, New Zealand conservation
efforts have attracted international recognition for their bold and pioneering methods aimed at
rescuing species from the brink of extinction. Most notably, strategies for translocation have
influenced practices worldwide (Armstrong and McLean, 1995; Armstrong and Seddon, 2008).
Despite this, controversy remains in New Zealand and elsewhere for how to best achieve long-
term sustainable and resilient populations (Love Stowell et al., 2017; Ralls et al., 2018, 2020; Von
Holdt et al., 2018). Specifically, the outcome of translocations involving the mixing of individuals
from genetically distinct populations remains difficult to predict and questions have been raised
about the future fate and conservation value of admixed populations originating from such
historic translocations.
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An iconic example concerns the flightless, nocturnal genus
Apteryx, or kiwi birds, which once were common and widespread
throughout New Zealand but now are confined mainly to
isolated and/or small populations relying on active management
to achieve net growth (Innes et al., 2015; Germano et al.,
2018). Apteryx face many threats such as habitat degradation,
fragmentation, disrupted gene flow, and small population sizes
(McLennan and Potter, 1992; McLennan and McCann, 2002;
Germano et al., 2018). However, depredation by invasive
mammals, in particular stoats (Mustela erminea), ferrets (M.
furo), and dogs (Canis lupus familiaris), have been identified as
the main cause of their decline (Taborsky, 1988; McLennan et al.,
1996; Innes et al., 2010; Germano et al., 2018). For example,
in unmanaged populations, about 95% of Apteryx chicks are
predated by stoats (McLennan et al., 1996; Innes et al., 2010).
Consequently, Apteryx management focuses on trapping and
poisoning mammalian predators and on artificial rearing of eggs
and chicks collected from the wild under a program referred to as
Operation Nest Egg (ONE; Colbourne et al., 2005). In addition,
a program called “kohanga kiwi” involves sites where Apteryx
pairs are held and allowed to breed in predator-free areas and a
proportion of the chicks are “harvested” and used to supplement
existing or establish new populations (Innes et al., 2016; Kiwis
for Kiwi, 2016). A principle of kohanga kiwi sites is that they are
founded by 40 unrelated birds. However, relatedness is inferred
based on geographic origin rather than genetic testing (Innes
et al., 2016; Kiwis for Kiwi, 2016).

Apteryx genetics have received extensive research attention
(Ramstad and Dunning, 2020; Undin et al., in press). Based
on findings from these studies, Apteryx is currently split into
five extant species (Tennyson et al., 2003) and further into
14 management units based on observed or inferred barriers
to gene flow (Powlesland, 1988; Burbidge et al., 2003; Weir
et al., 2016; Germano et al., 2018). The exploration of Apteryx
diversity has so far focused on describing observations from a
taxonomic perspective. Hence, parameters based on population
genetic models have not been estimated and there is little
understanding of migration between populations, inbreeding
within populations, and local adaptation (Shepherd and Lambert,
2008; Germano et al., 2018). Consequently, lack of studies
of genetic variation within management units, the nature of
the genetic difference between taxa, and the prevalence of in-
and outbreeding, means that far-reaching Apteryx conservation
decisions and policy are currently being implemented despite
a lack of crucial information (McLennan and McCann, 2002;
Dussex et al., 2018).

One policy linked to the demarcation of 14 management units
is that Apteryx translocations are strictly limited to movement
within units (Pierce et al., 2006; Innes et al., 2016; Germano et al.,
2018). Another is that several Apteryx populations, regarded as
hybrid populations because they originated from translocations
involving two or more units, are considered unsuitable sources as
well as targets for future translocations (Herbert and Daugherty,
2002; Colbourne, 2005; Shepherd et al., 2012; Germano et al.,
2018). One such hybrid population is present on Ponui Island.
Concerned for the rapid decline of kiwi on the North Island, in
1964 the landowner Peter Chamberlin on Ponui (Chamberlin’s)

Island in the Hauraki Gulf had 14 North Island brown kiwi
(Apteryx mantelli) translocated to the island (Colbourne, 2005).
Six of these birds came fromHauturu-o-Toi (also known as Little
Barrier Island; Colbourne, 2005; Figure 1). The remaining eight
birds came from the Waipoua Forest in the northernmost part
of the North Island mainland (Colbourne, 2005). In turn, the
origin of the population on Hauturu-o-Toi was a translocation
from Taranaki in the early 1900’s, but anecdotal evidence suggests
that additional birds of unknown sources may have been present
on Hauturu-o-Toi prior to this translocation (Baker et al., 1995;
Burbidge et al., 2003; Colbourne, 2005; Figure 1). Because the
parental populations belong to different management units, the
Ponui birds are classified as hybrids. The initial success of the
translocated birds and their Ponui hatched offspring is unknown,
but the current high density is evidence for rapid and extensive
population growth within a small number of generations.Apteryx
typically reach sexual maturity around 4 years of age and live
to be over 40 years old (Sales, 2005; Robertson and de Monchy,
2012). Consequently, in the 56 years that have passed since
their introduction, the current population on Ponui is likely
best described as a hybrid swarm where some individuals birds
will be of pure Waipoua or Hauturu-o-Toi origin, others will
be F1 hybrids or offspring from crossing and backcrossing
between parental types and/or F1 individuals (Hwang et al., 2011;
Hamilton and Miller, 2016). While Ponui Island lacks stoats,
about one third of the A. mantelli chicks on the island are
preyed upon by feral cats (Felis catus) every year and ship rats
(Rattus rattus) likely compete with chicks for food (Shapiro, 2005;
Dixon, 2015; Strang, 2018). Despite this presence of invasive
mammals, the population density on Ponui is suggestive of a
population growth rate otherwise only seen in populations in
predator-free sanctuaries and/or sites where juvenile mortality
is reduced through Operation Nest Egg (Colbourne et al., 2005;
Robertson and de Monchy, 2012). The Ponui Apteryx population
has been extensively studied over the past 17 years, providing
ground-breaking data on habitat utilization, diet, parasite impact,
disease, anatomy, social interactions, and causes of chick and egg
mortality (e.g., Cunningham and Castro, 2011; Ziesemann, 2011;
Hiscox, 2014; Wilson, 2014; Dixon, 2015; Reynolds et al., 2017;
Abourachid et al., 2019; Bansal, 2020; Vieco-Galvez et al., 2020).
No studies have so far investigated the impact of their mixed
heritage on the success of the birds on Ponui.

