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Many of the choices humans make with regard to infrastructure, urban planning and

other phenomena have impacts that will last thousands of years. This can readily be

seen in modern cities in which contemporary streets run along street grids that were laid

out thousands of years prior or even in which ancient viaducts still play a role. However,

rarely do evolutionary biologists explicitly consider the future of life likely to be associated

with the decisions we are making today. Here, we consider the evolutionary future of

species in cities with a focus on the origin of lineages and species. We do so by adjusting

evolutionary predictions from the theory of island biogeography so as to correspond to

the unique features of cities as islands. Specifically, the species endemic to cities tend to

be associated with the gray habitats in cities. Those habitats tend to be dominated by

human bodies, pet bodies and stored food. It is among such species where the origin of

new lineages is most likely, although most research on evolution in cities has focused on

green habitats. We conclude by considering a range of scenarios for the far future and

their implications for the origin of lineages and species.
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INTRODUCTION

Globally, cities are growing both in number and in size, with dozens of cities now containing more
than 10 million people (United Nations Statistics Division, 2017) and new megacities predicted
in the coming decades (Terando et al., 2014). Roughly 3% of Earth’s terrestrial area is now
urban (Johnson and Munshi-South, 2017) with much more suburban. At the same time, the
number of people living in cities continues to grow, both in absolute terms and as a proportion
of the global population (United Nations, 2018), such that the evolution occurring in cities has
the potential to affect and even be seen by billions of people. Recently, there have been calls
to conserve evolutionary processes and, in doing so, to ensure their ability to engender future
diversity (Des Roches et al., 2018). If we are to watch, understand and thoughtfully conserve and
manage evolution in all of its details anywhere, surely where we live should be one of those places.
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This should occur while also recognizing that biodiversity
can provide both services and disservices (Dunn, 2010; von
Döhren and Haase, 2015) and, so too, new species can be
benign, beneficial, or deadly. Here we consider evolution as
it relates to the origin of new species. As a group, we have
spent decades studying the ecology and evolution of rodents
(Munshi-South), pigeons (Carlen), ants (Martin), household
species (Dunn), insect pests (Vargo), plants and their microbes
(Cibrian-Jaramillo), lice (Light), and even viruses that infect
bacteria that infect household pests (Yitbarek). We have done so
with studies of many cities, but with a special focus onManhattan
in New York (Figure 1). Yet, like others, we have written little
about the origin of species in cities. Here we take the opportunity
to begin to remedy that gap.

In considering the origin of species in cities, we take four steps.
First, we lay out a general theory of diversification among cities.
Second, we consider the role that differences among cities play
in diversification, via effects on mutation rates, generation times
and the strength and direction of selection. Third, we consider
evidence for divergence of species among cities, with a focus
on insights from Manhattan in New York (Figure 1) and, more
generally, cities in the United States. Fourth, we discuss potential
types of future cities in order to facilitate conversations about
the choices we might make to favor one evolutionary outcome
relative to another.

The temptation in considering the future is to consider the
next quarter, as businesses often do, the next year, the next decade
or, if really extending the temporal scale, the years 2050, 2080,
or 2100. Here we extend the temporal scale and consider the
far future hundreds or even thousands of years from today. Our
focus on the far future of life may seem frivolous or even like the
misdirection of time and resources at a time of ecological crises.
Yet, many of our current actions will greatly influence the far
future of biodiversity—we are laying the foundation stones for
the evolutionary future today. Most of the infrastructure being
built will have a legacy of decades and, in some cases, centuries
(Liu et al., 2014). As a result, plans should, at the very least, entail
century-thinking. In addition, consideration of the far future
allows us to ponder not only the most immediate scenarios (ever
more, ever larger cities, connected within regions and sometimes
among regions), but also scenarios that are more remote from
our daily experiences and yet might nonetheless be possible.

GENERAL THEORY

In developing general theory for the future evolution of
species in cities, we rely on insights from island biogeography,
metapopulation theory and macroecology. In this context, we
offer six primary sets of hypotheses and predictions.

First, we hypothesize that new species are more likely to
evolve in big cities and big groups of cities or megalopolises
than in small cities. This prediction is an extension of
the area-speciation hypothesis articulated by MacArthur and
Wilson (1967) and refined by Kisel and Barraclough (2010).
This prediction has three forms. It might apply to species
evolving (a) relative to their non-urban ancestors/relatives, (b)

relative to urban populations in other cities, or (c) relative to
subpopulations in the same city.

Second, the probability of extinction of species from urban
islands decreases as a function of the size of the city. This
prediction follows directly from MacArthur and Wilson’s area-
extinction hypothesis (1967), as well as from more recent models
that build area-extinction expectations up from species’ traits
and metapopulation models (Burger et al., 2019). City wide
extinctions due to the small area of cities may seem impossible
to document. However, they have been observed in the context of
heavily managed species such as bed bugs or rats (Brown, 1948).
Bed bugs were essentially eradicated in many cities globally by
about 1960 (Davies et al., 2012); urban biogeography theory, as
well as empirical observations from islands (Toft and Schoener,
1983), predict that such eradication was likely to have been easier
in smaller cities and in more isolated cities (where recolonization
was less likely). As a result, we predict new species to be more
likely to evolve in bigger cities, but then also to persist once
they have evolved. It appears that some novel coronaviruses,
for example, are more likely to evolve in big cities (particularly
those with many unvaccinated individuals, the population sizes
of which are the most direct metric of “island size” for the virus),
and also more likely to avoid local extinction in such cities (Stier
et al., 2020).

Third, the main island biogeographic rules in cities apply
most strongly to those species that live primarily in cities,
species we call “urban endemics.” For urban endemics, the area
between cities is most directly analogous to the sea between
oceanic islands. However, the biogeographic rules also apply
to populations of non-urban endemic species that acquire
independence from other populations of the same species
(whether by isolation or due to local selection and adaptation)
living outside of cities. By analogy with the disease ecology
literature, we call such species “spillover species.”

Fourth, in comparing taxa, the likelihood of divergence of
species within or among cities is strongly influenced by their
gene flow, as Kisel and Barraclough (2010) have documented.
Gene flow prevents local adaptation. Current evidence from over
150 studies indicates that species vary widely in their extent
of gene flow and hence differentiation within and among cities
(Miles et al., 2018). In considering islands, the probability of the
evolution of new species is greatest for species with less gene flow
(Kisel and Barraclough, 2010); the same should be true for cities.

Fifth, unlike oceanic islands, the traits that facilitate gene
flow (and foil differentiation) within and among cities are likely
to be those related to whether species are able to move with
humans such that the taxa likely to diverge in cities might
be quite different from those on oceanic islands. For example,
spiders are relatively likely to diversify within and among oceanic
islands (Opatova and Arnedo, 2014). However, in cities this
might not necessarily be the case if (or when) spiders are
frequently transported from city to city by humans. Recently,
Western black widow spiders have been shown to have more
gene flow among cities than among geographically matched rural
populations (Miles et al., 2018). Similarly, some microbe lineages
have diversified among oceanic islands (Lachance and Fedor,
2014), but with urban islands there is the potential for microbes
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FIGURE 1 | At top, a satellite image of Times Square in Manhattan. In this image, the only visible green habitat is a small green rooftop on the Stephen Sondheim

Theater (at far right). As a result, the living biomass of this part of Manhattan is nearly entirely human and part of the gray habitat. Image courtesy of Google Earth. At

bottom, a view of all the major green habitats in broader Manhattan as well as the more expansive gray habitats that surround them. In the green parts of the city,

plant biomass dominates; in the gray parts of the city, human biomass does (Department of Information Technology Telecommunication, 2018).

to be moved among cities (Neiderud, 2015) as recently became
apparent with the virus that causes COVID-19. Not only did that
virus spread globally, but so too have most of the new variants of
the virus, often within weeks (Li B. et al., 2021).

