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Managing human-wildlife conflicts (HWCs) is an important conservation objective for the

many terrestrial landscapes dominated by humans. Forecasting where future conflicts

are likely to occur and assessing risks to lives and livelihoods posed by wildlife are

central to informing HWC management strategies. Existing assessments of the spatial

occurrence patterns of HWC are based on either understanding spatial patterns of past

conflicts or patterns of species distribution. In the former case, the absence of conflicts

at a site cannot be attributed to the absence of the species. In the latter case, the

presence of a species may not be an accurate measure of the probability of conflict

occurrence. We present a Bayesian hierarchical modeling framework that integrates

conflict reporting data and species distribution data, thus allowing the estimation of the

probability that conflicts with a species are reported from a site, conditional on the species

being present. In doing so, our model corrects for both false-positive and false-negative

conflict reporting errors. We provide study design recommendations using simulations

that explore the performance of themodel under a range of conflict reporting probabilities.

We applied the model to data on wild boar (Sus scrofa) space use and conflicts collected

from the Central Terai Landscape (CTL), an important tiger conservation landscape in

India. We found that tolerance for wildlife was a predictor of the probability with which

farmers report conflict with wild boars from sites not used by the species. We also discuss

useful extensions of the model when conflict data are verified for potential false-positive

errors and when landscapes are monitored over multiple seasons.

Keywords: human-wildlife conflicts, species occupancy, integrated species distribution models, false-positive

reporting errors, wild boar conflict

INTRODUCTION

World over, tropical, sub-tropical, temperate, and Arctic landscapes are experiencing increased
anthropogenic pressures as a direct consequence of growth in human populations and demand
for resources (Kennedy et al., 2019). The resulting increase in human activities in wildlife habitats
is occurring alongside an increased recognition of the use of human-dominated areas by many
adaptable wildlife species (Gordon, 2009; Ferreira et al., 2018). As a consequence of these shifts in
habitat and resource use patterns by humans and wildlife populations, the frequency with which
they interact is also increasing (Nyhus, 2016). Human-wildlife conflicts (HWC) are a subset of
these interactions that adversely affect wildlife populations and human communities (Dickman,
2010). HWC can directly impact wildlife populations when they result in the removal of individuals
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either by legal or illegal means (Treves et al., 2006; Goswami
et al., 2014). Persistent HWC, when unmitigated, can also
affect conservation efforts by diminishing human tolerance for
coexisting with wildlife (Kansky et al., 2016). Where human lives
are lost, or where socio-economically marginalized communities
are disproportionately affected, HWC also complicates the moral
and ethical arguments in support of wildlife conservation.
Preventing and mitigating HWC is therefore an imperative for
the conservation of many threatened and endangered animal
species. Consequently, monitoring HWC, and understanding its
spatio-temporal dimensions and drivers is an integral part of
most conservation programs.

Understanding the scale, nature, and drivers of HWC are
fraught with challenges that arise both from the complexity of
the process as well as biases inherent in observing the process.
HWCs result from a complex interaction between social and
ecological variables that may be heterogenous in time and space
(Lischka et al., 2018). Foraging decisions made by animals are
the underlying driver of the observed patterns of many forms of
HWC (Hill, 2015). Foraging decisions typically involve tradeoffs
between risks in accessing a food item and the net profitability of
the food item (Baruch-Mordo et al., 2013; Blackwell et al., 2016).
Long-term conflict prevention therefore depends upon clearly
understanding what factors may be driving foraging decisions
by a species. For example, a study of livestock depredation
patterns by wolves in the Tibetan plateau found that while
wolves occurred over a large portion of the landscape, attacks
on livestock were more probable in areas of low ruggedness
(Suryawanshi et al., 2013).

The probability of conflicts occurring with wildlife at any
given location may be predictable given an understanding
of a species’ space-use patterns (Baruch-Mordo et al., 2014),
or by investigating historic patterns of reported conflicts
(Athreya et al., 2015). Space-use patterns of wildlife are
commonly estimated by fitting species distribution models
(SDMs) to occurrence or detection/non-detection data (Elith
and Leathwick, 2009; Morelle and Lejeune, 2015; MacKenzie
et al., 2017). Typically, SDMs estimate the probability with which
bounded areas within a landscape are occupied or used by a
species. However, space-use probabilities may not be an adequate
reflection of the probability that conflicts with the species are
likely to occur at a given site. For example, large carnivores such
as tigers (Panthera tigris), lions (Panthera leo), and wolves (Canis
lupus) have large home ranges that include human dominated
areas, but conflicts with these species are often narrowly clustered
in space and time (Treves et al., 2004; Gazzola et al., 2008; Packer
et al., 2019; Warrier et al., 2020). Thus, HWC may occur within
a small, non-random subset of the area over which wildlife and
humans co-occur.

Patterns of HWC have been investigated extensively using
distribution models applied to spatial location records of
reported or observed conflicts (Karanth et al., 2013; Goswami
et al., 2015; Miller, 2015). The state variable of interest in these
models is the probability of a conflict event occurring at a given
site. Historical records of conflict locations (Treves et al., 2004),
newspaper reports of conflict events (Athreya et al., 2015); or
self-reporting of conflicts by affected communities are typical

sources of these data (Krafte Holland et al., 2018). These models
provide insights into the spatial and temporal correlates of
conflicts across a landscape and help delineate areas at high risk
for conflict. In many of these efforts, the possibility of conflict
events at a site going un-reported or un-detected, may lead
to an underestimation of the probability of conflict occurrence
(e.g., Goswami et al., 2015). Since these models do not provide
estimates of the true distribution of the species in the landscape,
it is not possible to determine if the absence of conflicts at a site
is a consequence of the absence of the species at the site, or if
the species occurred at the site without conflict. In the absence
of this information, spatial models of conflict may not correctly
identify the environmental factors most strongly associated with
HWC, thereby limiting their applicability in forecasting where
new conflicts are likely to occur (Treves et al., 2011). In addition,
thesemodels assume no false-positive reporting, that is, reporting
of conflict from a site where the species does not occur or where
conflicts are incorrectly attributed to a species. For example, a
study evaluating reports of livestock depredation in Wisconsin
found that out of the 575 cases where livestock owners blamed
wolves for depredation, only 60% of the cases were actually
attributable to wolves (Treves et al., 2002). False attribution
of conflicts may be especially high for species for whom local
community members have low tolerance (Suryawanshi et al.,
2013; Dickman and Hazzah, 2016). Therefore, where the veracity
of individual conflict reports is in question, the application of
traditional distribution models may lead to positively biased
estimates of the magnitude of conflicts.