Despite the lack of studies, the mixed provenance and the
untested assumption that the birds introduced to Ponui Island
had limited genetic diversity, it was concluded that the Ponui
birds “have no genetic value whatsoever for use in restoration”
(Letter to Department of Conservation and the Kiwi Recovery
Group shared with Ponui landowners and Ponui Kiwi Research
Team, 2016). The suggestion is that the Ponui birds suffer from
(1) inbreeding depression resulting from the small number of
founding birds and (2) outbreeding depression resulting from
anthropogenically-mediated hybridization of birds deemed likely
to be adapted to different local conditions (Allendorf et al.,
2001). These potential problems have not impacted policymaking
around translocations and admixture of geographically adjacent
populations. On the contrary, translocations of birds within
management units to boost population numbers and attempt to
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FIGURE 1 | Map of the North Island of New Zealand illustrating the historic, as

well as, current distribution of Apteryx mantelli, North Island brown kiwi, and

how this species is further split into four geographically disjunct and genetically

distinct management units (MU, or taxa Burbidge et al., 2003; Weir et al.,

2016; Germano et al., 2018). Arrows and kiwi silhouettes represent three

separate cases where multi-origin translocations over the last 100 years have

resulted in hybrid populations. Silhouette coloring roughly illustrates the

proportional representation of different taxa in the founding population at each

site. Translocations from Hauturu-o-Toi (also known as Little Barrier Island) are

colored in a different shade of pink for clarity and to highlight the somewhat

disputed MU identity of this island. FP, Forest park; NWC, National Wildlife

Centre. Inset show the location of the zoomed in map in New Zealand.

maintain genetic diversity remains a paramount part of ongoing
Apteryx conservation (Kiwis for Kiwi, 2016; Germano et al.,
2018).

The plight of the Ponui kiwi illustrates the importance
of improving our understanding of inbreeding, outbreeding
depression, and the sometimes contrasting outcomes of
hybridization. This understanding is also needed to realize the
full potential of genetic rescue and other forms of translocation
involving endangered species. In our contribution, we highlight
why study of the Ponui birds will be informative for (1)
illuminating the ecological and evolutionary significance
of hybrids, (2) establishing evidence-based principles for
identifying and matching source and target populations for

translocations involving admixture, (3) proposing the most
appropriate source(s) of individuals for repopulating areas after
locally extinctions, and (4) evaluating the biological relevance
of Apteryx management units in New Zealand. We emphasize
that addressing these four questions is key for the long-term
successful conservation of Apteryx whose populations are highly
fragmented and are arguably in need of augmented gene flow
given their insular New Zealand habitat. We think that if these
questions could be answered for Apteryx in New Zealand, they
may be informative for conservation practices elsewhere. We see
an important role for integrating genome science in ecological
studies of Apteryx that will help us to better understand the
evolutionary significance of hybrids and their conservation value.

One reason discussion of hybridization in conservation can be
problematic, and often fruitless, stems from a lack of agreement
concerning the many criteria for delimiting species (Mallet,
2013). The prevalence of hybridization in plant evolution and
the challenges of delimiting plant species has recently led to
emphasis being placed on what occurs when taxa from distinct
evolutionary lines are brought together, rather than on whether
or not these taxa are named as distinct species (Winkworth
et al., 2005; Abbott et al., 2013; Hoffmann et al., 2015; Canestrelli
et al., 2016; Chan et al., 2019). We adopt this approach, and
this review accepts the definition of hybridization used by
Canestrelli et al. (2016) as “mating between individuals from
genetically distinct populations that produces offspring.”We also
adopt the perspective that it may not be helpful to distinguish
hybridization that results from human intervention or otherwise
since, for philosophical as well as practical reasons, the causes of
some hybridization events are almost impossible to disentangle
(Allendorf et al., 2001).