Just which species humans move depends on transportation
systems, border policies and many other factors. For centuries,
the predominant mode of movement of people and goods over
long distances was ships. Thanks to the movement of ships,
some rat (Rattus spp., such as the Norway rat) and mouse (e.g.,
Mus musculus, the house mouse) species appear to have moved
frequently in previous centuries among ports and their cities
(Armitage, 1993). Until as recently as the 1930s, it was assumed
that most or even all large ships would host rats and sanitation
measures focused on distinguishing ships with an “ordinary
number of rats,” from those with an excessive number of rats
(Pierce, 1930; Jones et al., 2013). However, hygiene on ships has
led them to be ever less likely to transport rats and mice (Russell
et al., 2007; Sjodin et al., 2021). As a result, for example, the
movement of Norway rats (R. norvegicus) has decreased among
ports and cities such that Norway rats have begun to diverge
among cities (Lack et al., 2013; Puckett et al., 2016) and among
neighborhoods within cities (Combs et al., 2018a,b; Byers et al.,
2021).

The key generalism here is that human behaviors (with regard
to shipping and hygiene) can have as much influence on which
species move among cities and how these species move among

cities, as do the dispersal traits of the species themselves. In
some scenarios of human behavior (see the end of this article)
movement of species by humans will make isolation of taxa
within cities or megacities unlikely. In other scenarios, it will be
the norm (see Figure 2 for a visualization of the ways in which
cities can be both corridors and archipelagos, dependent both on
the organism being considered but also the scale of analysis).

Sixth, the “size” of an urban island may be a function of
more than just its geographic area. Larger oceanic islands tend
to have more kinds of habitats, more available biomass (and/or
habitat) and more net primary productivity per unit time (which
is to say, a greater flux of energy). All of these factors can
lead to increased rates of divergence and speciation (Losos and
Schluter, 2000; Warren et al., 2015) and alter the dynamics of
speciation; they might also do so in cities. However, the nature
of these factors differs in cities relative to oceanic habitats in
that in cities each of these factors is strongly influenced by
human actions.

The number of kinds of habitats in cities is controlled by
public and private land management and ownership and by
human population density. To the extent that the origin of
species on islands is mediated by habitat diversity, the origin
of species in cities will be subject to the ways in which urban
habitats are managed and inhabited. Currently, such differences
in management are strongly influenced by the age of cities,
among other factors, including culture and socioeconomics (e.g.,
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FIGURE 2 | Urban Archipelagos and Corridors. This map shows patterns of commuter movement into and out of cities in the United States, color coded as a function

of the density of commuters. Yellow shows areas with high densities of people and movement. Orange indicates an intermediate density of overlapping commutes.

On the one hand, this map emphasizes the isolation of many cities, particularly, for example, cities of the intermountain West, and also the isolation of some groups of

cities, such as those of California, relative to other cities, such as those of the Northeast. On the other hand, however, this map shows a measure of the extent to

which cities can serve as corridors for species able to move with humans in vehicles or along roads. Highlighted here as well are cities mentioned elsewhere in the

article, including the Northeastern megacity (note the modest break located around Connecticut) and, within it, Manhattan. Data are from Nelson and Rae (2016).

Norton et al., 2016). In the future, their drivers may be very
different (see “scenario thinking” below).

As for the total biomass in cities, it is heavily influenced by
the amount of green space and by the nature of human food
subsidies. The first of these points is obvious; the more green
space there is, the more primary productivity a city is likely to
have. The second of these points is perhaps less obvious. Human
food subsidies in cities are poorly studied by ecologists and yet
they create and modulate much of the resource base available to
organisms in cities. For example, 1.63 million people live in the
borough of Manhattan in New York City (U.S. Census Bureau,
2019; see Figure 1 for geographic context). The average adult
American body weighs 81 kilograms (180 pounds; Walpole et al.,
2012) and contains 12 kg carbon (C; Bar-On et al., 2018). As
a result, the average resident (nighttime) biomass of humans
(anthromass) in Manhattan is nearly 20 million kilograms C
(19.6 million). Compare this with the biomass of plants in
Manhattan. On average, total aboveground and belowground
plant biomass in temperate forests is about 12,006 g/m2 (say
12 million kg/km2; calculated based on Fahey et al., 2005). If
roughly 28% of Manhattan’s 59 km2 is green space (Natural Area
Conservancy, 2021), then the total plant biomass in Manhattan

is 200 million kg C. This is almost certainly an overestimate
inasmuch as the green spaces in Manhattan includes habitats
with low plant biomass such as grassy parks and street medians.
Pulling these pieces back together, this crude math suggests that,
on its own, the anthromass in Manhattan is roughly one-tenth
the biomass of plants. This is vastly different frommost terrestrial
ecosystems where, on average, animal biomass tends to be just
one two hundredth that of plant biomass (Bar-On et al., 2018).
However, our estimate is deceptive for two reasons. First, the
population of Manhattan doubles during the day when people
come to “the city” to work, or at least it did before the COVID-
19 pandemic (McKenzie et al., 2010). As a result, during the day,
anthromass in Manhattan may be one-fifth that of plant biomass.
Second, our estimates average across the entirety of Manhattan.
In truth the city consists of relatively discrete areas where plants
grow (such as parks and medians) and those in which they don’t.
As a result, it is probably more useful to think of cities in two
parts, green habitats that are relatively high in plant biomass and
that also support the biomass of species dependent on plants and
gray habitats that are lower in total biomass and dominated by
human biomass. The distribution of these habitats can be seen in
the lower panel of Figure 1.
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Notably, the food web in the gray habitats of Manhattan and
other cities is inverted. In most cases, plant biomass is tiny—
and reflected in the occasional house plant or balcony flower—
compared to the biomass of humans or, more broadly, humans,
pets and other indoor animals. This inversion of the human-
supported indoor trophic pyramid is due to agricultural subsidies
from rural areas to urban areas. This rural subsidy to cities
is analogous to marine subsidies to terrestrial life on a small
island (Polis et al., 1997). This rural trophic subsidy is a hidden
component of urban ecosystems, though we can provide a rough
estimate as to some aspects of its dimensions. If the average New
Yorker consumes 2.5 kg of food per day (data from U.S. and
Department of Agriculture Economic Research Service, 2021)
and keeps about a month worth of stored food (Golem and
Byrd-Bredbenner, 2015), then the average person has at least
75 kilograms of food (30 days ∗ 2.5 kg/day) in their house (per
capita), amounting to roughly 122 million kg of stored food at
any moment in Manhattan, more than half the total C biomass
of plants in Manhattan (Golem and Byrd-Bredbenner, 2015).
This stored food represents a habitat and food for many species,
including species now restricted to cities or human dwellings,
some of which have been living in dwellings for many thousands
of years (Panagiotakopulu et al., 2010).