We propose that a solution to these challenges lies in
understanding the spatial patterns of conflicts as a function
of a species’ distribution, since species’ presence at a site
is a necessary condition for a potential HWC to occur at
that site. Previous studies have attempted to link species
distribution models with conflict risk models (e.g., Braunisch
et al., 2011; de Souza et al., 2018). However, these studies did
not explicitly link the probability of a species occurring at a
site with conflict information, that is, explicitly estimating the
probability of conflict occurring or being reported, conditional
on species occupancy.

In the following, we describe a hierarchical Bayesian
occupancy modeling approach to integrate data on species
occurrence and conflict reports that may include false-positive
errors. Our approach offers a generalized framework for
estimating species occupancy and the probability of conflict
being reported from a site conditional on species presence in
situations where conflict data are not vetted for false-positive
errors. After introducing the model, we provide study design
recommendations based on a simulation study. We also illustrate
the practical utility of the model by applying it to data on wild
boar (Sus scrofa) distribution and human-wild boar conflict data
generated by interviewing farmers. These data were collected
from a human dominated agricultural corridor area within the
Central Terai Landscape (CTL) in northern India, a globally
significant tiger conservation unit (Wikramanayake et al., 2011).

This study was part of a larger effort to estimate habitat
use of wild carnivores and herbivores within the agricultural
corridor. Wild boar are an important tiger prey species (Hayward
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et al., 2012) and are widely regarded as an agricultural pest
across their distributional range (Lewis et al., 2017). We explored
how conflicts with wild boar are reported from sites occupied
and unoccupied by the species. Specifically, we were interested
in understanding how the attitudes of farmers toward wildlife
influence their reporting of real and perceived conflicts with
wild boar. We define “real” conflicts as any conflict report that
is recorded from a site where the species is predicted to occur,
whereas “perceived” conflicts are those that are reported from
sites conditional on the species being absent. The spatial patterns
of real conflicts are assumed to be associated with environmental
factors that determine the distribution of wild boar and influence
their foraging decisions. For example, in southern Italy, crop
losses to wild boar typically occurred in areas dominated by
shrubs and areas with intermediate forest cover (Francesco
et al., 2014). On the contrary, perceived conflicts may be driven
by the attitudes of community members toward the species—
for example, community beliefs about the species potential to
cause damage or the abundance of the species (Dickman, 2010;
Dickman and Hazzah, 2016). Consequently, these two types of
conflicts can be resolved only by the application of fundamentally
different mitigation measures. The goal of our case study was to
distinguish between real and perceived conflicts reports within
the CTL, and understand how community attitudes toward
wildlife and situational characteristics of the respondents, such
as age and land holding size influence the reporting of these
perceived conflicts. We discuss the implications of our findings
as well as model extensions under scenarios where conflict data
have been vetted for false-positive errors.

MATERIALS AND METHODS

Broadly, our models are similar to integrated species distribution
models (Pacifici et al., 2017; Miller et al., 2019), where diverse
data are integrated by means of a shared parameter. Specifically,
our approach is a Bayesian hierarchical, false-positive occupancy
model where data were generated under the single season,
site confirmation design, employing multiple detection methods
(Miller et al., 2011; Chambert et al., 2015; Clement, 2016).
The site confirmation design using multiple detection methods
involves the use of auxiliary detection methods that are free of
false-positive errors to estimate the true occupancy probability of
a site. For example, the multiple detection methods could include
using interview surveys (ambiguous method) in conjunction
with unambiguous methods such as sign surveys and camera
surveys at the same survey locations (Warrier et al., 2020).
Our model relies on two data sources. Data on conflicts with
the species of interest are collected for i = 1, 2, ... S sites or
spatial units. At each site, conflict data are collected over j =
1, 2, ... J survey occasions. These data may be collected either
through interviews of community members, or through conflict
monitoring programs. If interviews of community members are
used to generate data on conflicts for a given site, each interview
respondent is treated as a survey occasion. Where data from
conflict monitoring programs are used, survey occasions may
represent discrete time intervals over which the presence or

absence of a conflict event is recorded (Goswami et al., 2015).
Additional data pertaining to each of these survey occasions may
also be collected, such as information on prevailing weather and
environmental covariates hypothesized to influence conflicts. For
example, in the Greater Tsavo ecosystem in Kenya, the number
of HWCs reported annually, and seasonally varied as a function
of rainfall (Mukeka et al., 2020). These conflict surveys generate
information on the total number of occasions within a site where
a conflict event with the species of interest was reported. To
predict the true underlying occupancy state for the target species
at a given site, additional surveys for the species of interest are
simultaneously conducted at all, or a subset, of the sites (i = 1,
2,..s; s ≤ S) using a method assumed to be free of false-positive
errors. Detection methods could include the use of camera traps,
acoustic recorders, or sign surveys with surveys repeated k =

1, 2, ..K times at each site. Using the terminology associated
with the site-confirmation, multiple detection methods design,
we categorized the conflict surveys as a source of ambiguous data
(i.e., they provide ambiguous information on whether the species
occurs at a site) whereas the auxiliary surveys were assumed to
result in unambiguous true detections at occupied sites.