POPULATION GENETIC MODELS AND
PREDICTING HYBRID SUCCESS

Hybridization will impact genetic diversity and plasticity,
however, predicting the success of managed gene flow requires
understanding not only the genetic diversity and plasticity of
species, but also of the extent and directionality of the gene flow
and how admixture between genetically diverged populations
and lineages affect reproductive success (Abbott et al., 2013).
Models for the accumulative effects of particular alleles (gene
variants) and overall allelic diversity in the genomes of organisms
have been used since the early 1900’s to help explain the relative
fitness (reproductive success) of offspring when the parents are
genetically similar (inbreeding) as well as genetically dissimilar
(outbreeding or hybridization; Roff, 2002; Wright et al., 2008;
Hochholdinger and Baldauf, 2018). The Partial Dominance
hypothesis (Davenport, 1908) predicts that mating between close
relatives increases the number of genes in offspring where the
same sub-optimal (deleterious) variant of a gene is inherited from
both parents. This is said to decrease the fitness of the offspring.
The Overdominance hypothesis (East, 1908) proposes that it is
not deleterious genes per se, but that an increased number of
genes with the same variant inherited from both parents reduces
the fitness of the offspring. These alternative explanations for
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inbreeding depression – reduced fitness of offspring relative to
parents – are still largely unresolved (e.g., Roff, 2002; Wright
et al., 2008). While there is good reason that population genetic
models based on inheritance of gene variants remain a leading
explanation for heterosis and genetic rescue, as well as inbreeding
and outbreeding depression, after a 100 years of empirical testing,
there is now a chorus of voices questioning the sufficiency
of these models (Groszmann et al., 2013; O’Dea et al., 2016;
Hochholdinger and Baldauf, 2018; Bell et al., 2019; Rey et al.,
2020).

Heterosis or hybrid vigor is expressed as a release from
inbreeding depression inferred from relatively higher fitness of
offspring compared to its genetically distinct parents (Whitlock
et al., 2000; Hochholdinger and Baldauf, 2018; Bell et al., 2019).
The superior performance of first-generation (F1) hybrids is
a well-documented phenomenon of ecological and agricultural
advantage. It has evolutionary significance for adaptation of
populations and generation of novel species (Johansen-Morris
and Latta, 2006; Janes and Hamilton, 2017; Hochholdinger and
Baldauf, 2018; Junaid et al., 2018; Koide et al., 2019; Miryeganeh
and Saze, 2019; Taylor and Larson, 2019). When differences in
phenotype and underlying gene expression are much greater
or much less between progeny and parents than the additive
difference between the parents, it is sometimes referred to as
transgressive segregation (Stelkens et al., 2014; Koide et al., 2019).
However, whether the mechanisms of heterosis and transgressive
segregation are different, the same, or whether one is a subset
of the other remains unclear. According to some definitions,
the difference lies in that while transgressive segregation results
in individuals that “express trait values that fall outside the
range of both parent species” in either direction (Stelkens et al.,
2014), heterosis only refers to an “increased fitness relative to
more ‘pure-bred’ individuals” (Whitlock et al., 2000). Others
suggest that the difference lies in having a population vs. an
individual perspective, for instance, heterosis is “usually ascribed
to the average fitness of the hybrid offspring” while transgressive
segregation refers to “the presence of extreme phenotypes (in
either a negative or a positive direction) relative to the parental
phenotypes” that make particular individuals “more fit [. . . ]
than either of the parents” (Johansen-Morris and Latta, 2006).
Another perspective is that the difference concerns at what point
in time the positive fitness following hybridization is observed.
Heterosis is said to be evident in the “observation that cross-
pollinated hybrids are more vigorous than their parents [. . . .]
calculated as the difference in the phenotypic performance of a
trait between a hybrid and the average of its two distinct parents”
(Hochholdinger and Baldauf, 2018) or the “elevated fitness of F1
hybrids relative to their parents” (Bell et al., 2019). In contrast
transgressive segregation produces “hybrid progeny phenotypes
that exceed the parental phenotypes [. . .which are] heritably
stable” (Koide et al., 2019).

Outbreeding depression, on the other hand, is the reduced
fitness of admixed offspring compared to their genetically distinct
parents (Marr et al., 2002; Goldberg et al., 2005; Frankham
et al., 2011; Barmentlo et al., 2018). Population genetic models
have also been used to explain this phenomenon (Lynch, 1991;
Marr et al., 2002; Goldberg et al., 2005; Frankham et al., 2011;

Whitlock et al., 2013; Kardos et al., 2016). Hybrid offspring will
be heterozygous for many genes, and it is suggested this could
cause an averaging or intermediate effect that makes the progeny
adapted to neither parental habitat (Edmands and Timmerman,
2003). In subsequent generations of interbreeding it has been
suggested that the depression could worsen, because particular
combinations of gene variants which have been of adaptive value
to parental lineages in their environments may no longer co-
occur in the genomes of the hybrid offspring (Lynch, 1991;
Allendorf et al., 2001; Edmands, 2007). In the worst cases, where
parental species have evolved differences in their chromosome
karyotypes (the packaged form of their DNA sequences) it is
possible that the chromosomes will not pair properly during
meiosis and this will affect the fertility of the hybrid offspring
(e.g., the famous case of donkeys and horses producing sterile
mules; Rieseberg, 2001).

