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We provide a response to a recently published evaluation of the subspecies status of

the Peñasco least chipmunk (Neotamias minimus atristriatus). The work we discuss

used exon capture genomic approaches and concluded that their results did not

support the distinction of this taxon as a subspecies, with recommendation that it

be synonymized with N. m. operarius. We refute the interpretations, conclusions, and

taxonomic recommendations of this study, and explain in clearer terms how to interpret

genomic analyses for applied management. We identify four broad conceptual issues

that led to errant recommendations: (1) interpretation of subspecies and diagnosability,

(2) inappropriate use of reciprocal monophyly as a criterion for subspecies, (3) importance

of geographic isolation, and (4) error in hypothesis testing andmisinterpretation of results.

We conclude that the data from this genomic appraisal add to information from prior

studies providing strong support for recognition of N. m. atristriatus as a subspecies.

Our conclusions have important and immediate implications for the proposed listing of

N. m. atristriatus as an endangered species under the U.S. Endangered Species Act.

Keywords: conservation genomics, Distinct Population Segment, Endangered Species Act, independent

evolutionary trajectory, integrative taxonomy, reciprocal monophyly

Recent decades have seen a surge in technological development of genomic sequencing
methods for non-model organisms, along with associated bioinformatic data processing, and
downstream evolutionary analyses. In parallel with these advances, genomic data are increasingly
being applied to questions of taxonomic validity among wildlife, and toward systematic
rearrangements within and among species of conservation concern. These applications may have
consequential repercussions for regulatory legislation. It is therefore increasingly critical to bridge
the “conservation genomics gap” for more effective exchange of knowledge among genomic
researchers, conservationmanagers, and public stakeholders (Shafer et al., 2015; Taylor et al., 2017a;
Kadykalo et al., 2020). This will necessitate an improvement in how scientists translate technical
jargon for knowledge-users, and will ensure that the scientific interpretation of results accurately
reflects the limitations of the genomic data or analyses. As an example of these persistent issues,
we discuss the results, interpretation and conservation-related recommendations from a recently
published phylogenomic study of chipmunks, which bear on a pending decision of U.S. federal
protections under the Endangered Species Act (ESA; Puckett et al., 2021).
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Least chipmunks (Neotamias minimus) are the most
widespread species within a diverse mammalian genus
collectively distributed throughout western North America
(Piaggio and Spicer, 2001; Reid et al., 2012). There are currently
21 subspecies of least chipmunks that reflect a complex history
of differentiation and diverse ecological and biogeographical
associations (Verts and Carraway, 2001). The main focus of
Puckett et al. (2021) was to evaluate the taxonomic validity of
the Peñasco least chipmunk (N. m. atristriatus), a geographically
isolated subspecies at the southernmost extent of the species’
range, and which has been extirpated from most of its historical
distribution (Hope and Frey, 2000; Frey and Boykin, 2007;
McKibben and Frey, 2020). The taxon was described as a
species by Vernon Bailey, a seminal mammalian taxonomist
and naturalist, on basis of cranial and pelage characteristics
(Bailey, 1913). Bailey stated of Eutamias atristriatus (= N. m.
atristriatus), that “In cranial characters this chipmunk shows so
little similarity to E. operarius (= N. m. operarius), its apparently
nearest relative, that I have given it full specific rank. A thorough
revision of the genus may show some other species to which it is
more nearly related, but its range is widely separated from that
of any other small species” (Bailey, 1913, p. 130). Neotamias m.
atristriatus is not merely isolated from other populations, but is
the most highly isolated of any least chipmunk population with a
minimum distance of 200 km from the nearest population across
unsuitable intervening habitat (see Puckett et al., 2021; Figure
1). This taxon is currently listed as Endangered within the State
of New Mexico (NMDGF, 2016) and has been proposed to be
listed as endangered under the ESA at the taxonomic level of
subspecies (USFWS, 2021).