Model
We adopted a Bayesian hierarchical modeling approach to
predict patterns of species occupancy and the conditional
probability of HWC reporting. The hierarchical model is
composed of two sub-components, a process model, and an
observation model. The process model describes the ecological
processes that gave rise to the spatial patterns in the latent
state variable (site occupancy). In the model, zi describes the
occupancy state of a site “i” for S sites surveyed over a season.
Within the survey season, sites are assumed to be closed to
changes in their occupancy state. A site can be in one of two
possible states, occupied (zi = 1) or unoccupied (zi= 0) by the
target species. The occupancy state of a site “i” (zi) is treated as
a Bernoulli random variable with occupancy probability equal to
ψi. The parameter ψi describes the probability a site is occupied
by the species of interest and may itself be defined as a function

of site-specific covariates x
′

i . Here, x
′

i was a vector of covariates
characterizing the environment within site i.

zi ∼ Bernoulli (Ψ i)

logit (Ψ i) = x
′

i β

At site i, the total number of survey occasions where a conflict
event is reported is represented by wi. Similarly, yi, represents
the total number of detections of the species at a site i using
the unambiguous survey method. For occupied sites, the number
of occasions during which conflicts with a species was recorded
(wi ≥ 0|zi= 1) is described by a Binomial distribution with
probability p11. Whereas, at unoccupied sites, the number of
occasions where conflict with the species of interest was reported
(wi ≥ 0|zi = 0) follow a Binomial probability distribution with
probability p10. Thus, p11 describes the probability a conflict with
the species of interest was reported during a given survey at an
occupied site. While p10 represents the probability a conflict with
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a species was reported during a survey at an unoccupied site.

wi ∼







Binom (Ji, p10) zi = 0
, for i ∈ S

Binom (Ji, p11) zi = 1

Similarly, using the unambiguous survey method (e.g., camera
trap surveys), the total number of detections at an occupied site
given “K” survey occasions (yi ≥ 0|zi = 1) follow a Binomial
probability distribution with detection probability equal to r.

yi ∼











0 zi = 0

, for i ∈ s ⊆ S
Binom (Ki, r) zi = 1

Simulation Study
We assessed the ability of our model to predict species occupancy
(9) under a range of conditions. We focused on parameters
associated with occupancy, since this was the state variable
around which we integrated the space-use and conflict datasets.
We simulated data for 100 sites exploring multiple scenarios
involving alternative probabilities of falsely attributing conflicts
to the focal species (p10) and true detection probabilities
associated with the unambiguous survey method (r). We
considered three alternative possibilities for the probability that
conflicts would be reported at least once at an unoccupied site
[p

∗

10 = 1 − (1− p10)
J ; 0.1 (low), 0.5(medium), 0.8 (high)].

We assumed that these probabilities remained constant across
sites. For each level of p

∗

10, we considered three scenarios for the
probability of detecting the species at least once at a site using
the unambiguous method [r

∗

= 1 − (1− r)K ; 0.1 (low),
0.5 (medium) and 0.8 (high)]. For each level of p

∗

10; and r∗, we
explored five alternate scenarios with respect to the proportion
of sites where the unambiguous method was applied (5, 20, 50,
75, and 100%). The result was 45 combinations of false-positive
reporting and survey effort for the unambiguous method. The
probability of a conflict reported at least once during a survey
season from a site where the animal was predicted to occur [p

∗

11 =

1 − (1− p11)
J] was set at 0.60.

For all scenarios, we simulated site-specific occupancy
probabilities as a function of a single covariate, logit (Ψi) = β0 +

β1
∗covi. We assumed a mean occupancy probability of 25 % (β0

= 0.25) and occupancy probabilities that declined with increasing
values of a normally distributed covariate (β1 = −0.60).
Taken together, the scenarios represented the range of conflict
reporting probabilities and survey effort for a hypothetical species
characterized by low occupancy probability and moderately to
high potential to be involved in conflicts where it occurred. For
each scenario we fit our model to 100 simulated datasets and
evaluated the precision of the estimated intercept (β0) and slope
(β1) parameters. For all simulations, we used vague priors on
model parameters by specifying a normal distribution withµ= 0
and σ2 = 2.5. We generated 25,000 MCMC samples with a burn-
in period of 5,000 iterations. For all parameters modeled without
covariates, we generated MCMC samples by sampling from their
full conditional distributions via Gibb’s sampling (Appendix A).
For parameters modeled as functions of covariates, we used

the Metropolis MCMC algorithm (Geyer, 1997). All simulations
were carried out in the R statistical computing environment (R
Core Team, 2020).

Application
Data were collected from a 1,200 km2 agricultural corridor
separating two tiger reserves in the CTL (Dudhwa Tiger Reserve
and Pilibhit Tiger Reserve). We surveyed 46 randomly selected
sites (1.6 × 1.6 km grid cells) for wild boar and simultaneously
collected data on human-wild boar conflicts between December
2015 and February 2016. We selected grid cells based on the
Generalized Random Tessellation Stratified algorithm (GRTS;
Stevens and Olsen, 2004). We collected detection data on wild
boar by placing a single motion-activated camera (Cuddeback
Attack) within the cell for a period of 40 days. The camera-trap
surveys were a source of unambiguous data, assumed free of false-
positive errors. Ambiguous detection data were based on farmer
interviews from a randomly selected subset of sites (27) where
camera-trapping was conducted. We interviewed 1–10 farmers
resident within each site using a survey instrument designed
to generate data on conflict occurrence, and various, social,
economic, and attitudinal correlates. For camera trap surveys, we
treated each 5-day period as an occasion. For farmer interview
surveys, each farmer was treated as a unique survey occasion.

Using the survey instrument, we obtained data on whether
the respondent (farmer) was currently experiencing crop losses
due to wildlife and what species they believed were responsible.
We also recorded information on the age and land holding
sizes of the respondents. In addition, we recorded the attitudes
of respondents toward two ongoing conflict mitigation options:
compensation for losses and fencing of protected areas. We
also assessed the attitudes of respondents toward the prevailing
legal restriction on lethally removing crop damaging wildlife
species. Responses to these questions were recorded on a binary
(Yes/No) scale.