A growing number of studies support the view that
outbreeding depression is more likely to occur when genetic
differences are linked with local adaptation to specific
environments. In contrast, isolation per se even for many
generations, under similar selection pressure rarely leads to
symptoms of outbreeding depression upon admixture (Barton,
1996; Orr and Smith, 1998; Hendry et al., 2000; Rundle
et al., 2000; Nosil et al., 2002; Rundle, 2003; Frankham et al.,
2011). However, disruption of adapted phenotypes cannot
explain some reported instances of outbreeding depression.
For example, adaptive differences between parental linages
fail to explain why several crosses between the same lineages
can generate very different outcomes for offspring fitness and
phenotypes (Johansen-Morris and Latta, 2006; Escobar et al.,
2008; Barmentlo et al., 2018). The importance of local adaptation
in Apteryx evolution remains untested. However, there are
examples of both within and between species hybrids in kiwi
that are vital, reproducing, and even very successful (Herbert
and Daugherty, 2002; Cunningham and Castro, 2011; Shepherd
et al., 2012). There are also cases of long-distance translocations
of Apteryx that are reported to be successful (Colbourne, 2005;
Robertson et al., 2019). While more rigorous investigations need
to be conducted, these observations may suggest a limited role of
local adaptation in the disjunct management units.

Despite considerable effort, finding the so-called “sweet spot”
of genetic and/or phenotypic distance between taxa that will
produce heterosis and not outbreeding depression has not been
possible, raising the question of whether the concept of a sweet
spot is useful at all (Tallmon et al., 2004; Edmands, 2007;
Escobar et al., 2008; Stelkens et al., 2014; Kardos et al., 2016;
Barmentlo et al., 2018; Bell et al., 2019; Koide et al., 2019). Further
complicating the picture, several studies have found that crossing
of different lineages within the same species has sometimes
resulted in outbreeding depression and sometimes in heterosis
(Edmands, 1999; Rundle et al., 2000; Marr et al., 2002; Escobar
et al., 2008; Whitlock et al., 2013). Occasionally, these outcomes
have differed depending on which lineage was maternal and
which was paternal (Escobar et al., 2008; Barmentlo et al., 2018).
While at other times, hybridization has produced some traits with
both negative and positive consequences for fitness (Johansen-
Morris and Latta, 2006; Escobar et al., 2008). Similarly, Whitlock
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et al. (2013), have also reported that the frequency andmagnitude
of outbreeding depression have differed depending on what trait
was the subject of study. A further anomaly not explained by
population genetic models is the resilience toward inbreeding in
some species (Jamieson, 2015). This is perhaps most striking in
recovery success following population bottlenecks (Heber et al.,
2013; Ramstad et al., 2013; Frankham, 2015; Jamieson, 2015).
This success has been attributed to the purging of deleterious
gene variants, but empirical evidence for this speculation of
losing the worst alleles due to homozygous expression has not
yet been forthcoming, and an alternative explanation might
be needed (Crnokrak and Barrett, 2002; Kennedy et al., 2014;
López-Cortegano et al., 2018). Also anomalous is the observation
that inbreeding depression can manifest differently between
environments, suggesting that understanding genetic variation
alone is insufficient to predict fitness outcomes (Keller et al.,
2002; Cheptou and Donohue, 2013). These examples suggest
that critical information is missing, and an improved conceptual
framework is needed to understand the fitness of populations
that we wish to manage (Escobar et al., 2008; Hochholdinger and
Baldauf, 2018; Rey et al., 2020). With this increasing realization,
attention has recently turned to the phenomenon of epigenetics
and the extent to which chemical modification of the DNA
in response to environmental signals also contributes to an
organism’s fitness.

Gene variants (alleles), specifically for transcription factors
and in regulatory regions, are thought to play a major role
in altering the dynamics of an organism’s transcriptome, with
consequences for the dynamics of its proteome, morphology,
physiology, and behavior (Johnston et al., 2019; Lai et al., 2019).
However, the expression of genes is also modulated through
chemical modification of DNA, RNA, and proteins in processes
linked to environmental signals - a phenomenon known as
epigenetics (Donohue, 2014; Junaid et al., 2018). Mechanisms of
epigenetic regulation are thought to have a role in the plastic
(varied) expression of genes and phenotypes (Bonduriansky et al.,
2012; Groszmann et al., 2013; Li et al., 2018; Thiebaut et al., 2019).
Such regulation has been linked to the phenotypic divergence
of populations and can affect the width of a niche and the
capacity to fulfill roles in an ecosystem (Miryeganeh and Saze,
2019; Thiebaut et al., 2019; Rey et al., 2020). Epigenetic change
has also been linked to altered patterns of gene expression
associated with transgressive segregation and heterosis in hybrid
offspring (Groszmann et al., 2013; Junaid et al., 2018; Botet
and Keurentjes, 2020). Recent work in plants suggests that
epigenetic regulation plays a crucial role in hybrid vigor and
that non-additive and yet not random differences in the patterns
of chemical DNA modification (methylation of Cytosine bases)
between parents and hybrid offspring contributes to phenotypic
differences (Kawanabe et al., 2016; Junaid et al., 2018; Lauss
et al., 2018; Miryeganeh and Saze, 2019; Sinha et al., 2020).
Other studies have also found that inbred and outbred lines
exhibit different epigenetic profiles and that manipulating these
profiles can revert symptoms of inbreeding depression (Vergeer
et al., 2012). Taken together, these findings strongly suggest that
accounting for both allelic and epigenetic variation is likely to be
necessary to predict fitness outcomes for hybrid populations (Rey

et al., 2020). While most studies to date involve plants, common
mechanisms of eukaryotic gene expression suggest similar studies
in animals will reveal similar results.