Puckett et al. (2021) performed a series of genomic
data analyses of target-captured nuclear exons (DNA that
codes for gene functions and which may or may not be
subject to selection Luikart et al., 2018). They reported their
data as 513 single nucleotide polymorphisms (SNPs) or 259
concatenated exon sequence loci, depending on the analysis.
Their analyses also considered a mitochondrial genome dataset
(maternally inherited haploid DNA). Taxonomic coverage
included individuals representing 6 to 12 of the 21 recognized
subspecies of least chipmunks (depending on analysis), as well as
samples from several other species of chipmunk occurring in the
southwestern U.S. Puckett et al. (2021, p. 9–10) stated that their
“. . . genetic data do not support the current distinct subspecies
designation for N. m. atristriatus.” From this conclusion they
made the taxonomic recommendation to synonymize N. m.
atristriatus with two other subspecies (N. m. caryi and N. m.
operarius), for whichN.m. operarius has nomenclatural seniority.
Their interpretations of results that led to this recommendation
included: 1) “. . . the clustering analyses, nuclear phylogenomic
tree, and mitogenome haplotype network unequivocally grouped
N. m. atristriatus with N. m operarius and N. m. caryi in the
southern clade”; and 2) “Neither mitochondrial nor nuclear
datasets identified reciprocally monophyletic diversity between
N. m. atristriatus and the geographically proximate N. m.
operarius and N. m. caryi” (Puckett et al., 2021, p. 10; 13;
emphases added by us). We refute the interpretation, principal
conclusions, and taxonomic recommendations of Puckett et al.

(2021; as outlined above). In this paper we identify four broad
conceptual issues that led to errant recommendations: (1)
interpretation of subspecies and diagnosability, (2) inappropriate
use of reciprocal monophyly as a criterion for subspecies, (3)
importance of geographic isolation, and (4) error in hypothesis
testing and misinterpretation of results. We conclude that the
data generated by Puckett et al. (2021) support recognition of N.
m. atristriatus at the subspecies rank. In addition, we highlight
that the conceptual oversights result in incorrect and misleading
information for decision makers that can have profound impact
on the conservation of taxa. Our primary intention here is
to focus on furthering our collective understanding of how
genomic analyses and evolutionary relationships should be
interpreted, and their limitations for governing changes in
infraspecific taxonomy.

INTERPRETATION AND DIAGNOSABILITY

OF SUB-SPECIES

Subspecies are a rich concept. There is an extended literature
on the definition of subspecies (for thorough reviews see Haig
et al., 2006; Remsen, 2010; Patton andConroy, 2017; and citations
therein). Subspecies are characterized by heritable diagnostic
traits including morphological or molecular differences that vary
in frequency between geographically discrete but potentially
interbreeding units of analysis (Hennig, 1966; Patten, 2010).
An important criterion for assessing the validity of subspecies
is an understanding of a taxon’s biogeographic history. Given
that subspecies are geographic variants, particularly among
mammals, subspecies are described based on their geographic
distribution coupled with diagnosable characters (Hall, 1981;
Remsen, 2010). In contrast, Puckett et al. (2021) used a
definition of subspecies devised specifically for cetaceans by
Taylor et al. (2017b, p. 174): “. . . a population, or collection
of populations, that appears to be a separately evolving
lineage with discontinuities resulting from geography, ecological
specialization, or other forces that restrict gene flow to the
point that the population or collection of populations is
diagnosably distinct.” And with regards to diagnosability, Taylor
et al. (2017a) invoked the definition of Archer et al. (2017,
p. 104) as “. . . a measure of the ability to correctly determine
the taxon of a specimen of unknown origin based on a
set of distinguishing characteristics.” Subsequently, Puckett
et al. (2021, p. 11) stated (including emphasis) that “it is
unclear what diagnosable, heritable character could be used
to correctly determine that a least chipmunk specimen of
unknown origin was N. m. atristriatus.” Archer et al. (2017)
did not provide insight to why diagnosis of cetaceans must
be based on a specimen of unknown origin, but we presume
that it reflects whale migration, and this is supported by
their citation of Brambilla et al. (2010) with reference to
diagnosability of migratory bird subspecies. This definition
of subspecies used by Puckett et al. (2021) is not relevant
for terrestrial non-migratory small mammals. The geographic
origin of N. m. atristriatus, coupled with morphological or
molecular characters, would allow for recognition of this
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subspecies. For instance, even photographs taken with remote
cameras allow for accurate diagnosis of N. m. atristriatus when
paired with information about location (McKibben and Frey,
2021).

Geographic origin aside, the statement of unclear
diagnosability by Puckett et al. (2021) is misleading to decision-
makers. This is coupled by a statement in the introduction that
“. . . considerable scientific uncertainty surrounds the validity
of N. m. atristriatus as a subspecies” (Puckett et al., 2021, p. 2),
which is dismissive of the statistical support for morphological
and ecological distinction of this taxon, based on previously
published data. We contend that N. m. atristriatus is diagnosable
via multiple characters investigated since its description: (1)
significant genetic differentiation measured by the fixation index
(FST values) between N. m. atristriatus, N. m. operarius and N.
m. caryi (hereafter collectively the Southern group; i.e., Puckett
et al., 2021 tested for significance of their FST values and provided
these results in the Supporting Information Appendix S1); (2)
unique mitochondrial diversity (Puckett et al., 2021, p. 11) based
on unshared haplotypes within their haplotype network and
deep estimated divergence times from their time-calibrated
mitogenome tree; (3) unique pelage, unique cranial and bacular
morphology, and unique allozymes (genetic variants; all assessed
by Sullivan, 1985); and (4) unique ecological habitat associations
(Sullivan, 1985). For context, we also point out that subspecies
are based on population level diagnosability, not diagnosability
of each individual in a population (Patten, 2015). This taxon
is diagnosable.