We tested a number of hypotheses. (1) We a priori expected
wild boar occupancy probabilities to decline with increasing
distance to park boundaries (Karanth et al., 2013)—therefore,
we modeled occupancy probability (ψ) as a function of distance
of the site to the nearest protected area boundary (PA). (2) We
evaluated how the probability of a farmer reporting conflicts with
wild boar at an unoccupied site (p10) was related to their tolerance
for wildlife as reflected in their attitudes toward mitigation
measures, and their attitude toward the legal restriction on
lethal removal of problem animals. We hypothesized that
farmers who favored compensation (Compensation) as a conflict
mitigation strategy, and those who favored the removal of the
legal restriction on lethal action (Hunt), would falsely report
conflicts with higher probability (Dickman et al., 2011; Johnson
et al., 2018). (3) We hypothesized that younger, less experienced
farmers (Age) would have a higher probability of falsely reporting
conflicts. (4) We evaluated the probability of a farmer reporting
conflicts from a site occupied by wild boar (p11) as a function
of their land holding size (LandOwned). We expected conflict
reporting probabilities to decline with increasing farm size since
crop depredation would have a more pronounced effect on small
land holders.
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We tested the effects of distance to protected areas (PA)
on occupancy probability, while modeling the remaining
parameters without covariates (Table 1; Morin et al., 2020).
Using the supported occupancy structure (1DIC < 5), we
proceeded to identify best supported covariate structure for
false conflict reporting p10 (probability of reporting conflicts
from sites unoccupied by wild boar; Table 1), followed by
evaluating the influence of land holding size on true conflict
reporting, p11 (probability of reporting conflicts from sites
occupied by wild boar; Table 1). We also fit a global model
where all parameters are modeled as a function of covariates,
ψ(PA)p10(Hunt)p11(LandOwned)r(.) as well as a model without
covariates Ψ (.)p10(.)p11(.)r(.).

All analyses were done in the R statistical computing
environment (R Core Team, 2020). We specified vague priors on
the model parameters and ran three chains with 50,000 MCMC
samples each and used a burn-in period of 5000 iterations. We
tested for chain convergence by calculating the Gelman-Rubin
statistic for each parameter. We fit a total of six models and
compared them based on their Deviance Information Criterion
(DIC; Hooten and Hobbs, 2015).

RESULTS

Simulation Results
Under all 45 simulation scenarios, our model estimated
parameters of interest with high precision. As expected,
increasing unambiguous survey effort resulted in greater
precision in estimates of the posterior means of β0 and β1. This
result was observed both when a greater proportion of sites
had unambiguous surveys and with an increase in detection
probability (r∗). Declines in precision were most pronounced
with high levels of false-positive reporting (p

∗

10 = 0.80), when
the unambiguous method had low detection probability (r∗ =

0.10), or when unambiguous surveys occurred on fewer than
50% of the sites (Figure 1). These patterns of declining precision
were more pronounced for the slope parameter (β1; Figure 1).
Scenarios where the detection probability of the unambiguous
method was low (r∗ = 0.10), resulted in negatively biased

TABLE 1 | Candidate models and associated DIC values.

Model DIC

ψ(.)p10(Hunt)p11(.)r(.) 518.9

ψ(.)p10(Hunt)p11(LandOwned)r(.) 522.02

ψ(.)p10(.)p11(.)r(.) 525.56

ψ(.)p10(Compensation)p11(.)r(.) 526.25

ψ(.)p10(Age)p11(.)r(.) 527.33

ψ(PA)p10(Hunt)p11(LandOwned)r(.) 688.86

ψ(PA)p10(.)p11(.)r(.) 691.23

Ψ is the probability the site was occupied by wild boar; p11 is the probability that conflict

with wild boar was reported from a site occupied by the species; p10 is the probability

that conflict with wild boar was reported from a site unoccupied by the species; and, r

is the probability that wild boar were detected using camera traps at a site occupied by

the species.

estimates of mean occupancy and positively biased estimates of
the slope parameter, irrespective of the level of survey effort and
false-positive reporting probabilities. Across all scenarios and
simulations, the estimated credible intervals included the true
parameter value.

Application Results
Using camera traps, wild boar were detected at least once at nine
sites. Conflicts with wild boar were reported at least once at 26
of the 27 sites based on interview surveys with farmers. Of the
seven hypotheses tested (Table 1), a model where the probability
of falsely reporting conflicts with wild boars at an unoccupied
site was a function of attitudes in opposition to the restriction on
lethal removal of wildlife (Hunt) had the highest support (lowest
DIC). The model with the next highest support reflected our
hypothesis that true conflict reporting probabilities would decline
with increasing land holding sizes. Similarly, the model with the
least support was one where both true and false conflict reporting
probabilities were modeled without covariates and wild boar use
probabilities were modeled as a function of distance of the cell to
protected areas (PA).

Based on the best-supported model, wild boar habitat use
across the surveyed sites was not a function of the distance to
a protected area boundary. As per the model, wild boar used
sampled sites with a mean probability of 0.24 (Figure 2). The
probability of detecting wild boar using camera traps, given
the site was occupied, was 0.33 for each 5-day survey occasion
(Figure 2). On average, the probability that a farmer would
report conflicts from a site used by wild boar was 0.87. In
contrast, the probability that a farmer would report conflicts
from a site not used by the species was 0.63 (Figure 2). Farmers
who favored the removal of the legal restriction on hunting
(Hunt) falsely reported conflicts with wild boar with a higher
probability that those who favored the continuation of the
law (Figure 3).

DISCUSSION

Our modeling approach allows for the joint estimation of
species occupancy and the probability of reporting human-
wildlife conflicts. In our model formulation, HWC reporting
probabilities were estimated conditional on the presence or
absence of the species at the site. This allowed for the estimation
of the probability that conflicts may have been falsely recorded
at an unoccupied site. The method we used provides a flexible
modeling approach and offers a cost-effective and efficient
strategy to monitor species space use and conflicts over large
spatial scales. The model framework we used requires the
collection of additional auxiliary data at all, or a subset, of
the sites over which conflict monitoring was conducted. Our
simulation results suggest that using auxiliary survey methods
that are free of false positive errors with a cumulative detection
probability (r∗) >0.5, results in unbiased estimates of covariate
relationships. Conflict monitoring programs involving species
for which human communities have low tolerance, or whose
depredation patterns closely resemble those of other conspecific
species (e.g., wolves and coyotes ; Treves et al., 2002), are likely
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FIGURE 1 | Simulation results: Boxplots summarize predicted posterior mean probabilities for β0 and β1 across 45 scenarios. Data were simulated across a range of

false-positive conflict reporting probabilities (p10*), true detection probabilities for the unambiguous method r* , and percentage of sites where the unambiguous

method is applied. The dashed red line indicates the true value of the intercept (β0 = 0.25) and slope (β1 = −0.6) parameters. Black dots represent outliers.

FIGURE 2 | Marginal posterior distributions for model parameters based on the best supported model. Parameters are described in Figure 1. Dotted lines indicate

95% credible intervals (i.e., the range of possible values that the parameter may take, given the data, the model, and the prior information).

