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Most modern large-scale multi-agent systems operate by taking actions based on
local data and cooperate by exchanging information over communication networks.
Due to the abundance of sensors, each agent is capable of generating more data
than what could be supported by communication channels in near real-time. Thus,
not every piece of information can be transmitted perfectly over the network. Such
communication constraints lead to a large number of challenging research
problems, some of which have been solved, and many more that remain open.
The focus of this paper is to present a comprehensive treatment of this new class of
fundamental problems in information dissemination over networks, which is based
on the notion of extremum information. The unifying theme herein is that the
strategic communication, i.e., when the agents decide on what to transmit based on
their observed data (or state), leads to the optimality of extremum (or outlier)
information. In other words, when a random information source deviates from
the average by a certain amount, that realization should be prioritized for
transmission. This creates a natural ranking of the data points based on their
magnitude such that if an agent has access to more than one piece of
information, the ones that display the largest deviation from the average are
transmitted and the rest is discarded. We show that the problem of finding the
top-K largestmeasurements over a network can be cast and efficiently implemented
as a distributed inference problem. Curiously, the same principle holds for the
framework of distributed optimization, leading to a class of state-dependent
protocols known as max-dissent. While still a heuristic, max-dissent can
considerably accelerate the convergence to an optimal solution in distributed
convex optimization. We provide open problems and present several directions
for future work including questions related to cyber-security and robustness of such
networks as well as new architectures for distributed learning and optimization.
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1 Introduction

The importance of distributed systems cannot be overstated in the current technological
paradigm. Many modern systems, such as sensor networks, robotic teams and multi-core
microprocessors, are designed from the ground up to be distributed. Other systems are
inherently distributed such as social networks, vehicular networks, micro-grids and the
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internet of things. Due to the overwhelming availability of
inexpensive sensing devices and storage, a high volume of data
can be easily generated and stored locally. The combination of a data
rich world and high computing power of today has provided many
exciting developments such as the new wave (a tsunami1 might be a
more appropriate term) of artificial intelligence algorithms and
applications in virtually every existing technological field.

However, distributed systems are special. Because they are
designed to work together, they must communicate to coordinate
actions to solve a common problem. Anyone who has ever worked
on the same project with a large group of people can attest that the
key for successfully completing it is to communicate as much and as
often as possible. Communication networks used to exchange
information in a distributed system are often limited. This
feature leads to many difficulties that prevent the system from
achieving its full performance: 1. every robot/sensor/machine/
device/human in the system has access to a lot more data than it
is able to transmit; thus, the agents operate under incomplete
information for the most part; 2. communication, more
specifically wireless communication, consumes a lot of power,
which limits not only how often an agent can communicate, but
also the signal to noise ratio one is able to use for each transmission;
3. the agents are distributed; thus, they may operate without
synchrony due to random delays, clock-drift or a complete
absence of a reference signal. These three issues lead to
inefficiencies that are inherent to the optimal design of
distributed systems and lead to a wealth of under-explored
research problems at the interface of communication, control and
optimization.

First, we focus on fundamental issues when the agents in a
network system have more information to transmit than what the
communication link can support. We formulate a canonical
problem that leads to the notion of max-scheduling, in which the
transmitter only sends the extremum information (in an appropriate
sense) to the receiver. The principle learned from this problem
formulation and solution extends to many other variants such as
unicast and broadcast networks, and a transmitter with an energy
harvesting battery, among others. Of utmost importance is the
notion of ranking information sources in a list and transmitting
only the top-K entries from the list, when the channel can only
support K sources. In the second part of the paper, we study how we
can decentralize the top-K principle based on a probabilistic
threshold strategy, and by means of a strategy based on
distributed estimation over a local communication network.
Then, we show that the problem of finding the top-K
observations in the network can be mapped into an optimization
problem, called quantile inference; that problem admits a natural
distributed implementation.

Finally, we turn our attention to another fundamental problem
in networked information processing. Suppose that an agent has
many neighbors, but at any given time can only communicate with
one. Which neighbor should this agent talk to? We address this

question in the context of distributed learning, and we introduce the
notion of max-dissent, where an agent communicates with the
neighbor with the largest distance between their states. Similarly
to the situation discussed in the first part of the paper, there is a
fundamental principle here that emerges from the communication
constraint, which reinforces the notion that communicating
extremum information is beneficial to the overall goal of the
system. We summarize this principle as follows: When an agent
is faced with the choice of what to transmit and/or with whom to
communicate, the agent should rank information based on a
criterion, and choose the top element(s), and transmit
information based on that ranking.