Moreover, in New York City roughly 3 million kg of food is
wasted daily (∼0.5 kg per person per day; Conrad et al., 2018).
Once stored food is discarded (and turned into waste), it becomes
a food resource for wildlife and a habitat for parasites and
pathogens in the form of garbage. In many countries, less than
half of municipal solid waste, a large portion of which is food
waste, is collected (Adhikari et al., 2006 and references therein).
In cities in developed countries, however, such as New York City,
the majority of the food waste resource is moved out of the city to
landfills or dumps (Kaza et al., 2018), much as feces is displaced
to waste treatment facilities. These displaced components of the
urban ecosystem have the potential to be evolutionary hotspots.
However, our focus here is on the waste that makes its way to
streets and green spaces, as well as the feces that makes its way,
one defecation at a time, to those same places. The quantity of
pet feces on the streets of cities can be immense (Rubel and
Wisnivesky, 2005) and is typically complemented by a smaller but
consequential density of human feces.

Our calculations of the biomass in Manhattan are very rough,
but they should make our main point clear. The bulk of biomass
of gray habitats of cities is stored food, human bodies and, also,
pet bodies, along with various types of waste. Plant biomass and
the species that depend on it, although the focus of the vast
majority of urban ecological research, are a minor component
of the most “lived in” parts of cities. We may underestimate
the amount of green life indoors (we know of no studies of the
biomass of houseplants in an individual neighborhood, much less
a city, and which likely varies due to cultural trends) but even
if plant biomass in houses is larger than we have estimated, it
will remain dwarfed by other forms of biomass in gray habitats.
This appears to have long been true. Uruk, one of the first cities
in the world, is described in the epic of Gilgamesh as being
one third dwellings, one third clay pits (for brick making), and
one third orchards. In other words, like many modern cities,

Uruk was about two thirds gray habitat. However, this depiction
underrepresents the extent to which cities, be they modern
Manhattan or ancient Uruk, are gray inasmuch as the vertical
dimension of buildings leads them to have more floor area and
volume than would be suggested based on their footprint alone.
For example, a NESCent Working Group on the Evolutionary
Biology of the Built Environment et al. (2015) calculated that
the floor space of Manhattan is twice that of the outdoor habitat
(green and gray together) due to extensive multilevel buildings.

Superficially, one might imagine that there are relatively few
species that live primarily in the gray habitats of cities. However,
recent studies of bodies (McDonald et al., 2018) and homes
(Dunn et al., 2013; Barberán et al., 2015; Bertone et al., 2016)
suggest that the diversity of species in urban gray habitats can be
high. Host dependent taxa make up a relatively large percentage
of all species in cities. For example, human bodies, as well as those
of pets, can host many thousands of bacteria species (McDonald
et al., 2018), thousands of bacteriophage species (Camarillo-
Guerrero et al., 2021), hundreds or perhaps even thousands of
kinds of viruses that infect human cells (Liang and Bushman,
2021), tens of fungal species (Huseyin et al., 2017), and a modest
diversity of protists. Most of these species are only found in
environments where humans or pets are present. Human homes
can contain tens of thousands of bacteria and fungal species
(Barberán et al., 2015), thousands of animal species (Madden
et al., 2016), and many other taxa. No one has yet estimated
what proportion of these species are primarily house dwellers,
but for those taxa that are well-studied, the number seems high.
Of the more than one thousand arthropod species found in
homes in Raleigh, North Carolina (Bertone et al., 2016), no fewer
than a hundred of those species dwell primarily in homes (M.
Trautwein, pers. comm.) and many of those animal species seem
likely to harbor host-specific bacteria and other microbe species
and, in turn, host specific bacteriophages (Raymond and Erdos,
2022).

Another component of island “area” that has been argued
to be important is the flux of energy, typically measured
as Net Primary Productivity (NPP). In the green habitats of
cities, NPP is probably a reasonable proxy for energy flux.
However, in the gray parts of cities, energy flux is most strongly
influenced by human birth and immigration rates (which can
be approximated by population size) and per capita flux of
food into cities (which varies by an order of magnitude among
cultures, cities and regions) as well as per capita food use
efficiency/waste production.

Based solely on their biomass or flux of energy, green habitats
seem more likely to favor the origin of new species in low
density cities and gray habitats in high density cities. However, we
hypothesize that the species living in the gray habitats of cities are
more likely than those in green habitats to be isolated relative to
surrounding environments and, hence, be more likely to diverge.
For example, a mourning dove living in the forest of Inwood Park
in Manhattan is less likely to be isolated by the boundaries of
New York City than a pigeon living in the gray habitats of the
city. The mourning dove can move north into more suburban
Westchester County and Connecticut (green space), while a
pigeon may be limited to areas with greater urbanization (gray
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space; Carlen and Munshi-South, 2021). Similarly, lineages of
Culex pipiens f. molestus living in the very gray habitats of the
London Underground (Byrne and Nichols, 1999) or the New
York City subway system seem far more likely to diverge among
cities than closely related lineages ofCulex pipiens f. pipiens living
in greener habitats above ground (Aardema et al., 2020).

THE CLIMATES OF CITIES

We also predict that regional climate will shape the evolution that
occurs in cities.

One body of thinking, metabolic theory, directly links
temperature to rates of evolution via the effects of temperature
on metabolic rate. Where conditions are hot, metabolic rates are
faster and, as a result, so too are generation times (Brown et al.,
2004), especially for ectothermic taxa, be they bacteria, fungi or
insects (Sibly et al., 2012). Because the units of time relevant to
evolution are not months or years but generations, this should
lead to increases in the rate of divergence of hot cities relative
to cooler cities (Brown et al., 2004; Burger, 2021). On top of the
direct effects of temperature, more tropical conditions (which
is to say, both hot and wet) have been argued to be associated
with both faster speciation rates and lower extinction rates in
some taxa, such as mammals (Rolland et al., 2014), although
not necessarily others, including plants and birds (Rabosky et al.,
2015; Igea and Tanentzap, 2020).

Generally speaking, we predict that the rate of the origination
of new lineages should be highest in large, tropical cities. Per
our earlier predictions, the rate of origination of new species in
those big, tropical cities should be greatest among those species
in gray habitats. A simple test of the prediction that hot cities
will be hotspots of evolution would be to consider the extent
of population differentiation among and within populations of
the same species from cities of differing sizes along climatic
gradients, from tundra to tropics (or whatever part of the
gradient is possible given the species being studied). We expect
to find a tendency toward higher population differentiation (as
measured by FST), and a greater frequency of lineage divergence
in populations from hotter temperatures when compared to
conspecific populations from colder temperatures.

Climate can also indirectly influence the rates of speciation
in cities via its effects on the potential for spillover species
to colonize urban habitats, become isolated from their rural
conspecifics and then diverge from those conspecifics as they
adapt to urban habitats. Where conditions favor high regional
biodiversity, such as in the tropics, the species pool of taxa
able to potentially colonize cities, adapt to those cities and
spillover to become urban endemics is high. This phenomenon
has been best studied in the context of parasites (we use the term
broadly so as to include pathogens). The regional diversity of
human parasite species, as well as parasites with the potential to
become human parasite species, is most diverse where mammals
and birds are most diverse (Dunn et al., 2010). This is both
because a subset of parasites (zoonotics) are dependent on wild
bird or mammal species (and have diverged with them via
codiversification) and because the same factors that have favored

bird and mammal diversity have favored parasite diversity. As
a result, disease ecologists predict that the potential for the
evolution of new emergent diseases in humans to evolve anew is
greatest in tropical settings, especially where human populations
are large (big cities) and where big human populations and their
gray habitats are adjacent to big green habitats (Jones et al.,
2008). For vectored parasites, an added complexity of such spill-
over scenarios, particularly in regions with high biodiversity,
relates to the layers of evolutionary change that can occur in
vectors, parasites, hosts and alternate hosts. For example, the tube
and subway-dwelling lineage of Culex pipiens, Culex pipiens f.
molestus, is more likely than the aboveground lineage C. pipiens f.
pipiens to feed on mammals than on birds. But the hybrid of the
two lineages appears to feed on both birds and mammals. As a
result, it has been hypothesized the hybrid of these two mosquito
lineages is more likely to vector West Nile virus from birds to
mammals such as humans (Huang et al., 2009). Were C. pipiens f.
pipiens to become more exclusively dependent on mammals (due
perhaps to isolation in underground habitats with less contiguity
with aboveground habitats), it might facilitate the origin of an
exclusively mammal-dependent variant of West Nile virus.