Frontiers in Conservation Science | www.frontiersin.org 6 August 2021 | Volume 2 | Article 679028

https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/conservation-science#articles


Warrier et al. Estimating Conditional Conflict Probabilities

FIGURE 3 | Mean probability of falsely reporting conflicts with wild boar by

respondents who did (Yes) and did not (No) favor removal of the prevailing ban

on lethal removal of problem wildlife. Error bars represent 95% credible

intervals.

circumstances where false reporting of conflicts may be high. In
these situations, conducting auxiliary surveys at∼50% of the sites
over which conflict is being monitored are needed to discern the
true rates and spatial distribution of conflicts (Figure 1). When
false-positive reporting probabilities are very low, the proportion
of sites where the auxiliary method should be applied depends on
how true conflicts are reported at a site where the species occurs
(p11) and the probability that the auxiliary survey method can
detect the species when it occurs at a site (r).

In our case study, farmers generally overestimated the
magnitude of conflicts with wild boar. As discussed by Dickman
(2010), perceived levels of conflicts are often shaped by multiple
human factors in addition to the true impacts of the species.
These factors include social (e.g., age, religion), psychological
(e.g., attitudes, beliefs), situation (e.g., economic status), and
other unresolved human-human conflicts that may manifest as
reduced tolerance for wildlife.

Documenting when significant disparities exist between
perceived and real conflicts is a first step toward increasing
the tolerance or acceptance of the species in shared landscapes
(Skupien et al., 2016). We found that community members who
had a favorable attitude toward the lethal removal of wild animals
by legal hunting were more likely to falsely report conflicts
with wild boar (Figure 3). While we interpret attitudes toward
the removal of the hunting restriction as reduced tolerance for
wildlife, we emphasize that this relationship may be true only in
the restricted context of our study. Hunting is a widespread and
understudied issue affecting wildlife in India, and its character
and underlying motivations vary widely across different regions
of the country (Velho et al., 2012). Wild boar occurred in the
surveyed area with a mean probability of 0.24, yet community
members widely perceived it as a significant agricultural pest,

exemplified by the fact that conflicts with the species were
reported from all the surveyed sites. In the absence of information
on the actual distribution of wild boar, the conflict survey data
would lead us to believe that the species is more widespread
across the landscape. Similarly, in sites used by the species,
there was a high probability of conflicts being reported by
farmers. Results from our study, and a broader application of
our survey modelling methods, has important consequences for
the formulation of conflict mitigation measures (Anand and
Radhakrishna, 2017). In the CTL, conflict mitigation should
employ a two-pronged approach that includes compensation for
crop losses based on defensible estimates of the actual probability
of HWC, in conjunction with efforts to understand in greater
detail community attitudes toward hunting and land sharing
with wildlife.

An important caveat associated with our results is that our
model cannot distinguish between true and false conflict reports
from sites used by wild boars. Consequently, it is likely that
within used sites, the intensity of conflict may be lower than
our data and modeling suggests. We attempted to characterize
contemporary conflicts with wild boar in the study area. Yet,
the high rates of false-positive conflict reporting may be the
result of respondents reporting long-standing conflicts rather
than conflicts that occurred during the survey season. However,
previous studies that relied on interview data to estimate wild
boar distribution patterns have demonstrated the high prevalence
of false-positive detection errors for the species (Pillay et al.,
2014).

The modeling approach we adopted did not estimate the
conditional probability of conflicts occurring at a site - rather, it
estimated the conditional probability of conflicts being reported.
Conflict reporting is conditional on occurrence only in situations
where there are no false-positive reporting errors. However, if
conflict reports can be verified and validated, the probability of
conflict occurring, conditioned on a species’ occupancy, can be
estimated using a simple extension of our model. Our model
can be extended by introducing an additional parameter δi
representing the probability that a conflict event occurred at site i
occupied by the species of interest (zi = 1). The latent state of the
site with regards to conflict occurrence is given by ci , such that
ci = 1 when a conflict has occurred, and ci = 0 when no conflict
occurred. The model then has the following form:

zi ∼ Bernoulli (Ψi)

logit (Ψ i) = x
′

i β

ci ∼ Bernoulli (δi
∗zi)

yi ∼







0 zi = 0
, for i ∈ s ⊆ S

Binom (Ki, ri) zi = 1

wi ∼







0 ci = 0
, for i ∈ S

Binom
(

Ji, p11, r
)

ci = 1

In this model, the probability of conflict occurring at a site where
the species is present is given by Ψi

∗δi. Like the occupancy
parameter (Ψi), conflict probability can be modeled as a function
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of covariates such that logit (δi) = u
′

i α, where ui is a vector of
covariates associated with ith site. The parameter p11 represents
the probability of detecting a conflict at a site where it has
occurred. This is useful in situations where there is imperfect
reporting of conflicts (Goswami et al., 2015). Where conflict
detection is certain, the parameter p11 can be interpreted as
the intensity with which conflicts occurred at a site. When data
are collected over multiple survey seasons, the model can be
extended to represent the temporal dynamics of species space-use
and the prevalence of conflict reports (Appendix B).

Understanding the link between a species’ current distribution
and conflict probability is essential for to effectively mitigate

human-wildlife conflicts. For example, the willingness of people
to coexist with a species is often linked to their perceptions

of the risk that the species poses to their lives or livelihoods.

Risk perception is reflected in the degree of tolerance which,

in turn, determines the course of management actions directed
toward a species (Riley and Decker, 2000; Knopff et al., 2016).

In many cases, perceptions of risks are often disproportionately
higher than the actual risks posed by the species. For example,

a study of community perceptions of risks from cougars
(Puma concolor) found that a large proportion of respondents
incorrectly believed that the risks were higher than those incurred
when using airplanes, automobiles, and tractors (Riley and
Decker, 2000). Estimating the probability of HWC conditional
on a species’ current occupancy patterns is a way to estimate
the true risks arising from land sharing with conflict-prone
species. Our modeling approach provides a framework to
estimate conflicts and conflict reporting as a function of species
occupancy while simultaneously accounting for false-positive
reporting errors. Importantly, the survey, and analysis approach
we propose can be implemented with minimal additional
survey effort and provide defensible estimates of the magnitude
of HWCs.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Colorado State University IRB. Written
informed consent for participation was not required for this
study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

RW lead the study design, data collection, model, andmanuscript
development. BN and LB made substantial contributions to
study design, model, and manuscript development. All authors
approved the submitted version.