Themain goal of this paper is to systematically review the notion
of extremum information and algorithms to compute it in
centralized and distributed settings. The main advantage of using
extremum information compared to other algorithms is that it often
leads in substantial improvements in performance and convergence
speed. This paper contains several examples of such improvements.
However, the gains in performance and convergence rate obtained
from using extremum information come at a price, which is the
communication overhead required to compute the extremum
information. Moreover, the implementation of this principle is
not always straightforward, and still poses challenges. We suggest
several possible ways of overcoming these practical difficulties as
future research topics at the end of the paper.

1.1 Related literature

Multi-agent systems are defined as a collection of many decision
making units that collaborate to perform a complex task, that would
be infeasible to complete by any single agent (Olfati-Saber et al.,
2007). There is an incredible number of applications that can be
modeled as multi-agent systems. The most classical examples of
such systems are wireless sensor networks and robotic networks.
These are engineered systems, where the components are jointly
designed to facilitate collaboration. Many non-engineered systems
are multi-agent. For example, economic networks, and bacterial
colonies can also be understood and analyzed through that lens.
Many such systems coordinate actions by sharing information over
a communication network, and communication is often imperfect.
Issues such as noise, delay, quantization, packet-drops, and limited
connectivity may prevent a distributed system from emulating a
centralized unit.

One particular type of “communication imperfection” is caused
by interference. Broadly speaking, interference happens due to the
superposition (e.g., in time or frequency) of two or more signals,
such that the receiver is not able to distinguish what information was
embedded in the original waveforms. There are many ways to model
interference and there exist many significant results in the field of
information theory on the fundamental limits of interference
channels (El Gamal and Kim, 2011). Our focus herein is not to
tackle the capacity of the interference channel, but instead, we look
at interference as a limit on the number of communication packets/
sources that can be simultaneously supported over a link in the
network. In order to address this problem, we see communication as
a commodity, with the links having a predetermined capacity, which
we denote by K ≥ 1.

1 Tsunami [noun] a very large sea wave, caused by an underwater

earthquake or a volcanic eruption, that can cause a lot of destruction

when it hits land–Cambridge Dictionary.
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Therefore, if we specify that a link has capacity K, we mean that
the link supports up to K concurrent packets (by any number of
transmitters and receivers). For example, if more than K packets are
simultaneously transmitted by any combination of agents (e.g.,K + 1
agents transmitting one packet each, or one agent transmitting K + 1
packets, etc.) a communication failure occurs, and a collision is
declared (Vasconcelos and Martins, 2017; Vasconcelos and Martins,
2019). Therefore, the communication constraint imposes a strategic
behavior at the transmitters: if every agent communicates a packet at
the same time all the time, and there are more than K agents,
collisions will occur all of the time, and no packets will go through
the channel. The agents need to be selective in what they transmit to
the receiver. In other words, the agents need to be strategic (Farokhi
et al., 2016). Similarly, if one agent has more than K packets to
communicate at any given time, a few packets may need to be
discarded. The question is, what to discard, and how to implement
such a policy. The answer to this fundamental question is one of the
centerpieces of this article.

The idea of selecting the most relevant observations from a larger set
is a well-studied problem in control and signal processing (Joshi and
Boyd, 2008; Moon and Başar, 2017; Hashemi et al., 2020). These results
rely on knowledge of the statistical model of the sensed data, and often
result in sensor selection policies which are not data-driven. In a different
class of problems, data is transmitted over a network when its magnitude
surpasses a certain threshold (Yun et al., 2023; Soleymani and Gündüz,
2023; Lipsa and Martins, 2011; Imer and Basar, 2010, and references
therein). Such event-based policies are interesting because they allow the
channel to be used only when the data is relevant, i.e., it is worth to
transmit it, otherwise the transmitter should remain silent. In a similar
fashion, when the transmitter has access to many data sources and needs
to decide which one to send, the optimal policy requires comparisons
among the sources to determine which one is the most relevant. In this
case, the comparison is not against a threshold, although a threshold can
be used as a proxy to determined themost relevant observation, as wewill
discuss later. Another body of work relates the notion of Age of
Information (AoI) (Yates et al., 2021) and the event-based scheduling
of multiple information sources (Chen et al., 2021). While there might
exist a connection between these, it is still unclear how AoI relates to the
notion of extremum information.