Climate can also indirectly influence rates of speciation and
extinction by modulating the selection acting in different regions
(Jezkova and Wiens, 2018) or, in our case, cities. Imagine
two cities that are close together geographically but have very
different climates. One might be at a low elevation (Santa Cruz,
Bolivia, for instance) and the other at a high elevation (La Paz,
Bolivia). In this scenario, the difference in climate between cities
is likely to lead to more rapid divergence of species between those
two cities as a function of selection imposed by that divergent
climate. For example, cooler, high-elevation conditions have long
been predicted to lead to selection for larger body size than
warmer, low-elevation conditions (Smith et al., 1995). As a result,
selection might be expected to favor the evolution of larger body
size in populations in La Paz compared to their conspecifics in
Santa Cruz.

Beyond the effects of differences between cities in climate,
differences between cities in culture, management and, more
generally, human behavior, have the potential to influence the
particular traits that are favored and that shape and magnitude
of selection imposed on these traits and their divergence between
or among cities. Human actions likely to influence selective
pressures differently in different cities include the provisioning
of food (e.g., Bosse et al., 2017; Guiry and Buckley, 2018),
the influence of buildings and pavement on temperatures and
humidity (Diamond and Martin, 2020), the proliferation of light
(Hopkins et al., 2018), sound (Derryberry and Luther, 2021), and
pollution, and the use of biocides (e.g., Brans et al., 2021). While
many of these selective pressures are ubiquitous across cities, the
strength of their effects will often vary, within and between cities,
due to differences in urban design, planning and management
(Rivkin et al., 2019; Des Roches et al., 2021).Moreover, the altered
biodiversity of cities can lead to changes in biotic interactions
and their associated selection pressures. For example, reduced
forest cover in cities has changed patterns of selection on gall
size in the classic goldenrod gall fly system by reducing the
incidence of bird predation on gallmakers (Start et al., 2018).
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Similarly, but less well explored, the city environment can alter
microbial abundance and diversity, potentially affecting selection
on important host-microbe associations (e.g., Barnes et al., 2021;
Berlow et al., 2021; Murray-Stoker and Johnson, 2021). Although
a full consideration of the directions of selection in cities is
beyond our scope (see Diamond and Martin, 2021), we consider
some of the traits likely to be favored by selection in cities in Box
1 in Supplementary Material.

EVIDENCE TO DATE

Here, we consider some of this divergence documented to date
in different urban habitats and the extent to which it follows
hypotheses and predictions 1 through 6. We draw examples from
around the world, but with a particular focus on Manhattan and,
more generally, New York City, where our team has many years
of experience.

Gray Habitats (Bodies)
As we’ve noted, host dependent taxa make up a relatively large
percentage of all species in the gray habitats of cities. Taxa
that depend on the bodies of their hosts have the potential
to diverge more rapidly than their hosts in part due to the
effects of generation times. Pigeons were introduced to North
America, and North American cities in particular, in the 1600s.
Since then, 200-350 generations of pigeons have transpired
(pigeon generation range from seven months to two years;
Shao et al., 2020). Pigeon body and feather lice, on the other
hand, have experienced roughly 7,000 generations in the same
time period (Martin, 1934). No study has compared the relative
rates of divergence of pigeons and pigeon lice within or among
cities (though doing so would be an excellent test of urban
biogeographic theory). However, one recent study considered
divergence of two species of pigeon lice within a single Utah city.
Divergence was discovered to have occurred among populations
of pigeon lice, even though they were separated by no physical
barriers and were within seven kilometers of each other (DiBlasi
et al., 2018). And, just as predicted based on urban biogeographic
theory, their divergence reflected their mode of dispersal: pigeon
body lice, which disperse from parents to offspring (i.e. vertical
transmission), diverged more than did pigeon wing lice, which
can disperse from one group of pigeons to another, by riding like
tiny cowboys on pigeon-dependent flies (DiBlasi et al., 2018).

In considering human associates, we can study the origin of
new lineages by looking to the past when human populations
were separated by geographic barriers and geographically isolated
groups of people might have acted, in essence, like proto-cities.
Many species associated with human bodies show divergence
among hominin and, more narrowly, human populations. For
example, human lice (genus Pediculus) have diverged relative
to the lice of chimpanzees, but human Pediculus have further
diverged into five genetically distinct lineages (Reed et al., 2004;
Amanzougaghene et al., 2020) and are also recognized as two
ecological forms: head and body lice. Head and body lice are often
described as the same species (Buxton, 1947; Burgess, 1995; Light
et al., 2008) as are the different lineages of Pediculus lice. The
divergence among some of these lineages is several-fold greater

than that, for example, between species of mockingbirds in the
Galapagos that helped to crystallize Darwin’s thinking on the
origin of species (Arbogast et al., 2006).

Similar divergence has occurred in many of the parasites and
pathogens that have been well-studied (Perry, 2014), including
face mites (Palopoli et al., 2015), andMycobacterium tuberculosis,
the bacteria responsible for causing tuberculosis (Freschi et al.,
2021) as well as species that do not live full-time on human
bodies. The common bed bug (Cimex lectularius) likely evolved
from blood feeding ectoparasites of cave-dwelling bats, with at
least one lineage switching to hominins some 245,000 years
ago (Usinger, 1966; Balvín et al., 2012; Roth et al., 2019) either
in Africa or the Middle East. Today, this species is confined
to buildings and dependent on human mediated dispersal.
Populations of C. lectularius show greater genetic differentiation
at larger spatial scales (Saenz et al., 2012; Rosenfeld et al., 2016)
in line with the expectation for divergence to occur among cities
or groups of cities. Across human body associates, we predict
that where urban human populations remain relatively separate,
there remains the potential for further divergence. Where such
populationsmove frequently, such divergence is likely to be foiled
by gene flow.

In addition to heirloom body associates, the origin of new
lineages and species has also been (all too often) witnessed in the
context of spillover species; such species are most often noted
when they are emerging infectious diseases (Jones et al., 2008;
Allen et al., 2017).