USE OF RECIPROCAL MONOPHYLY

Reciprocal monophyly occurs when two or more clades are each
monophyletic (genetically unique) with respect to the other, and
given the genetic data being analyzed. This condition forms the
basis of both the genealogical and phylogenetic species concepts
(Wheeler and Meier, 2000; de Quieroz, 2007). At the genome
scale, reciprocal monophyly would be indicative of a lack of gene
flow between biological species. But, for subspecies, gene flow is
expected, which would result in a lack of reciprocal monophyly
(Patten, 2010; Patten and Remsen, 2017). By extension, reciprocal
monophyly is explicitly not an acceptable criterion for defining
subspecies (Braby et al., 2012; Patten, 2015). Puckett et al.
(2021) viewed the unequivocal grouping of the three Southern
group subspecies as support for their primary conclusion that
lack of reciprocal monophyly between N. m. atristriatus and
other subspecies justifies synonymy with N. m. operarius. This
interpretation is both incorrect and oversimplified from an
evolutionary perspective. The length of time that taxa have
diverged from one another is ultimately reflected by how resolved
genetic relationships are, but this also depends on both functional
and stochastic processes that cause some parts of a genome to
resolve as reciprocally monophyletic faster than others (Funk and
Omland, 2012). The choice of data is therefore consequential for
the power to resolve relationships. Phylogeny estimation might
recover well-supported reciprocal monophyly between two
recognized subspecies from a given genetic locus. Conversely,

even fully reproductively isolated species may exhibit a lack of
reciprocal monophyly at a given locus due to processes that
include incomplete lineage sorting and ancient hybridization,
both common phenomena among mammals, and in particular
among western chipmunks (Sullivan et al., 2014). As an example,
Puckett et al. (2021) did not recover well-supported reciprocal
monophyly for N. alpinus, based on their exon data, although
this is a recognized species based on more rapidly evolving
loci coupled with other diagnostic characters (Rubidge et al.,
2014). As such, although reciprocal monophyly is commonly
used to indicate evolutionary independence of species under
several species concepts, it is not a relevant criterion for assessing
the validity of infraspecific taxonomy (Braby et al., 2012; Patten,
2015).

IMPORTANCE OF GEOGRAPHIC

ISOLATION

Geography and geographic isolation are inextricably linked to
the concept and delineation of subspecies (Vignieri et al., 2006;
Patten, 2010). In addition to reproductive incompatibility, a
lack of gene flow between populations can also be achieved
simply through strict geographic isolation, and isolation is a key
criterion for diagnosing independent evolutionary trajectories
(Franklin, 1980; Sobel et al., 2010). From its most basic
perspective, strict geographic isolation means that inheritance of
genotypes from generation to generation, along with epigenetic
factors (genotype-environment interactions) and any local
adaptive pressures, is not influenced by any immigration
and subsequent reproduction of related individuals from
separate populations. Given isolation and local environmental
conditions, the phenotype of a population will diverge through
various evolutionary mechanisms including neutral genetic drift
(particularly in small, declining, or demographically unstable
populations) and the adaptive processes of natural selection in
response to unique and particularly extreme environments. All of
these dynamics are reflected by the ecology of N. m. atristriatus
(Frey and Boykin, 2007). As such, geographic isolation of N. m.
atristriatus for an extended timeframe, with evidence from both
the divergence time estimates of Puckett et al. (2021) and by
the relatively well-resolved biogeographic history of isolation and
connectivity among the southwestern sky islands (e.g., Patterson,
1982; Frey et al., 2007; Hope et al., 2016; not discussed by Puckett
et al., 2021) constitute primary lines of evidence for uniqueness
of this subspecies. Neotamias m. atristriatus diverged from
other subspecies of the Southern group between 190 thousand
years ago (kya; Puckett et al., 2019) and 824 kya (Puckett
et al., 2021), two mean divergence estimates based on nuclear
species-tree analysis and mitogenome phylogeny reconstruction
(under a Yule tree prior), respectively. The predicted distribution
of N. minimus during the Last Glacial Maximum (∼18 kya)
also demonstrates isolation of N. m. atristriatus from other
Southern group subspecies (Puckett et al., 2021—Figure 8). All
of the evidence presented supports prolonged isolation of N. m.
atristriatus on an independent evolutionary trajectory. It then
may be considered a matter of philosophical differences as to
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whether such a taxon represents a distinct subspecies (e.g., King
et al., 2006; Ramey et al., 2007; Cronin et al., 2015; Weckworth
et al., 2015), or indeed a distinct species (de Queiroz, 2020).