GENETIC RESCUE

Prolonged periods of low (effective) population size
and/or restricted gene flow are a growing concern among
conservationists and there is increasing interest to utilize
genetically motivated management to address the loss of
genetic diversity and its negative effects (IUCN/SSC, 2013;
Frankham, 2015; Hoffmann et al., 2015; Whiteley et al., 2015;
Frankham et al., 2017; Ralls et al., 2018; Bell et al., 2019;
Chan et al., 2019; Taylor and Larson, 2019). In practice,
management interventions to increase genetic diversity usually
entail translocation of individuals from a source to a genetically
distinct target population with the aim of intentionally generating
intermixed (hybrid) populations of the same species (Armstrong
and McLean, 1995; Weeks et al., 2011; IUCN/SSC, 2013;
Pierson et al., 2016; Wennerström et al., 2017; Flanagan et al.,
2018). Efforts to increase genetic diversity have also entailed
management of connectivity between distinct populations or
different forms of guided mate choice (Soulé, 1985; Pierson et al.,
2016; Wennerström et al., 2017; Flanagan et al., 2018). These
translocations involving genetically distinct populations differ
from more classic supplementary translocations (also referred to
as reinforcement translocations) which have the goal to increase
population size directly by adding more individuals, and differ
from reintroduction translocations where the purpose and focus
are to re-establish populations with genetic stock obtained from
within its historical range (IUCN/SSC, 2013; Armstrong et al.,
2019). All the above-mentioned types of interventions have been
suggested for Apteryx. However, these proposals have been made
without studies having been conducted to quantify inbreeding
and/or inbreeding depression in neither source nor target
populations (Innes et al., 2015; Kiwis for Kiwi, 2016; Germano
et al., 2018).

The interbreeding of individuals from populations with the
aim of increasing fitness is now commonly referred to as genetic
rescue (Hedrick, 1995; Johnson et al., 2010; Frankham, 2015;
Bell et al., 2019; Ochoa et al., 2019). “Rescue,” in this case,
refers to decreasing the extinction risk in the target population
and is commonly evaluated by an observed population growth
rate increase after genetic admixture (Ingvarsson, 2001; Hedrick
et al., 2011; Frankham, 2015; Whiteley et al., 2015; Bell
et al., 2019). A growing number of authors argue that this
prospect of alleviating extinction risk by augmented gene flow is
underutilized (Frankham et al., 2011; Frankham, 2015; Whiteley
et al., 2015; Love Stowell et al., 2017; Ralls et al., 2018, 2020; Bell
et al., 2019). Since 1964, the 14 birds released on Ponui Island
have produced an estimated population of over 1,700 birds, or
one bird per hectare, which makes the Ponui Island brown kiwi
population one of the densest in the world having experienced an
equivalent of on average 9% annual population growth (Potter,
1990; McLennan and Potter, 1992). Thus, even though this
was not an intention of the original translocations, the Ponui
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population might be one of New Zealand’s best examples of
genetic rescue.

Conceptually, genetic rescue and hybrid vigor likely describe
the same biological phenomenon resulting from hybridization.
However, in conservation, genetic rescue is rarely or never
promoted as hybridization due to the negative connotations
of this word (Allendorf et al., 2001; Wayne and Shaffer,
2016; Love Stowell et al., 2017; Bell et al., 2019; Chan et al.,
2019; Taylor and Larson, 2019). Hitherto, most attempts of
genetic rescue have focused on utilizing source populations
with smallest possible genetic difference to the target population
(Edmands, 2007; Frankham et al., 2017; Ralls et al., 2018, 2020).
However, discussion about the trade-off between increasing
genetic diversity and maintaining genetic integrity is becoming
increasingly relevant. Recently, several authors have discussed
the ambiguity and sometimes mismatch in genetically motivated
conservation interventions. For instance, Von Holdt et al.
(2018) highlighted that there is a need for debate around our
understanding of the evolutionary significance of hybridization
and its implications for conservation management, and Ralls
et al. (2018) called for a “paradigm shift in the genetic
management of fragmented populations.”

As for hybrid vigor, the allele centered modeling of genetic
rescue (Davenport, 1908) is still the commonly suggested
explanation for successful population growth, leading to the
prediction that the magnitude of genetic rescue is a function of
the severity of the genetic load in the target population (Bell
et al., 2019). A variation on this model, while still having an
allele focus, acknowledges the role of the size of the source
population (the bigger the better) and the amount of adaptive
genetic difference between target and source population (the
less the better, Whiteley et al., 2015; Bell et al., 2019). In
reviewing 156 published cases, Frankham (2015) identified that
in practice the two most important conditions for successful
genetic rescue were (1) that the source population was not
inbred, and (2) that the target population experienced some level
of environmental stress. Interestingly, the review of Frankham
(2015) found that severe inbreeding in both target and source
population did not have to exclude observed genetic rescue,
such as in the case of Mexican wolves (Canis lupus baileyi,
Fredrickson et al., 2007), however, the magnitude of rescue
was larger when outbred sources were used. The noticeable
discrepancy between theory and empirical finding highlights
the need to identify what is missing from our understanding
of inbreeding depression, outbreeding depression and heterosis.
Quantification of these phenomena requires a baseline for
comparison, and in cases where species are confined to small
isolated populations and have been so for a long time, what
can be learnt from comparing these populations may be limited
(Hedrick and Fredrickson, 2010; Heber et al., 2013; Ramstad
et al., 2013; Taylor, 2014). An exemplary case concerns A.
owenii. This is the only Apteryx species in which inbreeding
has been thoroughly studied. Results show evidence of several
bottlenecks and extremely low variation in the MHC genes
(Ramstad et al., 2010; Miller et al., 2011; Shepherd et al., 2012;
Taylor, 2014). However, the fact that extant members of this
species originate from as few as five founders, means that findings

might not be applicable to other Apteryx species (Ramstad et al.,
2013).