FUNDING

The study was funded by Grants from WWF-India, the Center
for Collaborative Conservation (Colorado State University) and
The Rufford Foundation.

ACKNOWLEDGMENTS

Permission for the study was granted by the Field Director of
Dudhwa Tiger Reserve, Uttar Pradesh State forest Department.
The model was co-developed with Lanier. W. We are grateful for
feedback on the model fromM. Hooten. P. Chanchani supported
the study by providing camera-traps. We thank Landau.V for
providing important insights during model development. Raja,
Rambharose, and M. Singh for help with data collection. We
are grateful for collaboration and support from S. Worah, D.
Ghose, J. Vattakaven, H. Karandikar, Y. Shethia, M. Gupta, and
D. Hassan at WWF-India, K. Crooks, and T. Teel at Colorado
State University.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcosc.
2021.679028/full#supplementary-material

REFERENCES

Anand, S., and Radhakrishna, S. (2017). Investigating trends in human-wildlife

conflict: is conflict escalation real or imagined? J. Asia-Pacific Biodivers. 10,

154–161. doi: 10.1016/j.japb.2017.02.003

Athreya, V., Srivathsa, A., Puri, M., Karanth, K. K., Kumar, N. S., and Karanth,

K. U. (2015). Spotted in the news: using media reports to examine leopard

distribution, depredation, and management practices outside protected areas

in Southern India. PLoS ONE 10:e0142647. doi: 10.1371/journal.pone.0

142647

Baruch-Mordo, S., Webb, C. T., Breck, S. W., and Wilson,

K. R. (2013). Use of patch selection models as a decision

support tool to evaluate mitigation strategies of human–wildlife

conflict. Biol. Conserv. 160, 263–271. doi: 10.1016/j.biocon.2013.

02.002

Baruch-Mordo, S., Wilson, K. R., Lewis, D. L., Broderick, J., Mao, J.

S., and Breck, S. W. (2014). Stochasticity in natural forage production

affects use of urban areas by black bears: implications to management

of human-bear conflicts. PLoS ONE 9:e85122. doi: 10.1371/journal.pone.00

85122

Blackwell, B. F., DeVault, T. L., Fernández-Juricic, E., Gese, E. M., Gilbert-Norton,

L., and Breck, S. W. (2016). No single solution: application of behavioural

principles in mitigating human–wildlife conflict. Anim. Behav. 120, 245–254.

doi: 10.1016/j.anbehav.2016.07.013

Braunisch, V., Patthey, P., and Arlettaz, R. (2011). Spatially explicit modeling of

conflict zones between wildlife and snow sports: prioritizing areas for winter

refuges. Ecol. Appl. 21, 955–967. doi: 10.1890/09-2167.1

Chambert, T., Miller, D. A. W., and Nichols, J. D. (2015). Modeling false positive

detections in species occurrence data under different study designs. Ecology 96,

332–339. doi: 10.1890/14-1507.1

Clement, M. J. (2016). Designing occupancy studies when false-positive detections

occur.Methods Ecol. Evol 7, 1538–1547 doi: 10.1111/2041-210X.12617

de Souza, J. C., da Silva, R. M., Gonçalves, M. P. R., Jardim, R. J. D., and Markwith,

S. H. (2018). Habitat use, ranching, and human-wildlife conflict within a

Frontiers in Conservation Science | www.frontiersin.org 8 August 2021 | Volume 2 | Article 679028

https://www.frontiersin.org/articles/10.3389/fcosc.2021.679028/full#supplementary-material
https://doi.org/10.1016/j.japb.2017.02.003
https://doi.org/10.1371/journal.pone.0142647
https://doi.org/10.1016/j.biocon.2013.02.002
https://doi.org/10.1371/journal.pone.0085122
https://doi.org/10.1016/j.anbehav.2016.07.013
https://doi.org/10.1890/09-2167.1
https://doi.org/10.1890/14-1507.1
https://doi.org/10.1111/2041-210X.12617
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/conservation-science#articles


Warrier et al. Estimating Conditional Conflict Probabilities

fragmented landscape in the Pantanal, Brazil. Biol. Conserv. 217, 349–357.

doi: 10.1016/j.biocon.2017.11.019

Dickman, A. J. (2010). Complexities of conflict: the importance of considering

social factors for effectively resolving human–wildlife conflict. Anim. Conserv.

13, 458–466. doi: 10.1111/j.1469-1795.2010.00368.x

Dickman, A. J., and Hazzah, L. (2016). “Money, myths and man-eaters:

Complexities of human-wildlife conflict,” in Problematic Wildlife: A

Cross-Disciplinary Approach (New York, NY: Springer International

Publishing), 339–356.

Dickman, A. J., Macdonald, E. A., and Macdonald, D. W. (2011). A review

of financial instruments to pay for predator conservation and encourage

human-carnivore coexistence. Proc. Natl. Acad. Sci. U.S.A. 108, 13937–13944.

doi: 10.1073/pnas.1012972108

Elith, J., and Leathwick, J. R. (2009). Species distribution models: ecological

explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst.

40, 677–697. doi: 10.1146/annurev.ecolsys.110308.120159

Ferreira, A. S., Peres, C. A., Bogoni, J. A., and Cassano, C. R. (2018). Use

of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a

global-scale analysis.Mamm. Rev. 48, 312–327. doi: 10.1111/mam.12137

Francesco, F. G., Bonardi, A., Mairota, P., Leronni, V., and Padoa-schioppa, E.

(2014). Predicting wild boar damages to croplands in a mosaic of agricultural

and natural areas. Curr. Zool. 60, 172–179. doi: 10.1093/czoolo/60.2.170

Gazzola, A., Capitani, C., Mattioli, L., and Apollonio, M. (2008). Livestock damage

and wolf presence. J. Zool. 274, 261–269. doi: 10.1111/j.1469-7998.2007.00381.x

Geyer, C. . (1997). “Introduction to markov Chain Monte Carlo,” in Handbook of

Markov ChainMonte Carlo, eds S. Brooks, A. Gelman, G. Jones, and X. L. Meng

(Boca Raton, FL: Chapman and Hall/CRC), 3–48.