Gray Habitats (Stored Food, Food Waste)
Recent research has revealed thousands of species of arthropods
living in homes, including many indoor endemics (Bertone
et al., 2016; Madden et al., 2016), many of which are found in
all continents except Antarctica. The ubiquity of these species,
and many others like them, present a kind of paradox. The
paradox is that these species have spread to hundreds or even
thousands of cities (as can be seen for the Indian mealmoth
in Figure 3) with extraordinarily different conditions and yet
have not diverged into distinct lineages or species. Assuming
these globally distributed taxa have had such a distribution for
many generations (as often seems to be the case) there are
just two resolutions to this paradox of ubiquity. One is that
global gene flow of these species among cities is far greater than
appreciated and that, in essence, a vast network of movements
of household spiders, centipedes, flies, moths and cockroaches
has gone unnoticed. The other possibility is that divergence has
actually occurred in some, many or all of these species, but that
such divergence has simply gone unstudied. An intermediate
scenario is one in which gene flow is maintained within regions
but divergence is occurring among them, as has recently been
documented for pavement ants (Tetramorium immigrans; Zhang
et al., 2019). For many species, either of these scenarios is
possible, in part because few urban species have been studied
in sufficient detail with regard to their movement, molecular
evolution or morphological diversity so as to allow the test of
these scenarios.

Two of the handful species in which the potential for
regional adaptation and divergence has been studied are house
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FIGURE 3 | The paradox of ubiquity. The Indian mealmoth (Plodia interpunctella) like many indoor species is a cosmopolitan pest with an extraordinarily broad

geographic range, as shown here based on observations made by citizen scientists using the iNaturalist platform. Though its biogeographic history has never been

studied, this moth is often described as having evolved from tropical regions and then having spread around the world via commercial ocean freight shipments

(though its biogeographic history has never been studied; Cox, 1978; Schulten and Roorda, 1984). Because it is soft-bodied, it is unlikely to be recovered from

archaeological sites. Like many grain pests, it may have colonized human settlements along with the domestication of crops and the storage of grain. The paradox

with this moth, as with many indoor species, is how it could have spread so widely and yet failed to diverge or even speciate. This paradox has layers; the Indian

mealmoth is host to specialist parasites, including baculoviruses. Have they diverged among regions? We do not know. One intriguing possibility is that indianmeal

moth baculoviruses, by shuffling genetic material into and out of hosts (Gilbert et al., 2014; Raymond and Erdos, 2022) might have actually facilitated evolution and

local adaptation in Indian mealmoths. Testing whether this has occurred as well as the many predictions about where the diversity of novel lineages is greatest (in big,

hot, cities) or least (in smaller cities and or regions with more movements of grains) is a straightforward project that awaits an interested researcher.

flies (Musca domestica) and German cockroaches (Blattella
germanica). Detailed studies of both of these species suggest that
they are examples in which ubiquitous urban-associated insect
taxa hide cryptic divergence that has occurred and continues to
unfold. Beginning in the 1970s, studies of house flies collected
outdoors in North America (where they are introduced) by
Bryant (1977), revealed a latitudinal gradient in fly body size, with
larger flies at higher elevations and latitudes, in accordance with
Bergmann’s rule (Bergmann, 1848). Based on laboratory rearing
studies, Bryant concluded that a substantial component of this
variation was due to adaptive genetic differentiation among fly
populations (Bryant, 1977). Bryant’s work suggests the possibility
for isolation, divergence and local adaptation even in urban-
associated animal species capable of flying hundreds of meters
(Legner and McCoy, 1966).

The earliest record of the German cockroach, B. germanica,
is 1763 from Denmark, but it has been associated with humans
much longer. Tang et al. (2019) proposed that B. germanica
evolved from its free-living close relative, the Asian cockroach,
B. asahinai. According to this hypothesis, B. asahinai was then
much later transported from southern Asia along agricultural
routes into Europe during the 16th and 17th centuries. Unable to
survive the cold winters in Europe, it sought shelter in buildings
where it scavenged on waste and stored foods. The German
cockroach eventually became specialized on, and presumably
(although this has yet to be documented) adapted to indoor
environments (it became an indoor endemic). As it did, it lost
the ability to fly.

Genetic studies show increasing levels of differentiation of
German cockroach populations at greater geographic scales, from
populations within single apartment buildings, to populations
from different cities within a continent, to populations across
continents (Crissman et al., 2010; Vargo et al., 2014). These
results indicate that the dispersal of German cockroaches on foot
is largely limited to movement within a building. As a result,
the extent of divergence among buildings, cities and regions
is likely to be determined by human movement patterns and
control measures. Generally speaking, German cockroaches seem
to have the potential to diverge among cities, contingent on just
how much and where humans unwittingly move (or control
the movement of) the cockroaches. Because of their ubiquity,
German cockroaches would be an excellent candidate to study
with regard to the rate of their divergence as a function of city
size and climate. To date, however, no genetic studies of German
cockroaches have explicitly considered the effects of city size, and
the population genetics and phylogeography of tropical German
cockroaches are essentially unknown.

In studying oceanic islands, Kisel and Barraclough (2010)
concluded that, among the taxa they studied, snails were the
poorest dispersers and required aminimum area for speciation of
0.8 km2, roughly the size of Tesla’s plant in Fremont, California.
For German cockroaches, it appears as though divergence and
even speciation could conceivably occur at even smaller scales.
Crissman et al. (2010) found panmixia when comparing rooms
within apartment buildings in Raleigh, North Carolina, but
genetic differentiation among apartment buildings separated by
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just a few kilometers. They conclude that gene flow among
apartments is sufficiently rare that human assisted movement of
German cockroaches is uncommon and that divergence among
apartments is likely to be even greater when selection pressures
differ (Crissman et al., 2010). The strongest selection pressure
on German cockroaches, like many urban insects, is often due
to insecticides. Insecticide resistance has evolved repeatedly and
rapidly in German cockroaches (Fardisi et al., 2019). Where
insecticide use is common in one building, but not in those that
surround it, reduced gene flow together with selection have the
potential to lead to very rapid divergence.

As the evolution of more urban arthropod species is studied,
it is likely that the details of their evolutionary dynamics
and trajectory will differ due to details of their biology. For
example, bed bug populations are generally founded by a very
small number of individuals resulting in low levels of observed
heterozygosity, high levels of relatedness and high levels of
inbreeding (Booth et al., 2012, 2015; Saenz et al., 2012; Fountain
et al., 2014; Raab et al., 2016), whereas populations of the German
cockroach exhibit high levels of observed heterozygosity and
low coefficients of relatedness (Booth, 2018). If there are no
additional population introductions, the low levels of genetic
diversity in bed bug populations should render genetic drift a
potent force in the evolution of bed bug populations, whereas
selection will be the predominant force in the more genetically
diverse populations of German cockroaches. As more species
found in the gray habitats of cities are studied, it is likely that
their evolutionary stories are even more divergent than those of
the species that are well studied to date.

As for species other than arthropods in homes, the same
paradox of ubiquity seen in indoor arthropod species appears,
for now, to prevail. Many indoor fungal species, including
many species of Penicillium, now appear to have relatively
global distributions. Early work tended to assume that these
species dispersed readily around the globe and perhaps even
long had global distributions even in the absence of movements
by humans. For some species, this may indeed be the
case; Penicillium chrysogenum appears to include more than
one lineage/species with relatively frequent gene flow among
continents (Henk et al., 2011). However, as other ubiquitous
fungal species have been studied, many have been revealed to
contain cryptically divergent lineages or even species (Taylor
et al., 2007). Some ubiquitous household fungi are like German
cockroaches in that they have achieved their global distribution
recently, followed by divergence. For example, brewer’s yeast,
Saccharomyces cerevisiae, appears to have evolved in China and
subsequently spread globally, but has since diverged intomultiple
regional lineages; these lineages have not been well enough
studied within particular cities to know if more local divergence
and adaptation is occurring (Pontes et al., 2020).