While debate remains surrounding the degree to which
genetic load contributes to extinction risk, there will remain
debate as to the magnitude of threat aversion or loss of extinction
risk that can be expected from genetic rescue (Bell et al.,
2019). One challenge for evaluating the success of translocations
involving birds frommultiple sources is that long term outcomes
might not be immediately apparent. While some studies have
suggested that the effect of genetic rescue is greatest in the first-
and/or second-generation (Johansen-Morris and Latta, 2006; Bell
et al., 2019), other studies have shown that initial generations
can suffer reduced fitness as a consequence of outbreeding
depression. In such cases, crossing, backcrossing, and genomic
recombination can later generate a hybrid swarm with higher
average fitness than the parental populations (Hwang et al.,
2011). While these findings are somewhat contradictory, they
caution against drawing conclusions too soon after translocations
involving interpopulation crosses. The Ponui island birds,
resulting from a mixed translocation that occurred more than
50 years ago, offer the opportunity to investigate the longer-term
fitness consequences of admixture.

The successful introduction of diversity resulting in
phenotypic diversity on which selection can act and adaptations
evolve in response to environmental conditions is said to
diffusely depend on the genomic makeup of the introduced
individuals (Bell et al., 2019). It will also depend on how the
genome is packaged and expressed in individuals, and how this
affects the fitness of individuals (Hochholdinger and Baldauf,
2018; Li et al., 2018; Botet and Keurentjes, 2020). This is an
area of research where there are many outstanding questions,
but where knowledge is increasing rapidly (Hochholdinger and
Baldauf, 2018; Rey et al., 2020). Genome Science that links
genetic variation, genome expression and local adaptation
will be key, and this may require rethinking our measures
of biodiversity.

ASSESSING BIODIVERSITY

Since the ratification of the Convention on Biological Diversity
(CBD) in 1992, the world has agreed to acknowledge and preserve
three levels of biodiversity: ecosystem diversity, species diversity
and genetic diversity (UN, 1992). The latter is mainly justified
because standing genetic diversity – allelic variation – is thought
to contribute most to evolutionary potential of species and thus
to their capacity to adapt to a rapidly changing environment
(e.g., Haenel et al., 2019; Lai et al., 2019). In practice, this has
led to genetic differences being used as an objective criterion to
measure diversity, delimit and identify species, subspecies, taxa,
lineages, evolutionary significant units (ESUs), or management
units, often driven by improving opportunity for legal protection,
funding and/or threat acknowledgment (Rojas, 1992; Godfray
et al., 2004; Palsbøll et al., 2007; Lohman et al., 2010; Wayne
and Shaffer, 2016; Cobley, 2017; Groves et al., 2017; Taylor et al.,
2017a,b). The prevailing standpoint in such cases has been that
preserving genetic diversity means maintaining the observed
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differences (see for example Palsbøll et al., 2007; Weir et al.,
2016; Richmond et al., 2017; Taylor et al., 2017c; Germano et al.,
2018). As mentioned above, the Apteryx genus serves as a typical
example of both these tendencies (Tennyson et al., 2003; Weir
et al., 2016; Germano et al., 2018).

Numerous genetic studies that have identified populations
or other groups within species and genera, such as Apteryx,
as genetically distinct have been based on markers such as
microsatellites, allozymes, mitochondrial DNA sequence, or
sequence fragments of a small number of selected genes (Baker
et al., 1995; Cooper et al., 2001; Haddrath and Baker, 2001, 2012;
Burbidge et al., 2003; Shepherd et al., 2013). These traditional
markers have successfully been used to provide measures of
genetic diversity and infer evolutionary relationships (Mitchell
et al., 2014; Weir et al., 2016). However, this approach can be
limiting when only a small number of gene loci are investigated
and/or when loci evolve at different rates of evolutionary change
within and between taxa (Allendorf et al., 2010; Funk et al., 2012;
Steiner et al., 2013; Putman and Carbone, 2014). Low resolution
can lead to underestimation and/or miss interpretation of the
complex history of species and populations (Goldstein et al.,
1996; Hudson and Turelli, 2003; Zink and Barrowclough, 2008;
Funk et al., 2012; Steiner et al., 2013; Jeffries et al., 2016;
Kardos et al., 2016; Hodel et al., 2017; Richmond et al., 2017;
Galla et al., 2020). Another limitation of the most commonly
used genetic markers is that they are not linked to traits of
functional adaptive significance and have restricted ability for
determining the cause and nature of ecological distinctiveness
of taxa (Allendorf et al., 2010; Funk et al., 2012; Wennerström
et al., 2017; Leroy et al., 2018). Hence, there are limitations to the
ability of such markers to inform and evaluate the consequences
of hybridization and translocation success based on possible
outbreeding and inbreeding effects (Funk et al., 2012; Hess et al.,
2013; Frankham, 2015;Whiteley et al., 2015; Flanagan et al., 2018;
Bell et al., 2019; Taylor and Larson, 2019).