Finally, the notion of dissent is a topic of interest in models of
information dissemination over social networks (Acemoglu et al.,
2010; Liu et al., 2018; Mei et al., 2022; Zhang et al., 2022). However,
there has been limited work on using dissent to produce beneficial
results in distributed settings. Our idea is to instead of avoiding
agents with whom we disagree, we use them to reduce the overall
disagreement in the network. We do that by making allowing them
to communicate and average their measurements. The maximal
dissent gossip algorithm introduced by Verma et al. (2023) can also
be interpreted as extremum information. Furthermore, it reveals an
intuitive principle in distributed information processing that shows
that to expedite collectively learning, we should enable the agents
with largest disagreement to come to a consensus at every time step.

1.2 Paper organization

The paper is organized into three main parts. In the first part, we
introduce a canonical remote estimation problem that leads to the

max-scheduling principle for independent Gaussian information
sources. We then proceed to discuss a similar principle when the
source distributions are unknown, but restricting ourselves to the
class of linear estimators. Such a scheme is effective even when the
probabilistic model for the source is not available to the system
designer. At the end of the first part, we make the case for a
generalized version of max-scheduling called the Top-K
scheduling. In the second part of the paper, we begin to study
how to distribute the Top-K strategy by using threshold strategies
and then allow for local communication among the agents,
ultimately leading to a distributed optimization problem. In the
last part of the paper, we present a second principle called max-
dissent, which is extremely useful in the context of distributed
learning. In every section, we discuss the implementation
challenges and provide a few suggestions to overcome them. We
conclude the paper with pointers to open problems and our
perspective for future work on these problems.

2 The max-scheduling principle for
remote estimation

Consider the following prototypical problem shown in Figure 1:
there are two sensors communicating with one remote receiver. The
sensors measure two different physical quantities modeled by
possibly correlated Gaussian random variables. The receiver is
interested in obtaining both, however, the communication link
can only allow for the transmission of one the sensors at a time.
Our goal as a system designer is to ascribe to the transmitter and the
receiver a pair of policies that jointly optimize a common
performance metric. We can understand this system in two ways:
1. this is a system where all of the information is available at a single
node, but due to internal constraints (heterogeneous sensing
modalities, or incompatibilities at the level of packet generation)
the agent is not allowed to combine the information into a single
packet for transmission; 2. the performance of this system serves as a
lower bound on the performance of a decentralized system
communicating over a collision channel, and scheduling what
gets transmitted at every time slot to avoid collisions
(Vasconcelos and Mitra, 2020).

Mathematically, suppose that Xi ~ N (0, σ2i ), i ∈ {1, 2}, and
assume that all sources have stationary statistics. At a given time, the
scheduler observes one realization of X1 and X2 decides using a
scheduling policy, whether X1 or X2 will be transmitted to the
destination. One crucial aspect of our setup that distinguishes it
from the field of information theory, is that the communication
happens in real time, i.e., we do not make our decisions based on
observing blocks of data, which would necessarily incur
communication delays. A scheduling policy is a map from the
observation space R2 to the set {1, 2}. Let the decision variable
be U ∈ {1, 2}, which is computed according to

U � γ X1, X2( ). (1)
Based on U, the information sent over the channel is determined
as follows:

Y � 1, X1( ), if U � 1
2, X2( ), if U � 2,

{ (2)
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where the index in front of the information variable is important
since the receiver needs to know which information source
generated the real number observed in the packet, i.e., it
indicates the origin of the communication packet.

At the destination, the receiver implements an estimation policy,
which attempts to reconstruct both sources based on the observation
received over the link, Y. We define η as such estimation policy, and
the estimates are computed as follows:

X̂1

X̂2
[ ] � η Y( ). (3)

From the designer’s perspective, the optimization problem that
we are interested in solving is the following:

min
γ,η( )∈Γ×HE X1 − X̂1( )2 + X2 − X̂2( )2[ ], (4)

where Γ and H are the spaces of all admissible scheduling and
estimation policies, respectively.

2.1 Solving the scheduling problem

Although this problem admits a very simple description,
obtaining the jointly optimal solution in closed form is often
intractable due to the fact that a convex parametrization for the
objective in terms of γ and (or) η is not available. Even when the
estimator is constrained to the class of piece-wise affine functions,
the resulting optimization problem turns out to be non-convex. For
general nonlinear estimation policies such as the minimum mean-
squared error estimation, the problem becomes infinite dimensional
in addition to being non-convex, which further complicates our
analysis. The curious reader is referred to (Vasconcelos et al., 2020;
Vasconcelos andMitra, 2020) for a detailed explanation of this issue.