ERROR IN HYPOTHESIS TESTING AND

OVERINTERPRETATION OF RESULTS

As expected by biogeographic history, there is a very close
relationship between N. m. atristriatus and other populations
in the Southern Rocky Mountains (Sullivan, 1985). However,
this relationship has no bearing on the sub-specific status of
N. atristriatus. It simply reflects that these individuals share
a more recent common ancestor than they do with other
populations of Neotamias. Puckett et al. (2021) accepted a
lack of supported evidence for the genetic distinctness of
N. m. atristriatus (e.g., a lack of strong nodal support of
evolutionary relationships recovered from a phylogenetic tree)
as conclusive evidence for synonymy of the three Southern
group subspecies of least chipmunks. We agree with Puckett
et al. (2021) that the evidence indicates that N. m. atristriatus
is genetically aligned as a member of the Southern group. But,
even if the recovered phylogenetic pattern was consistently well-
supported as paraphyletic or polyphyletic among subspecies
within the Southern group (i.e., evolutionary non-independence
that suggests either that interbreeding is still occurring or
that not enough time has passed for populations to exhibit
fixed genetic differences), it would still not be appropriate to
invalidate subspecies status. Subspecies are well-established as
potentially interbreeding units of analysis and represent taxa
on the continuum of the formation of species (Wilson and
Brown, 1953; Padial et al., 2010; Patton and Conroy, 2017).
Lack of strong support for a relationship does not signal
strong support for the alternative (unless the alternative is
strongly supported). The authors did not provide hypotheses or
predictions to be tested, but the implicit null hypothesis they
tested was that N. m. atristriatus is not a valid subspecies. Thus,
their interpretation that N. m. atristriatus is not distinct from
the other members of the Southern group opens them to a
classic type II statistical error, wherein they accepted the null
hypothesis as true based on the absence of information that
the subspecies are different (Patten, 2010; Patten and Remsen,
2017).

None of the analyses used to assess distinction of N.
m. atristriatus, including the mitogenome haplotype network,
clustering analyses, and nuclear phylogenomic tree, provide any
statistical support for independence or for non-independence.
The Splitstree method for mitogenome haplotype network
construction does not provide any statistical support for
groups (Puckett et al., 2021—Figure 2), and is therefore
only representative of the genetic distance between individuals
(Huson et al., 2008); specimens of N. m. atristriatus appear
to be grouped more closely to each other than to any
other individuals of the Southern group, although distance
values were not provided. The principal components clustering
analyses do not provide K-values for number of clusters or

95% ellipses around discrete groups (Puckett et al., 2021—
Figure 4). The first two components of this ordination within
N. minimus only account for 9.3% of the observed genetic
variation, indicating considerable variation among these taxa
was not reported. The nuclear concatenated phylogenomic tree
provides no bootstrap support for any relationship within the
Southern group clade or even for monophyly of the Southern
group (Puckett et al., 2021—Figure 6). Lack of support values
means we can draw no conclusions about the strength of
relationships among individuals within this clade. With these
ambiguities, we cannot conclude that N. m. atristriatus is
not distinct.

Given the lack of phylogenetic resolution recovered from
exon capture data, Puckett et al. (2021) may have benefited
by reporting additional analyses with their data, or minimally
by discussing shortcomings, leaving the door open for further
future analyses that might more accurately test hypotheses
of uniqueness for N. m. atristriatus (Padial and De la
Riva, 2021). For instance, exon data are known to evolve
more slowly than intron data and other genomic elements
including microsatellites, and may not be most suitable for
resolving the tips of the tree of life (Bi et al., 2012). Exon
data are most beneficial for quantifying adaptive processes
(Luikart et al., 2018), including divergence among taxa,
through analysis of non-neutral outlier loci, but assessments
of this variation were not presented. Finally, from an explicit
conservation standpoint, methods have recently been developed
for hierarchical assessment and designation of conservation
units including not just evolutionary significant units but also
management units based on neutral loci and adaptive units
based on loci under selection (Funk et al., 2012; Barbosa
et al., 2018; Hohenlohe et al., 2021). Although none of these
units are considered for mammalian listing under the ESA,
they would surely bolster the importance of a recognized
subspecies such as N. m. atristriatus in the context of the
entire species.