Newer molecular tools allow researchers to reduce these
limitations. For example, genomic methods, such as reduced-
representation-sequencing (for instance through protocols
like genotyping-by-sequencing) (1) provide information from
thousands of loci spread throughout the entire genome, and
(2) cover both neutral, non-coding sequences and genes under
selection (Elshire et al., 2011; Funk et al., 2012; Hess et al.,
2013; Narum et al., 2013; Reitzel et al., 2013; Hunter et al., 2018;
Leroy et al., 2018; Picq et al., 2018). This resolution allows for
much more detailed genetic characterization of closely related
taxa, and thus also of historic as well as recent hybridization
and introgression between them and the population growth
effects over time such admixture has had (Elshire et al.,
2011; Weeks et al., 2011; Narum et al., 2013; Escudero et al.,
2014; Leaché et al., 2014; Gaughran et al., 2017; Schmickl
et al., 2017; Zhen et al., 2017; Picq et al., 2018; Taylor and
Larson, 2019). In addition, genome-wide association studies
(GWAS), provide insight into the nature of the physiological
and behavioral differences of populations (Hess et al., 2013;
Flanagan et al., 2018; Hunter et al., 2018). Methodological
advances mean that genomics is likely to take on a larger
role in conservation biology, in delimiting management units,

in identifying suitable source populations and in evaluating
translocation outcomes (Funk et al., 2012; Flanagan et al.,
2018; Von Holdt et al., 2018; Galla et al., 2019; Ramstad and
Dunning, 2020; Russello et al., 2020). Even so, the potential for
genomics to contribute to conservation science may not be fully
realized while focus remains on genetic variation alone which in
many cases will be insufficient to make reliable predictions for
managing biodiversity.

While our understanding of diversity, resilience and the
contrasting outcomes of hybridization is informed by genetic
variation, the importance of epigenetic variation is increasingly
being recognized (Cheptou and Donohue, 2013; Groszmann
et al., 2013; Biémont and Vieira, 2014). Epigenetic changes
accompanying environmental change play a key role in plastic
responses that occur at a faster rate than mutational change and
the sorting of allelic variation (Hochholdinger and Baldauf, 2018;
Miryeganeh and Saze, 2019; Rey et al., 2020). Epigenetic factors
could explain why some natural populations are more fit than
others, and also why some species that have crashed to very low
levels of genetic diversity and adaptive potential can still rebound
successfully (Heber et al., 2013; Ramstad et al., 2013; Frankham,
2015; Jamieson, 2015). The contribution of epigenetic processes
to evolutionary and ecological success requires more study and
understanding, but the potential of “conservation epigenetics”
is both exciting and promising (Rey et al., 2020). Differences
in epigenetic markers between populations could help us to
identify and categorize evolutionary significant units (ESUs) and
whether species with low genetic variation might nevertheless be
resilient to environmental change. This in turn will help us to
better predict the viability and differences between populations
– information that could be crucial for identifying suitable
source- and target populations for translocations. Epigenetic
monitoring, as a complement to genetic investigations, could
provide more ecologically significant information than studies
of genetic variation alone and improve prediction of what
interventions are likely to be most successful (Hochholdinger
and Baldauf, 2018; Miryeganeh and Saze, 2019; Rey et al.,
2020).

Investigation of epigenetic processes will involve studies of
DNA, RNA, and proteins. However, a place to start at the
population level is with DNA methylation profiles (Sepers
et al., 2019; Rey et al., 2020). Of interest for conservation
planning would be understanding variation among individuals
and between populations, and whether ESUs are categorized
appropriately, determining whether source populations show
differences from translocated and admixed populations and
whether there is evidence of population fragmentation sooner
than is appreciated from studies of genetic variation (Rey et al.,
2020). Variant protocols of reduced-representation-sequencing,
such as DREAM, EpiGBS and bsRADseq offer the potential
to characterize partial methylation profiles (Jelinek and Madzo,
2016; Trucchi et al., 2016; van Gurp et al., 2016). However,
these protocols have limitations since they capture only a small
subset of the entire epigenome. A more complete methylome
profile is possible using whole-genome bisulfite sequencing
(Lister et al., 2009; Hansen et al., 2012). Locus specific bisulfite
sequencing is also possible (Hernández et al., 2013; Lam et al.,
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2020). Another alternative is the so-called assay for transposase-
accessible chromatin using sequencing (ATAC-seq) which maps
genome-wide chromatin accessibility, which is tightly linked to
gene expression (Miskimen et al., 2017). However, both the
latter methods introduce the cost of whole-genome sequencing.
Whatever might be the methodological developments to come
in the fast-developing field of high throughput sequencing
technologies, a focus on both genomics and epigenetics is
likely to provide the insight that is needed to understand
hybridization, and its contribution to biological diversity and
successful conservation strategies (Goulet et al., 2017; Von Holdt
et al., 2018; Chan et al., 2019; Taylor and Larson, 2019; Rey et al.,
2020).

THE HYBRID BIRDS OF PONUI

In 2016, the hybrid birds of Ponui were said to be of no value
for kiwi conservation other than as specimens for public display.
However, this conclusion needs to be reconsidered in light of
recent findings and modern tools of genome science. There
is no doubt that allelic diversity and the genetic background
of individuals is important for individual fitness, population
sustainability and genetic rescue. However, knowledge of
genetic variation alone appears insufficient to fully understand
the link between genotype, transcriptome, phenotype, and
fitness. Focusing solely on allelic variation makes for attractive
and accessible models. However, the poor performance of
these models to predict outcomes has the potential to damage
the relationship between researchers and practitioners. This
motivates the need for research investigating the interactions
and relative contributions of genotype, epigenetics, and
the environment for understanding phenotypic diversity,
reproductive success, and adaptive potential.