There are two alternatives to address these difficulties: 1. we may
relax the formulation from jointly optimal to the so-called, person-
by-person optimal (PBPO) solution (Yüksel and Başar, 2013); 2. we
may constrain the estimator to be piece-wise affine and deal with the
non-convexity using alternative global optimization techniques. In
the following subsections, we address each of these cases.

2.1.1 Game theoretic approach
The optimization problem can be understood as a signaling

game (Akyol et al., 2016) between two players, the transmitter and
the receiver. The players have the same objective function, but their
information patterns differ. In a signaling game, the transmitter’s
decision affects the information pattern of the receiver, creating an
intricate dependency between their policies, which lead to
challenging problems with often counter-intuitive results. In
general, the concept of joint optimality is much stronger than the
notion of a PBPO solution, because every jointly optimal pair of
policies is PBPO, but the reverse is not necessarily true. Therefore,
instead of requiring joint optimality, we settle for a PBPO solution.

To find a PBPO solution for this problem, we use a guess-and-
verifymethod. In other words, we first conjecture that a specific pair
of policies γ+, η+ is PBPO, and we show that the transmitter policy
γ+ is optimal for the receiver policy η+ and vice versa.

Our starting point is what we called the max-scheduling policy
(Vasconcelos and Mitra, 2020), which is defined as follows:

γmax x1, x2( )�def 1, |x1|≥ |x2|
2, otherwise.
{ (5)

In its essence, max-scheduling is a greedy policy that selects the
observation that will reduce the expected error by the largest amount
possible. On the receiver end, we know that the optimal estimation
policy will always be the conditional expectation of the random
variables X1 and X2, given what the scheduler has transmitted. The
interesting factor here is that if the transmitter is using the max-
scheduling policy, the receiver automatically knows that the
magnitude of the non-transmitted source is upper-bounded by
the magnitude of the transmitted observation. For example,
suppose that the receiver observes Y = (2, x2) over the channel.
The receiver immediately learns that X2 = x2 and that

−|x2|<X1 < |x2|. (6)
Therefore, the optimal estimate of X1 given Y = (2, x2) is

X̂1 � E X1 | −x2 <X1 < x2[ ]. (7)
From the symmetry of the Gaussian density of X1 around its mean
μ1 = 0, the conditional expectation above is simply equal to 0,

FIGURE 1
(A)Observation-driven sensor scheduling systemwith two sensors, one scheduler and one receiver. (B)Decision regions corresponding to theMax-
scheduling policy, γmax.
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leading to what we call the mean-estimation policy, which is
given by:

ηmean 1, x1( ) � x1

0
[ ] and ηmean 2, x2( ) � 0

x2
[ ]. (8)

It turns out that by fixing the estimation policy to be ηmean, the
optimal transmission policy is exactly equal to the max-scheduling
policy γmax. Thereby establishing a pair of policies from which the
agents do not have an incentive to deviate. In the literature, a pair or
policies that satisfies this property is often called a person-by-person
optimal policy, which in the game-theoretic literature is referred to
as a Nash equilibrium (Hespanha, 2017). The following result was
obtained in (Vasconcelos and Mitra, 2020), and to the best of our
knowledge, it is the first occurrence of the solution in the literature:

If X1 and X2 are independent with arbitrary variances, or
correlated with the same variance, zero mean Gaussian random
variables, (γmax, ηmean) is a person-by-person optimal strategy for
the observation-driven sensor scheduling problem.

To illustrate the benefit of using an observation-driven policy
rather than a scheduling policy based solely on the statistics of the
sources, consider the following scenario. Suppose the scheduler uses
a policy which ignores the realization of the observed data, and
always sends the observation with the largest variance. This is a
reasonable policy, since the random variable with the largest
variance will also lead to large magnitude observations. We refer
to that policy as open-loop because it is not adapted to the variables
X1 and X2. We denote the open-loop policy by γopen.

The performance of max-scheduling and mean-estimation is
given by

J γmax, ηmean( ) � E min X2
1, X

2
2{ }[ ], (9)

while the performance of the open-loop policy is given by

J γopen, ηmean( ) � min σ21, σ
2
2{ }. (10)

Since min {x2
1, x

2
2} is a concave function of x1, x2, Eqs 9, 10 are related

via Jensen’s inequality as:

J γmax, ηmean( )≤J γopen, ηmean( ). (11)

Figure 2 below shows the gap between the open-loop strategy
and the observation-driven strategy for a fixed value of σ22 � 1.
The difference between these two curves is the so-called value-
of-information (VoI) (Soleymani et al., 2022; Soleymani et al.,
2023). The VoI corresponds to how much one can gain from
making optimal use of information available to the scheduler
relative to policies that are oblivious to this information.