Gray Habitats (Outdoors)
Waste is a key element of outdoor gray habitats in cities.
Anthropogenic waste spills over into the outdoors in cities in
a variety of forms. These forms include intentional litter (as
Figure 4 demonstrates), open trash cans, poorly sealed trash cans
and dumpsters, illegal dumping, feces from people (Burt et al.,

FIGURE 4 | An example of a trophic subsidy from the gray habitats of

Manhattan into a green habitat. Here one sees a small “green” habitat in the

form of a tree in a tree pit in New York City. In this scene, the organisms living

in the gray habitat around the tree–such as pavement ants–are subsidized

both by the carbon produced by the tree and the plants growing around the

tree and by the human garbage mounded around the tree. Photo by Jason

Munshi-South, 2018.

2021), dogs, cats, canaries and the occasional ferret, and food
that is intentionally given to animals, whether in the form of
bread tossed to birds, bird seed, or bowls of food left out for stray
domestic animals (Burt et al., 2021). It seems very likely that the
total quantity of this waste scales with population density and
Gross National Income (this is true at least for food waste; Thi
et al., 2015). Undoubtedly, the amount of spilled waste differs per
capita among cities, but the key factors governing this variation
also remain largely unexplored except for individual cities. In
New York City, for example, a combination of development
patterns (i.e. lack of alleys to house sealed dumpsters), sanitation
practices, and cultural tolerance of littering and public garbage
have led to much greater levels of human waste available to
commensal species than is found in other cities (Nagle, 2014).

Among the best-studied species dependent on human food
waste in cities are mice (Mus spp.) and rats (Rattus spp.)
These rodents spread early around the world with humans
(Armitage, 1993; Puckett et al., 2016), but have subsequently
become relatively isolated (Puckett et al., 2016), particularly in
the last decades as shipboard sanitation procedures have become
more rigorous. Thanks to this history of spread and isolation,
combined with their relatively short generation times (at least
for mammals), the potential for divergence, diversification and
adaptive radiation among human associated rodents is great.

The evolving relationship between mice, rats and human
food began many thousands of years ago. The house mouse
(Mus musculus) was naturally present in western Asia and the
Middle East, and evolved commensalism as early as 15,000 ya
alongside increasingly sedentary forager settlements (Weissbrod
et al., 2017). House mice expanded out of the Levant as
humans developed agricultural settlements and large stores of
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domesticated grain (Cucchi et al., 2012; Li Y. et al., 2021). Today,
house mice live in virtually every region that humans live and
their abundance is likely to scale with human population sizes.
The history of movements of house mice can be reconstructed
because of the genetic differentiation that has already occurred
among house mouse populations (Jones et al., 2013). The
functional morphological differentiation associated with this
molecular divergence has not been fully explored, but results
from latitudinal gradients have revealed substantial genomic and
morphological evolution (Ferris et al., 2021). Given that house
mouse habitat ranges from subarctic cities to wet tropical cities to
desert cities which vary in climate, the food resources available,
and composition of pathogens and predators, it is likely that
many house mouse adaptations to novel environments remain
undiscovered. In coming decades and, especially, millenia, it is
conceivable that house mice would diverge among cities and
megacities such that each of many cities has its own endemic
house mouse lineage.

The black rat, Rattus rattus, evolved in southern India,
potentially in association with the Indus River Valley civilization
or its progenitors (Ervynck, 2002), and appears in the
zooarchaeological record as early as the 3rd millennium BC in
Mesopotamia. A few thousand years later they were present in
theMediterranean, and then widely spread by the Roman Empire
by the thirteenth century AD (Yu et al., 2021). Indian Ocean
trade networks also moved the black rat along the eastern coast of
Africa and several islands beginning in the seventh Century AD.

A separate lineage that was likely a different species (Rattus
tanezumi) spread out of southeast Asia but the historical record
is less clear on timing. Rattus exulans evolved in the Indonesian
archipelago (possibly Flores) before spreading to other islands,
parts of southeast Asia, and Oceania (Thomson et al., 2014).

The brown (or Norway) rat, Rattus norvegicus, evolved in
northern China, but did not spread to other areas until much
later than the other commensal rats. Around the thirteenth
century AD, the brown rat had spread throughout China into
southeast Asia, and then were moved westward across Eurasia
by humans following coastal trade routes. Once established in
western Europe, the brown rat was moved all over the world by
European imperial powers (Puckett et al., 2016, 2020).

While none of these rat species were restricted to urban
settings during their years of regional and global movement,
their dependence on human food sources meant that they tended
to be most dense where humans were most dense, which is to
say, in cities. Where modern divergence among populations of
these rat species has been studied, it has been observed among
regions (as a function of ancient movements via ships; Puckett
et al., 2016), among cities within regions (as a function of modern
patterns ofmovement; Combs et al., 2018a) and even within cities
(related to very local barriers). Divergence has even recently been
documented within the borough of Manhattan within New York
city (Combs et al., 2018b).

Pigeons–Pigeons (Columbia livia), also known as rock doves,
were domesticated as a food source 5,000-10,000 years ago in the
Mediterranean, north Africa, and near east where they nested
on rocky cliffs and fed on seeds. Pigeons were moved around
the world as Europeans colonized the Americas, Africa, and

Asia. In these new cities, pigeons thrived on buildings that
mimicked cliffs while feeding upon spilled grain and discarded
food waste. Despite being closely associated with evolution and a
model of artificial selection since the theory was first proposed
by Charles Darwin (Darwin, 1868), to date, relatively minimal
population genetic research has been conducted on pigeons.
Jacob et al. (2015) found that for pigeons in European cities
genetic distance increased with geographic distance, suggesting
that different urban populations of pigeons have the potential
to become genetically isolated. In 2018, Tang et al. found that
pigeons in Singapore form a single genetic cluster, likely arising
from an introduction in the early 1900s (Tang et al., 2018).
Despite the proximity of Singapore to other Asian cities (Johor
Bahru, Malaysia is just 20 kilometers away) Singaporean pigeons
are isolated from and likely diverging from populations of other
cities. More recently, Carlen and Munshi-South (2021) showed
that pigeons in the United States Northeastern megacity, which
ranges from Boston, MA toWashington, DC, formed two genetic
clusters—one cluster that includes Boston, MA and Providence,
RI samples, and a second cluster that included all samples
collected south of Providence, RI. Carlen and Munshi-South
(2021) proposed that this clustering may be a result of the
decreased urbanization across Connecticut; this less urban area
acts as a barrier for pigeons which prefer “city life.” Interestingly,
the fate of the pigeons isolated in Singapore and those diverging
among cities in the Northeastern megacity is likely to be quite
different. It seems likely that the pigeons of Singapore will
continue to diverge from those of other tropical Asian cities,
particularly, as Tang et al. (2018) note, given that pigeons do
not like to cross water. In contrast, if the Northeastern megacity
becomes more connected in Connecticut (Arnold et al., 2020),
gene flow may foil the ongoing divergence between populations.

Green Habitats
The vast majority of studies of aspects of island biogeography
in cities have been in green areas, whether focusing on insect
diversity in parks (Fattorini et al., 2017), or, say, the diversity of
ants, fungi and bacteria in medians and other green space (Reese
et al., 2016). Similarly, recent reviews of urban evolution have
focused on these green habitats (Johnson et al., 2015; Johnson
and Munshi-South, 2017), perhaps because the number of gray
habitat species is mistakenly believed to be, as Johnson and
Munshi-South (2017) put it,” small but consequential.” Yet, as
we’ve already pointed out, we suspect urban green habitats are
less likely to be areas to be centers for the origin of new species
than are gray habitats.