The Ponui birds, which are highly successful in their
island habitat, provide an exciting model system to investigate
ecological success and potentially the evolutionary and ecological
significance of hybridization. In addition, this system could
help to inform how conservation translocations can effectively
utilize genome-level data to achieve their goals. Ecological factors
might help explain the success of this population relative to the
mainland and other island populations. For instance, compared
to unmanaged populations the juvenile kiwi on Ponui experience
much lower mortality from predation (Shapiro, 2005; Dixon,
2015; Strang, 2018). However, this mortality is still higher
than observed in the most extensively managed populations
(Colbourne et al., 2005; Robertson and de Monchy, 2012). Thus,
even if juvenile mortality contributes to population success it
may still be important to determine other significant factors.
Is the secret to their success the loss of recessive deleterious
effects? Is it phenotypic diversity – and if so, how did that
come about?Mainly through allelic admixture? Or via epigenetics
and thus transcriptome variation? To gain understanding, the
next step will be to compare the genomic diversity of Ponui
birds with their parent populations and with other mainland
populations whose history has not involved extreme genetic
bottlenecks associated with the founding of island populations

by a small number of translocated birds. Epigenetic studies
might initially focus on methylation profiles and their density
(Rey et al., 2020). A study could seek to answer questions
such as: Is there epigenetic variation within and between
populations of A. mantelli? How do the epigenetic profiles
of Ponui birds compare with other populations? How do the
methylation profiles change over generations on Ponui? How
do they compare between parents and offspring? Does the
genetic distance between parents influence the non-additivity of
the epigenetic profile of offspring? What are the methylation
patterns for genes of potential adaptive value? Following this
investigation, important studies would compare genomic and
epigenetic diversity in relation to transcriptome variation, and
to how the resulting phenotypic variation relates to fitness, and
measures of inbreeding-, outbreeding depression and/or hybrid
vigor. A key for meaningful interpretation of transcriptome
analyses will be detailed knowledge of individual birds (including
information on generation, age, health, and sex) and here again,
Ponui could prove suitable after 17 years of extensive studies on
this population.

The questions that could be addressed by investigations of
the Ponui birds are not only relevant to Apteryx, improved
understanding of genomics and epigenetics and thus of the
nature of population differences is key for conservation of all
fragmented populations in need of augmented genetic influx
(Tallmon et al., 2004; Edmands, 2007; Escobar et al., 2008;
Stelkens et al., 2014; Barmentlo et al., 2018; VonHoldt et al., 2018;
Bell et al., 2019; Koide et al., 2019; Rey et al., 2020). Worldwide,
habitat and population fragmentation has rendered a situation
where focusing solely on species-level conservation may lead
to either inbreeding or homogenization, both of which results
in loss of genetic diversity. Retaining evolutionary potential
is arguably one of the main challenges for conservationists
across the globe, not only because of the intrinsic value of
diversity but also for providing populations with the ability to
adapt to our changing environment. Because of this challenge,
we support the call for a paradigm shift in conservation that
includes redefining admixture and hybridization (Canestrelli
et al., 2016; Ralls et al., 2018; Von Holdt et al., 2018; Taylor
and Larson, 2019). We believe that it is wrong to dismiss a
prolific population of a threatened species as unimportant in
an unsubstantiated way when there remains uncertainty as to
the best way of managing the species. This is even more so
when these populations have the potential to serve as sources
for ongoing, translocation focused interventions – a literal
source for individuals and a source of increased knowledge.
Lastly, we recognize the importance of multidisciplinary
studies that are needed to help better understand and predict
hybridization outcomes.

The questions that could be addressed with genetic and
epigenetic investigations of the Ponui birds are not only relevant
for Apteryx. Making meaningful measurements of population
differences is important for determining what interventions
are appropriate to ensure the sustainability of fragmented
populations (Tallmon et al., 2004; Edmands, 2007; Escobar et al.,
2008; Stelkens et al., 2014; Barmentlo et al., 2018; Von Holdt
et al., 2018; Bell et al., 2019; Koide et al., 2019; Rey et al.,
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2020). These measurements require embracing the complexity
of epigenetic phenomena and understanding how it interacts
with genetic variation in affecting the fitness of individuals
in different environments. Improved understanding will in
turn help us to better understand the adaptive potential and
resilience of species to environmental stresses and change. We
support the call being made by others for a paradigm shift in
conservation to rethink the negative connotations of admixture
and hybridization (Canestrelli et al., 2016; Ralls et al., 2018;
Von Holdt et al., 2018; Taylor and Larson, 2019). Measures
of fitness of individuals and populations need to consider
both temporal and environmental factors. Furthermore, until
interactions between the environment of Ponui island and the
epigenomes of its kiwi are better understood, we believe that it
would be wrong to dismiss a prolific population of a threatened
species. This is even more important when this population has
the potential to serve as a source for ongoing, translocation
focused interventions – a literal source of individuals and a
source of increased knowledge to be drawn upon in decision
making. Lastly, we acknowledge the importance of integrating
contributions from other disciplines when using novel tools from
genome science to improve understanding and better predict
intervention outcomes. An important goal is to inform and
develop practices that meet conservation aspirations.
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