2.1.2 Switched-linear estimator approach
The drawback from using the person-by-person optimality

approach is the inability to guarantee that other solution pairs
with even better performance do or do not exist. For example,
there is no systematic way to obtain other solution pairs using the
guess-and-verifymethod. One way to deal with that difficulty is to
use another suboptimal approach that allows for systematic
analysis and design. Constraining the estimator to lie within
the class of switched linear estimators, we obtain a very
interesting class of optimization problems with appealing
properties known as difference-of-convex programs (Nouiehed
et al., 2019).

Suppose that when the estimator receives Y = (1, x1), instead of
computing the conditional expectation ofX2 (a non-linear estimate),
the estimator uses a linear function to do so, i.e.,

X̂2 � a1x1. (12)
Similarly, the estimator outputs

X̂1 � a2x2, (13)
when it receives Y = (2, x2). More precisely, the switched-linear
estimation strategy is given by

ηlineara1 ,a2( ) 1, x1( ) � x1

a2x2
[ ] and ηlineara1 ,a2( ) 2, x2( ) � a1x1

x2
[ ]. (14)

The two variables (a1, a2) ∈ R2 parameterize this estimation
strategy, and consequently also fix the optimal scheduling
strategy, which is:

γ+a1 ,a2( ) � 1, if |x2 − a1x1|≤ |x1 − a2x2|
2, otherwise.
{ (15)

Using this pair of policies, we obtain the following
objective function:

~J a1, a2( )�defJ γ+a1 ,a2( ), η
linear
a1 ,a2( )( ) � E min X1 − a2X2( )2, X2 − a1X1( )2{ }[ ].

(16)
Therefore, the minimizers of ~J define the optimal switched-linear
mean-squared error estimator. We are interested in solving the
following unconstrained optimization problem:

a+1 , a
+
2( ) � arg min

a1 ,a2( )∈R2

~J a1, a2( ). (17)

FIGURE 2
Mean-squared estimation error for the open-loop strategy and
the PBPO max-scheduling strategy for two independent Gaussian
sourceswith variances σ21 (variable) and σ22 � 1 (fixed). The gap between
these curves is the VoI for the observation-driven sensor
scheduling problem.
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Due to the fact that the point-wise minimum of quadratic
functions is not convex, at first glance, this objective function
seems problematic. However, using a very simple algebraic trick,
we can obtain the following representation as a difference-of-convex
(DC) functions:

~J a1, a2( ) � E X1 − a2X2( )2 + X2 − a1X1( )2[ ]
− E max X1 − a2X2( )2, X2 − a1X1( )2{ }[ ]. (18)

The DC representation allows for a heuristic algorithm known as the
Convex-Concave Procedure (CCP) (Yuille and Rangarajan, 2003).
The same algorithm is also called Sequential Convex Programming
(Lipp and Boyd, 2016) and Difference-of-Convex Programming
Algorithm (DCA) (Ahn et al., 2017). The idea of the algorithm is
very simple: to replace the second term of the DC decomposition
with an affine approximation at a point, and solve the resulting
convex optimization problem, obtaining an upper bound for the
solution of the original problem.

The CCP is appealing for three reasons: (1) the sequence of
points generated using CCP is guaranteed to converge to a local
minimum of the objective function. There is no need for additional
convergence analysis, and we do not need to use a diminishing step-
size gradient descent algorithm, whose convergence is often slow,
and not always guaranteed; (2) the resulting algorithm only requires
the computation of a sub-gradient of the second term in the DC
decomposition (see Eq. 20 below), and, in our case, there is no need
to solve the additional convex optimization problem; and (3) CCP
admits a data-driven implementation, which is important in
applications where the probability density function of the
variables X1 and X2 is unknown (Vasconcelos and Mitra, 2021).