In searching for the origin of new species in the green habitats
of cities, one might look for species that have begun to adapt
to aspects of those habitats that are differentiated from those
of surrounding green areas (in other words, spillover species
in the process of becoming urban endemics). In their recent
review, Johnson and Munshi-South (2017) identify a number of
features of the green habitats in cities that can favor the kind
of local adaptation associated with spillover (we point readers
to their review for a broader consideration). Green habitats in
cities are almost invariably warmer than those of surrounding
areas, which can favor adaptations for those warmer conditions,
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as has been observed in Crested anoles (Campbell-Staton et al.,
2020), water fleas (Brans et al., 2017) and one species of acorn ant
(Martin et al., 2021). Urban habitats are also likely to be higher
in concentrations of biocides and other pollutants and thus can
favor adaptations that confer resistance. Urban adaptation to
heavy-metal pollution, for instance, appears to be taxonomically
widespread (e.g., Andrew et al., 2019; Jacquier et al., 2021). Urban
green habitats are also often patchier than non-urban habitats,
which can lead to adaptations for dealing with such patchiness.
For example, Crepis sancta, an annual Mediterranean plant, has
adapted its seeds to pavement by investing less in seed dispersal in
cities than in nearby non-fragmented rural populations (Cheptou
et al., 2008). In addition, species from green habitats can adapt to
gray habitats, as is the case for the subset of emerging infectious
diseases that are transmitted human to human, such as some
coronaviruses, for example.

Implicit in these examples of urban adaptation in green
habitat species is the strength of selection has been sufficiently
great relative to rates of gene flow from non-urban populations so
as to allow local adaptation. Eventually, we predict that a subset of
these urban adapted populations become urban endemic species,
as is the case for many emerging infectious diseases (Wolfe et al.,
2007; Jones et al., 2008), but also some other types of organisms.
For example, urban adapted populations of one plant species,
Lepidium virginicum, have spread to other cities (Yakub and
Tiffin, 2017); whether they have begun to diverge among those
cities has not yet been studied.

Another context in which divergence might have already
occurred in green habitats in cities is for the subset of such
habitats that do not correspond to the green habitats immediately
outside of cities. In some cases, humans intentionally create new
habitats with no precise analog. For example, green rooftops
represent a novel habitat type and are becoming common
in some cities and one can imagine scenarios (see below)
in which the tops of buildings across entire cities are green.
At least to date, green roof tops tend to be dominated by
a small number of typically introduced species of Sedum
(sometimes called “stonecrop”) that are not common outside
of cities (Oberndorfer et al., 2007). Species dependent on such
rooftop plant species might show divergence among cities or,
for very poorly dispersing species with short generation times,
even among roofs. Similar dynamics could, at least in theory,
occur for species dependent on horticultural plants that are
common in cities but not outside of them. For example,
there are many thousands of cultivars of Rhododendrons,
some common in cities, and the species dependent on these
plants might diverge among cultivars, among cities or both
(Lewis et al., 2019). In other cases new versions of existing
habitat types might be recreated in cities, but distant from
their natural analogs. For example, Larson (2004) has argued
that many of the species that thrive in cities are cliff-dwelling
species for which buildings and sidewalks offer conditions
similar to those found on talus slopes and shear rock faces.
Except in very particular situations, most of the cliff species
that thrive in cities are unlikely to be able to maintain
gene flow with natural populations of the same species living
on cliffs.

DISCUSSION

We conclude by discussing the implications of our understanding
of the origin of species in cities through the use of “scenario
thinking.” Scenarios are, as Raskin et al. (2005) put it,
“plausible, challenging and relevant stories about how the future
might unfold.” Scenario thinking has a long history when
considering the future, but is perhaps most often encountered
in considering population growth (Meadows, 1972) and climate
change (Milbrath, 1989; Burrows et al., 1992; Leggett et al.,
1992). In the context of climate change, climate scientists have
elaborated a variety of scenarios with regard to the key actions
humans might take and how those actions will affect climate
(Leggett et al., 1992; van Vuuren et al., 2011). Yet, although
these scenarios are increasingly detailed (see O’Neill et al., 2014),
they remain vague with regard to factors most likely to affect
evolutionary trajectories. Here, we consider scenarios that differ
with regard to the human actions most likely to affect the
evolution of new species among urban islands. The time horizon
for the climate scientists is typically relatively short term (2100 is
a common benchmark); we take a longer view.

We begin by considering a variety of transportation scenarios,
given the importance (prediction 5) of human-mediated
movement of organisms in cities. Arthur C. Clarke (Michael,
1964), echoing earlier futurists (de Sola Pool, 1977), posited that
a tradeoff exists between travel and communication technology
wherein as communication technology increases in ease of use,
the need and desire to physically travel decreases, particularly for
work. The germ of such a scenario can be seen in the persistence
of remote work situations throughout the COVID-19 pandemic.
By some measures, more than half of employees would like
to retain jobs that are either fully remote (11%) or sometimes
remote (52%; Alexander et al., 2021). We hypothesize that such
a scenario could become ever more extreme, resulting in what
we call the locophilous scenario in which humans eat local food,
live where they were born, and no longer travel beyond their
home city (all travel occurs via virtual reality), or perhaps travel
only for pleasure but not for work. Such a scenario would lead
urban species to become very isolated. This scenario maximizes
the rate of divergence among cities. In the locophilous scenario,
each of the urban hubs in Figure 2 (as well as those elsewhere
around the world) is likely to be like an island for most taxa,
the continent of North America a series of urban archipelagos.
The species most likely to diverge would be those least able to
disperse on their own, likely the same species most likely to
diverge on islands (e.g., Kisel and Barraclough, 2010). In this
scenario, isolation combined with the differences among cities
would be very likely to lead to adaptive evolution in each city and,
as a result, the origin of species whose traits match the conditions
of the city in which they live. We can expect big species of
mammals, such as rats, in cold cities such as Anchorage and small
species in hot cities such as Atlanta, Georgia. There might be
resistant organisms in cities that overuse biocides but susceptible
(and more easily managed) species in those that don’t. As this
occurs, we will face new questions, such as whether new species
that evolve in isolated cities require conservation if they become
rare. Will the new, dwarf rat of Rio deserve protection? Do these
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local species become likemascots for particular populations?Will
they be embraced or will they be attacked? If the answers to
these questions differ place to place, the resulting differences in
selection pressures will likely lead to even more divergence.