Gordon, I. J. (2009). What is the future for wild, large herbivores in human-

modified agricultural landscapes?Wildlife Biol. 15, 1–9. doi: 10.2981/06-087

Goswami, V. R., Medhi, K., Nichols, J. D., and Oli, M. K. (2015).

Mechanistic understanding of human-wildlife conflict through a novel

application of dynamic occupancy models. Conserv. Biol. 29, 1100–1110.

doi: 10.1111/cobi.12475

Goswami, V. R., Vasaudev, D., and Oli, M. K. (2014). The importance of conflcit-

induced mortality for conservation planning in areas of human-elephant co-

occurence. Biol. Conserv. 176, 191–198. doi: 10.1016/j.biocon.2014.05.026

Hayward, M. W., Jedrzejewski, W., and Jêdrzejewska, B. (2012). Prey

preferences of the tiger Panthera tigris. J. Zool. 286, 221–231.

doi: 10.1111/j.1469-7998.2011.00871.x

Hill, C. M. (2015). Perspectives of “Conflict” at the wildlife–agriculture

boundary: 10 Years On. Hum. Dimens. Wildl. 20, 296–301.

doi: 10.1080/10871209.2015.1004143

Hooten, M. B., and Hobbs, N. T. (2015). A guide to Bayesian model selection for

ecologists. Ecol. Monogr. 85, 3–28. doi: 10.1890/14-0661.1

Johnson, M., Karanth, K., and Weinthal, E. (2018). Compensation as a policy for

mitigating human-wildlife conflict around four protected areas in Rajasthan,

India. Conserv. Soc. 16:305. doi: 10.4103/cs.cs_17_1

Kansky, R., Kidd, M., and Knight, A. T. (2016). A wildlife tolerance model and case

study for understanding human wildlife conflicts. Biol. Conserv. 201, 137–145.

doi: 10.1016/j.biocon.2016.07.002

Karanth, K. K., Gopalaswamy, A. M., Prasad, P. K., and Dasgupta, S.

(2013). Patterns of human–wildlife conflicts and compensation: insights

from Western Ghats protected areas. Biol. Conserv. 166, 175–185.

doi: 10.1016/j.biocon.2013.06.027

Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S., and Kiesecker,

J. (2019). Managing the middle: a shift in conservation priorities based on

the global human modification gradient. Glob. Chang. Biol. 25, 811–826.

doi: 10.1111/gcb.14549

Knopff, A. A., Knopff, K. H. and St. Clair, C. C. (2016). Tolerance

for cougars diminished by high perception of risk. Ecol. Soc. 21:33.

doi: 10.5751/ES-08933-210433

Krafte Holland, K., Larson, L. R., and Powell, R. B. (2018). Characterizing

conflict between humans and big cats Panthera spp: a systematic review

of research trends and management opportunities. PLoS ONE 13:e0203877.

doi: 10.1371/journal.pone.0203877

Lewis, J. S., Farnsworth, M. L., Burdett, C. L., Theobald, D. M., Gray, M., and

Miller, R. S. (2017). Biotic and abiotic factors predicting the global distribution

and population density of an invasive large mammal. Sci. Rep. 7:44152.

doi: 10.1038/srep44152

Lischka, S. A., Teel, T. L., Johnson, H. E., Reed, S. E., Breck, S., Don Carlos, A.,

et al. (2018). A conceptual model for the integration of social and ecological

information to understand human-wildlife interactions. Biol. Conserv. 225,

80–87. doi: 10.1016/j.biocon.2018.06.020

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., and

Hines, J. E. (2017). Occupancy Estimation and Modeling: Inferring Patterns and

Dynamics of Species Occurrence. Amsterdam: Elsevier.

Miller, D. A., Nichols, J. D., McClintock, B. T., Grant, E. H. C., Bailey, L. L.,

and Weir, L. A. (2011). Improving occupancy estimation when two types of

observational error occur: non-detection and species misidentification. Ecology

92, 1422–1428. doi: 10.1890/10-1396.1

Miller, D. A. W., Pacifici, K., Sanderlin, J. S., and Reich, B. J. (2019). The recent

past and promising future for data integration methods to estimate species’

distributions.Methods Ecol. Evol. 10, 22–37. doi: 10.1111/2041-210X.13110

Miller, J. R. B. (2015). Mapping attack hotspots to mitigate human–carnivore

conflict: approaches and applications of spatial predation risk modeling.

Biodivers. Conserv. 24, 2887–2911. doi: 10.1007/s10531-015-0993-6

Morelle, K., and Lejeune, P. (2015). Seasonal variations of wild boar Sus

scrofa distribution in agricultural landscapes: a species distribution modelling

approach. Eur. J. Wildl. Res. 61, 45–56. doi: 10.1007/s10344-014-0872-6

Morin, D. J., Yackulic, C. B., Diffendorfer, J. E., Lesmeister, D. B., Nielsen, C. K.,

Reid, J., et al. (2020). Is your ad hoc model selection strategy affecting your

multimodel inference? Ecosphere 11:e02997. doi: 10.1002/ecs2.2997

Mukeka, J. M., Ogutu, J. O., Kanga, E. and Røskaft, E (2020). Spatial and temporal

dynamics of human-wildlife conflicts in the Kenya Greater Tsavo Ecosystem.

Hum. Wildlife Interact. 14, 255–272. doi: 10.26077/bf21-497e

Nyhus, P. J. (2016). Human–wildlife conflict and coexistence. Annu. Rev. Environ.

Resour. 41, 143–171. doi: 10.1146/annurev-environ-110615-085634

Pacifici, K., Reich, B. J., Miller, D. A. W., Gardner, B., Stauffer, G., Singh, S., et al.

(2017). Integrating multiple data sources in species distribution modeling: a

framework for data fusion∗. Ecology 98, 840–850. doi: 10.1002/ecy.1710

Packer, C., Shivakumar, S., Athreya, V., Craft, M. E., Dhanwatey, H.,

Dhanwatey, P., et al. (2019). Species-specific spatiotemporal patterns of

leopard, lion and tiger attacks on humans. J. Appl. Ecol. 56, 585–593.

doi: 10.1111/1365-2664.13311

Pillay, R., Miller, D. A. W., Hines, J. E., Joshi, A. A., and Madhusudan, M. D.