2.1.3 Optimization algorithm
The algorithm is described by the following dynamical system,

where (a(k)1 , a(k)2 ) denotes a pair of estimator parameters at the kth
iteration, and the constants σ21, σ

2
2 and ρ are the variances and

correlation for the two Gaussian sources X1 and X2:

a k+1( )
1

a k+1( )
2

[ ] � 1
2

1
σ22

0

0
1
σ21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦g a k( )

1 , a k( )
2( ) + ρ

σ1/σ2
σ2/σ1[ ], (19)

where

g a1, a2( ) � −2E X1 − a1X2( )X21 |X1 − a1X2|≥ |X2 − a2X1|( )
X2 − a2X1( )X11 |X1 − a1X2|< |X2 − a2X1|( )[ ].

(20)
The recursion above is guaranteed to converge to a point
(a+1 , a+2 ) ∈ R2, which is a locally optimal solution of Eq. 17.
Notice that in this method we are not constrained by the
dimension, independence, or correlation with identical variances
between the two random variables X1 and X2. A very important
observation that distinguishes this algorithm from standard
stochastic gradient descent, is the fact that it does not require a
diminishing step-size for convergence. This property leads to swift
convergence to a locally optimal estimator, which is important in
applications where the sources have higher dimensions, and if the
source statistics change often, such that the estimator has to be
updated by the designer with a high frequency.

Consider, for example, the scheduling of two Gaussian
variables with variances σ21 � 1, σ22 � 1.5 and correlation
coefficient ρ = 0.5. Since ~J is a function over R2 (in this
illustrative example), we can visualize the optimization
landscape, which is shown in Figure 3, where we can clearly
observe the lack of convexity. There is a unique minimum, and
therefore there are no spurious local minima for this set of
parameters. It remains an open problem to determine whether
the objective function in Eq. 17 has any spurious local minima or
not for other parameter configurations and other distributions.

2.2 Practical considerations

The basic scheduling problem that we have discussed here is
the simplest non-trivial instance of observation-driven
scheduling. Since its inception, other more sophisticated
versions of the problem have also been considered.
Vasconcelos et al. (2020) studied the scheduling problem
when the transmitter has an energy harvesting battery (Nayyar
et al., 2013a). That version of the problem adds multiple layers of
complexity to the basic formulation. Most notably, the presence
of a battery introduces a temporal dependence between the stages
of a sequential scheduling of i.i.d. sources and the optimal max-
scheduling policy includes a time-varying threshold which
controls if the scheduler will transmit any of the observations
to the receiver at all. To obtain that result, (Vasconcelos et al.,
2020), resorts to the coordinator approach (Nayyar et al., 2013b),
which is a technique that can be used to solve decentralized
stochastic control problems with non-classical information
patterns (Yüksel and Başar, 2013).

Our basic problem formulation also admits data-driven
solutions in the following sense. Suppose that the system
designer does not know what is the probability distribution of
the underlying sources, but has access to M data samples:
{x1(k), x2(k)}Mk�1. For example, the agent may only know that
the data comes from a single distribution and that it is
independent and identically distributed. In Vasconcelos and
Mitra (2021), it was shown that this problem can be related to
statistical learning (Vapnik, 1999; Tsiamis et al., 2022). We
showed that the policies are learnable, i.e., that as the number
of samples in the designer’s data set grows, the optimal solution
to the data-driven version of CCP converges to the optimal
solution of the original stochastic optimization problem. The
data-driven approximation is based on empirical risk
minimization, and by using CCP, we just need to estimate a
sub-gradient similar to the one in Eq. 20 but replacing the
expectation by its sample average, and the variances and the
correlation coefficient, by their respective estimates. There are
many advantages of using this method, with the most important
being that it works for any joint probability distribution. The
price that we pay when using this approach is that we are
restricting our estimators to be linear (a similar version of the
algorithm can be easily obtained by letting the estimators be
affine functions). Therefore, there may be other nonlinear
estimators that provide a better performance. However, as we
have established, there are no known systematic methods to
search for them.
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3 Decentralization of max-scheduling
for remote estimation–distributed top-
K strategies

A natural extension of the problem described in the previous
section involves N zero mean independent Gaussian sources being
scheduled over a channel with capacity K < N. Using the lessons
learned from max-scheduling, we may also show that given a set of
independent observations from sources {Xi}Ni�1, a person-by-person
optimal strategy is for the scheduler to always transmit the K largest
ones. Notice that, the indices of the sources scheduled for transmission
change with every realization. To that end, consider the following
partial ordering: x[1] ≥ x[2] ≥/ ≥ x[N], where x[i] ≥ x[j] if and only if |
x[i]|≥|x[j]|. A top-K scheduling strategy requires us to reorder all of the
observations according to their magnitude and transmit {([i], x[i])}Ki�1
to the estimator. If all of the information is available at a centralized
location, we are essentially done. However, more often than not, the
observed data is distributed over many nodes in a network. It is often
helpful to think that the network is comprised ofmany interconnected
servers, each one with a local data set. Max-scheduling provides us
with a general principle that tells us which observations should be
communicated, but if the data is distributed across the
aforementioned network, how can we determine which nodes/
servers are holding the top-K measurements?