At the opposite extreme, we might imagine a mobile

future scenario in which movement of individuals around the
world increases. Futurists have imagined scenarios in which
hyperloops, flying cars, driverless vehicles and hypersonic aircraft
actually allow increased travel per capita within and among cities
(e.g., Muoio, 2015; See also... Mire, 2019). Increased per capita
travel would be augmented further by increases in population
sizes. Such movement could be fueled either on the basis of
the continuing use of fossil fuel until the last dregs are gone (a
kind of business as usual scenario with regard to energy sources;
eg. Leggett et al., 1992) or while relying on new technologies.
In either case, divergence of species among cities will occur
primarily in the subset of urban-thriving species that are unable
to move via the transport systems of the future. The more like
plane-travel future transport is, the more likely it is that the
species that spread (and hence fail to diverge) will be small.
One imagines it will be relatively hard for a rat, much less
a fox, to sneak onto a hypersonic plane or a hyperloop pod.
However, smaller species are likely to have no trouble. On the
one hand, travel restrictions have proven to slow the spread
of coronaviruses. On the other hand, the Omicron variant of
the virus that causes COVID-19 was able to reach virtually
every country in the world in weeks or months (Grépin et al.,
2021). Similarly, despite many attempts to control the arrival of
microbes on space stations, an extraordinary diversity of bacteria,
fungi and even arthropods that have traveled in space shuttles
to the International Space Station (ISS; Checinska Sielaff et al.,
2019) or, previously, the MIR (Ott et al., 2004). The more like big
ship travel future transport is, the more likely it is that some big
species will maintain gene flow among cities and fail to diverge
(rats travel on ships but not often on planes). The more like space
travel future transport is, the more likely it is that many species
become isolated and diverge.

It is an open question what an ideal transportation scenario
looks like with regard to the knock on effects of diversification of
wild species on humans. What kind of diversification should we
try to favor? For parasites of humans, ideally we want to reduce
the probability that they evolve in the first place, but we also want
to be able to reduce their spread once they evolve (as we have seen
with novel variants of the virus that causes COVID-19), as well
as the potential that they evolve increased virulence or increased
abilities to spread.

In any scenario in which global travel occurs with the
frequency that it occurs today, such an ability will require the
ability to detect new species, perhaps stop travel to particular
regions when necessary (although the COVID-19 pandemic has
shown just how difficult this can be), perhaps the ability to rapidly
detect the presence of particular pathogens. It seems as though
the goal for dangerous pest species, such as mosquito vectors
of pathogens, should be similar. What should be the goal with
regard to other urban species? Should we try to engender a greater
diversity, for example, of indoor spiders? Should we restrict the
movement of urban ornamentals and hence their potential for

rapid evolution in situ, perhaps driven by natural selection and
cultural selection? The answers are not clear-cut, in no small part
because these questions have barely been posed.

A second set of scenarios relate to biomass and the relative
dominance of different parts of the urban food web and food
landscape as well as to where and how waste is processed.
At one extreme is the gray world vision of the future in
which urban biomass is nearly entirely composed of anthromass,
petmass and stored food and waste and in which that collective
biomass is subsidized by trophic subsidies from outside of urban
ecosystems. This vision is embodied in the example of the part of
Manhattan around Times Square in Figure 1. One can imagine
low human population density gray world futures, in which low
to medium density cities–geographically dominated by suburbs–
cover enormous areas, as is currently the case for parts of
the Northeastern megacity in the United States (Figure 2) and
is predicted to be the case in the future for the southeastern
megacity of Charlanta (Terando et al., 2014). Alternatively, future
cities might be both gray and extraordinarily high density. In
the former scenario, low density megacities may act like giant
islands. In the latter, geographically smaller, more concentrated
cities may act like smaller islands with more independent fates.
A consideration of these two extremes, which we might call
several large megacities or many small microcitie), connects the
consideration of future cities with the large literature focused on
ideal sizes of habitat patches for conservation (Diamond, 1975;
Diamond and May, 1976; Simberloff and Abele, 1982).

At the other extreme relative to the gray-world model of the
future, we might envision a green-world model of the future in
which plant biomass dominates. Imagine buildings covered with
forests, built of living walls covered with cyanobacterial mats
(Chew et al., 2021) and filled with vertical gardens (Despommier,
2010) sustained with nutrients from human waste streams. Such
a city might feature native plants (and their dependent species)
from natural habitats that are mimicked by urban habitats. Cliff-
dwelling plants, even rare species, might be gardened on the sides
of those buildings not covered in algae (Larson, 2004). Epiphytes
might be gardened on buildings in tropical cities. In this scenario,
we might imagine cities inspired by ecological insights, cities
that rely on gardened urban ecosystems to carry out ecological
processes that are now engineered or, as with waste treatment,
displaced. In many ways, a green-world future seems very much
preferable to a gray-world future; however, if a green world future
includes not only high plant biomass but also a high biomass of
wild birds and mammals, it might also favor the emergence of
spillover species of parasites (Gibb et al., 2020).

In either a green- or gray-world future, cities might also differ
with regard to their efficiency of resource use. At one extreme is
probably the current reality, a high-waste future in which much
of the food that comes into the city is wasted [Parfitt et al., 2010;
Food and Agriculture Organization of the United Nations (FAO),
2011], ending up in open landfills or dumped into rivers, or
possibly transported out of the city into waste treatment facilities.
Were this to continue, we predict it will fuel the evolution of
waste dependent species indoors and outdoors. At the opposite
extreme, we might imagine a closed loop, low-waste future in
which food waste is minimized and in which unavoidable food
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waste is composted or up-cycled into new products and human
waste is used in energy production or for other uses. In this
latter scenario, the reduction of food waste in urban systems
would radically affect the outdoor gray and green habitats of
cities. A temporary version of such a scenario was mimicked
during the early days of the pandemic when major cities were
quarantined, restaurants were closed down and patterns of food
waste availability were dramatically altered. During this interval,
rat populations appear to have needed to seek out alternate food
sources andmoved from commercial to residential areas (Parsons
et al., 2021). In an urban future in which waste is greatly reduced,
one wonders, would rats and pigeons still persist in cities?

Our predictions relative to scenarios of transportation,
green/gray habitat distribution and waste use assume people
continue to live in big, and perhaps even ever bigger cities.
However, over the intermediate time scale of centuries and
millennia urban populations might decline, whether because
of declining global populations, urban disease outbreaks, the
collapse of governance or some mix of these factors (Diamond,
2006). Periods in which cities decline in population can be
found across cultures and time periods in the past and seem
likely in the future, even if only in some regions (such as those
with climates outside of the current human niche; Hsiang et al.,
2013; Cookson et al., 2019). In this regard, we might think of
evolution in cities as having an additional temporal dynamic,
beyond that of the generations of populations of organisms, the
dynamic of the rise and fall of cities. The rise and fall of cities
is akin to the emergence of oceanic islands due to volcanism
and their disappearance due to sea level rise. It may often occur
over shorter time periods and yet nonetheless represents a key
component of urban evolutionary dynamics. In this regard, it
would be useful to study what happened to urban associated
species in the past when cities collapsed, for example, following
the fall of theWestern Roman empire when the population of the
city of Rome declined by as much as 90%. It is known that some
urban species, such as a crab that dwells in the Cloaca Maxima
of Rome (Scalici et al., 2008), were associated primarily or even
exclusively with Roman cities. What happened to such species

as the people of Rome died and dispersed? What happened to
the species living in Angkor Wat (Carter et al., 2019)? Or in the
homes associated with Mayan and Aztec urbanizations? We do
not yet know, but we could know. Urban ecologists working with
archaeologists could better understand the future of biodiversity
by studying the rise and fall of ancient cities.

If we consider even longer time scales of millions, tens
of millions or hundreds of millions of years, humans will go
extinct. That all species go extinct has been called the first law
of paleontology (Marshall, 2017). When humans do go extinct,
many of the species that have evolved in response to urbanization
are likely to go extinct as well, suffering from a great spasm of
coextinction (Stork and Lyal, 1993). In this way, the tableau that
results from the origin of urban species unfolds, is shaped and
even exists only so long as we exist.
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