GENOMICS AND CONSERVATION POLICY

We present this case study in response to a more general
rapid expansion of genomic methods for assessing imperiled
taxa associated with ESA listing. Such studies are inherently
“applied research” and reach multiple stakeholders with variable
levels of expertise for interpreting these complex datasets.
Importantly, for those stakeholders not accustomed to translating
genomic jargon, such data and analyses are not easily associable
with their relevance to the ecology, biogeographic history, and
contemporary demographic trends of the taxon of interest.
Thus, some may rely on the conclusions presented without
the knowledge of theory and molecular methods necessary to
rigorously decipher data and results. Greater integration among
disciplines is imperative (Godfray and Knapp, 2004; Padial
et al., 2010). Molecular ecologists that have adopted genomic
methods should invest in more comprehensive understanding
of the biology of the study taxon and system. Studies focused
on taxonomic assessments would benefit from collaboration
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with taxonomists (Pruett and Winker, 2010). And, extra care
should be made to clearly explain what each analysis can or
cannot confirm about the question of interest. Decisions by
management agencies based on academic interpretations of
complex datasets can be consequential for the maintenance
of biodiversity. It is therefore equally important that decision
makers have the information they need from both ecologists
and evolutionary biologists to accurately assess the findings of
genomic analyses. In addition, journal editors should assure
that data and methods that relate to listing decisions be
made available to ensure reproducibility, and should not accept
for publication interpretations of reciprocal monophyly for
qualifying subspecies status (e.g., Gilbert et al., 2012; Fanelli,
2018).

The proposal to list N. m. atristriatus as a subspecies under
the ESA has recently undergone a 60-day public review period
(USFWS, 2021), which makes the discussion about validity of
its taxonomic status of critical importance. Since its inception,
the ESA has always allowed listing of species and subspecies
as these are formally recognized taxonomic entities (Haig
et al., 2006). More recently, policy has also allowed the listing
of Distinct Population Segments (DPSs) of vertebrates. DPSs
are defined based on discreteness and importance relative to
the remainder of the taxon, which means that interpretation
of taxonomy can influence recognition of a DPS (Haig and
D’Elia, 2010). Thus, although Puckett et al. (2021) promoted
the Sacramento Mountains population as a unique DPS, their
overarching conclusion thatN.m. atristriatus taxonomywarrants
revision casts doubt on the current evidence presented to
the ESA as a basis for listing. Our account of the various
misinterpretations of Puckett et al. (2021) reflects many of
the same issues noted from other molecular genetic studies
that have tested the validity of subspecies (e.g., Vignieri et al.,
2006; Patten, 2015). Neotamias m. atristriatus is a Linnean
trinomial taxon that was described by a professional taxonomist
(Bailey, 1913) and has been validated by many subsequent
analyses of its genetics, morphology, and ecology (Sullivan,
1985; Sullivan and Petersen, 1988). Protections for either DPSs
or subspecies can potentially be legally rescinded. However,
DPS is a rank that has arisen through legislative wildlife
policy, and is prone to litigation and prolonged interpretation
that can stall conservation efforts (Haig and D’Elia, 2010).
Conversely, subspecies are a formal biological rank that describes
nature, and as such may be contested based on appropriate
biological evidence, but not through legal legislation (Haig et al.,
2006).

CONCLUSION

We conclude that, rather than invalidating N. m. atristriatus,
the results of Puckett et al. (2021) actually augment prior
research demonstrating the validity of N. m. atristriatus as a
subspecies. It has experienced long-term geographic isolation,
and it is morphologically, genetically, and ecologically distinctive.
We therefore recommend that N. m. atristriatus be considered
for listing under the ESA at the subspecies level. The

misinterpretation of genomic data as we have described can
matter for endangered species listing. In some cases taxonomic
disputes have ostensibly even been used in attempt to thwart
or cast doubt on ESA listings (Vignieri et al., 2006). As
such, it is imperative that studies centered on the principles
of conservation genomics carefully consider the limitations
of data, while also progressing to finer-scale diagnoses, for
instance based on the genomics of local adaptation (e.g.,
Steiner et al., 2009). Although we vigorously disagree with
their conclusions, Puckett et al. (2021) have provided the first
focused genomic assessment of relationships among Southern
subspecies of least chipmunks. Undoubtedly, future studies will
benefit from their contributions for appropriate protections of
declining wildlife.
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