3.1 Thresholding strategies

First, let us assume that local communication among the nodes
in the network is not available. For instance, the nodes are not
allowed to talk to each other because there is no peer-to-peer
infrastructure, or due to privacy concerns. However, the nodes
can communicate with a common gateway or base-station by
means of a channel with capacity K. One way to determine if a
node i has a large observation is to use a correspondingly large
threshold Ti. The ith node decides to transmit if the magnitude of its
observation is larger than Ti, i.e.,

Ui � 1 if |Xi|>Ti

0 otherwise,
{ (21)

where Ui = 1 denotes transmission and Ui = 0 denotes no
transmission. By adjusting Ti, we control the individual node’s
probability of transmission and therefore the system’s
performance. Assume that we are interested in large scale
systems with possibly hundreds of nodes observing distinct i.i.d.
sources. Due to the symmetry in the probabilistic model, it is natural
to assume that all of the nodes use a single threshold, T. The

FIGURE 3
Non-convex optimization landscape for the scheduling problemwith switched linear estimators. On the right we can visualize a sequence of points
generated by the CCP applied to our problem. The sequence converges to a locally optimal solution, which is also globally optimal.

FIGURE 4
Decentralized vs Centralized Top-K strategies for N =1,000
Gaussian sources with zero mean and unit variance. Reprinted with
permission from IEEE, “Distributed Remote Estimation Over the
Collision Channel With and Without Local Communication” by
Xu Zhang;MarcosM. Vasconcelos; Wei Cui andUrbashi Mitra, licensed
under 5743970328454, IEEE.
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objective then is to find T such that the normalized mean-squared
error (NMSE) is minimized, i.e.,

J N,K T( ) � 1
N
∑N
i�1

E Xi − X̂i( )2[ ]. (22)

The underlying constraint here is that if more than K sensors
communicate, there will be a collision and the transmitted
packets will be lost. Zhang et al. (2022) shows that when the
sources have a symmetric and unimodal probability density
function (e.g., Gaussian, Laplace, etc.), the objective function is
quasi-convex in T, which means that there exist very efficient
numerical methods to find T+ (Agrawal and Boyd, 2020).
Moreover, when compared to the centralized strategy, the
performance of the decentralized thresholding strategy is
reasonably close to the lower bound given by the centralized top-
K scheduler, denoted by J L as seen in Figure 4.

3.2 Distributed inference of the Kth order
statistics

Due to the loss of information resulting from collisions in
the previous section, to bridge the gap between the
decentralized and the centralized performance curves in
Figure 4, we must introduce local communication among the
agents. There are two ways of achieving this goal: every agent
sharing all of its observations with its neighbors, in which case
every sensor must store in its memory everything it has received
and update its top-K list, or to compute an estimate of the Kth
ordered statistics using distributed optimization, which is the
focus of this section.

3.2.1 Problem definition
Consider the setup where data is collected over a sensor network

with N nodes. Each node in the network has a subset of the dataset and
for the reasons discussed in the previous section, a remote data collector
can only receive a limited number) of packets from the sensors. As we
have argued, if the data is zero-mean, independent and identically
distributed, and the goal is to minimize the mean-squared error, we
know that a PBPO strategy is to transmit the measurements
corresponding to the K largest magnitudes. To that end, each sensor
exchanges messages with its neighbors in a peer-to-peer fashion to
decide who is going to transmit andwho is going to stay silent, when the
opportunity to communicate with the destination occurs. A depiction of
an example scenario with amobile fusion center is provided in Figure 5.

The problem is: design an efficient distributed algorithm to
compute a threshold T+ ∈ (x[k], x[k+1]) such that each node
determines if it is going to transmit any of its observations or not.

For simplicity, assume that each sensor has exactly one data point.
The extension to larger local data sets is relatively straightforward,
although it may lead to multiple transmissions by the same node
should it have more than one of the K largest data points. This has
exactly the same structure of the previous strategy, except that here
exactly the K largest points are transmitted, making optimal use of the
capacity of the collision channel. This allow us to obtain the best
possible performance, at the expense of local communication.