(2014). Accounting for false positives improves estimates of occupancy from

key informant interviews.Divers. Distrib. 20, 223–235. doi: 10.1111/ddi.0.12151

R Core Team (2020). A Language and Environment for Statistical Computing.

Available online at: https://www.r-project.org/

Riley, S., and Decker, D. (2000). Wildlife stakeholder acceptance

capacity for cougars in Montana. Wildl. Soc. Bull. 28, 931–939.

doi: 10.1080/10871200009359187

Skupien, G. M., Andrews, K. M., and Larson, L. R. (2016). Teaching

tolerance? Effects of conservation education programs on wildlife acceptance

capacity for the American alligator. Hum. Dimens. Wildl. 21, 264–279.

doi: 10.1080/10871209.2016.1147624

Stevens, D. L., and Olsen, A. R. (2004). Spatially balanced sampling of natural

resources. J. Am. Stat. Assoc. 99, 262–278. doi: 10.1198/016214504000000250

Suryawanshi, K. R., Bhatnagar, Y. V., Redpath, S., and Mishra, C. (2013). People,

predators and perceptions: patterns of livestock depredation by snow leopards

and wolves. J. Appl. Ecol. 50, 550–560. doi: 10.1111/1365-2664.12061

Treves, A., Jurewicz, R. R., Naughton-Treves, L., Rose, R. A., Willging, R. C., and

Wydeven, A. P. (2002). Wolf depredation on domestic animals in Wisconsin,

1976–2000.Wildl. Soc. Bull. 30, 231–241.

Treves, A., Martin, K. A., Wydeven, A. P., and Wiedenhoeft, J. E. (2011).

Forecasting environmental hazards and the application of riskmaps to predator

attacks on livestock. Bioscience 61, 451–458. doi: 10.1525/bio.2011.61.6.7

Treves, A., Naughton-Treves, L., Harper, E. K., Mladenoff, D. J., Rose, R. A.,

Sickley, T. A., et al. (2004). Predicting human-carnivore conflict: a spatial model

derived from 25 years of data on wolf predation on livestock. Conserv. Biol. 18,

114–125. doi: 10.1111/j.1523-1739.2004.00189.x

Treves, A., Wallace, R. B., Naughton-Treves, L., and Morales, A. (2006). Co-

managing human–wildlife conflicts: a review. Hum. Dimens. Wildl. 11,

383–396. doi: 10.1080/10871200600984265

Frontiers in Conservation Science | www.frontiersin.org 9 August 2021 | Volume 2 | Article 679028

https://doi.org/10.1016/j.biocon.2017.11.019
https://doi.org/10.1111/j.1469-1795.2010.00368.x
https://doi.org/10.1073/pnas.1012972108
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/mam.12137
https://doi.org/10.1093/czoolo/60.2.170
https://doi.org/10.1111/j.1469-7998.2007.00381.x
https://doi.org/10.2981/06-087
https://doi.org/10.1111/cobi.12475
https://doi.org/10.1016/j.biocon.2014.05.026
https://doi.org/10.1111/j.1469-7998.2011.00871.x
https://doi.org/10.1080/10871209.2015.1004143
https://doi.org/10.1890/14-0661.1
https://doi.org/10.4103/cs.cs_17_1
https://doi.org/10.1016/j.biocon.2016.07.002
https://doi.org/10.1016/j.biocon.2013.06.027
https://doi.org/10.1111/gcb.14549
https://doi.org/10.5751/ES-08933-210433
https://doi.org/10.1371/journal.pone.0203877
https://doi.org/10.1038/srep44152
https://doi.org/10.1016/j.biocon.2018.06.020
https://doi.org/10.1890/10-1396.1
https://doi.org/10.1111/2041-210X.13110
https://doi.org/10.1007/s10531-015-0993-6
https://doi.org/10.1007/s10344-014-0872-6
https://doi.org/10.1002/ecs2.2997
https://doi.org/10.26077/bf21-497e
https://doi.org/10.1146/annurev-environ-110615-085634
https://doi.org/10.1002/ecy.1710
https://doi.org/10.1111/1365-2664.13311
https://doi.org/10.1111/ddi.0.12151
https://www.r-project.org/
https://doi.org/10.1080/10871200009359187
https://doi.org/10.1080/10871209.2016.1147624
https://doi.org/10.1198/016214504000000250
https://doi.org/10.1111/1365-2664.12061
https://doi.org/10.1525/bio.2011.61.6.7
https://doi.org/10.1111/j.1523-1739.2004.00189.x
https://doi.org/10.1080/10871200600984265
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/conservation-science#articles


Warrier et al. Estimating Conditional Conflict Probabilities

Velho, N., Karanth, K. K., and Laurence, W. F. (2012). Hunting: A serious and

understudied threat in India, a globally significant conservation region. Biol

Conserv 148, 210–215 doi: 10.1016/j.biocon.2012.01.022

Warrier, R., Noon, B. R., and Bailey, L. (2020). Agricultural lands offer seasonal

habitats to tigers in a human-dominated and fragmented landscape in India.

Ecosphere 11: e03080. doi: 10.1002/ecs2.3080

Wikramanayake, E., Dinerstein, E., Seidensticker, J., Lumpkin, S., Pandav,

B., Shrestha, M., et al. (2011). A landscape-based conservation

strategy to double the wild tiger population. Conserv. Lett. 4, 219–227.

doi: 10.1111/j.1755-263X.2010.00162.x

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Warrier, Noon and Bailey. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Conservation Science | www.frontiersin.org 10 August 2021 | Volume 2 | Article 679028

https://doi.org/10.1016/j.biocon.2012.01.022
https://doi.org/10.1002/ecs2.3080
https://doi.org/10.1111/j.1755-263X.2010.00162.x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/conservation-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/conservation-science#articles

	A Framework for Estimating Human-Wildlife Conflict Probabilities Conditional on Species Occupancy
	Introduction
	Materials and Methods
	Model
	Simulation Study
	Application

	Results
	Simulation Results
	Application Results

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