3.3 A solution via distributed sample
quantile inference

The trick to find the Kth largest measurement over a network is
to compute an appropriate sample quantile for the empirical
distribution of data stored over the nodes in the network. We
begin by relating the problem of computing the top-K
observations with quantile inference (Koenker and Hallock,
2001), which is a convex optimization problem. Even though
convex problems can be solved very efficiently in a centralized
server, its distributed implementation over a network can still be
quite slow if the network has a very large number of nodes.

Consider a collection of N agents [N] = {1, . . . , N},
interconnected by a time-invariant, undirected, communication
graph G � ([N], E), where E ⊂ [N] × [N] denotes the set of
edges between nodes. Each agent holds a non-negative real
number, which corresponds to the magnitude, i.e., the absolute
value of measurement. Let zi ∈ R be the data of the ith agent. The
goal of the team of agents is to determine in a distributed fashion the
K agents holding the top-K largest data points.

At first, one may be inclined to consider the following strategy:
Each agent keeps a list of K entries in its memory. At time t each
agent sends this list to its neighbors. At time t + 1, every agent
updates its list with by selecting the top-K received data and
discarding the rest. Each agent sorts its list and repeats. While
this simple scheme converges to the top-K results in finite time, it
has two main drawbacks. First, it requires noiseless communication
channels of K real numbers per channel use. Even the slightest
amount of noise will cause the algorithm to diverge. Second, it
requires a memory with size K. If K ~ O(N), the communication
and storage requirements will quickly turn the cost of finding the
top-K observations across the network prohibitive.

FIGURE 5
Remote estimation of distributed sensing data with local
communications. Here, a sensor network on the ground can
communicate locally, before uploading their data to a remote
collection point, depicted here by a drone. Here, we model the
uplink from the sensors to the drone via a collision channel with
capacity K < N.
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On the other hand, this problem can be conveniently cast into
the framework of distributed convex optimization, and admits an
implementation where a single real number is exchanged and a
single unit of memory is updated at each time. Furthermore, this
algorithm is robust to the presence of noise. Here we present the
version of the algorithm for the noiseless case found in (Zhang et al.,
2022). A related algorithm designed to handle noisy
communications can be found in (Zhang and Vasconcelos,
2023b). Consider the problem of inferring the sample quantile
from the data set containing all of the agents’ individual data
points D �def{zi}Ni�1. Let F̂(ξ;D) denote the empirical cumulative
distribution function of the data set D, defined as:

F̂ ξ;D( )�def 1
N
∑N
i�1

1 zi ≤ ξ( ). (23)

Let p ∈ (0, 1). The (sample) p-quantile is defined as

θp �definf ξ F̂ ξ;D( )≥p∣∣∣∣{ }. (24)

A classic result in quantile regression (Koenker, 2005) relates the
p-quantile ofD to the solution of the following optimization problem

θp � argmin
ξ∈R

∑N
i�1

ρp zi − ξ( ), where ρp x( )�def p − 1( )x if x< 0
px if x≥ 0.
{

(25)
Let the local functions of the ith node be defined as

fi(ξ) �defρp(zi − ξ), which are called the score functions, and the
objective be defined as the aggregate score function
f(ξ) �def∑N

i�1fi(ξ), then the sample quantile is the solution of the
following distributed optimization problem:

θp � argmin
ξ∈R

f ξ( ) � argmin
ξ∈R
∑N
i�1

fi ξ( ). (26)

A few noteworthy aspects of Eq. 26 are: (1) this is a
convex optimization problem; (2) the objective function is

non-smooth; (3) the local functions have bounded
sub-gradients:

|gi ξ( )|≤max p, 1 − p{ }≤ 1, gi ∈ ∂fi; (27)
and finally, (4) the p-quantile, θp, belongs to the data set D, for any
parameter p ∈ P, where

P �def 0, 1( )\ 1
N
, . . . ,

N − 1
N

{ }. (28)

This framework can be used to compute many statistics of
interest. For example, to compute the maximum (K = 1), let p ∈
(1 − 1/N, 1). To compute the minimum (K = N), let p ∈ (0, 1/N).
Provided the number of samples inD is odd, to compute themedian,
set p ∈ ((N − 1)/2N, (N + 1)/2N). In general, if we would like to
find the Kth largest element of D, then

p ∈
N − K

N
,
N − K + 1

N
( ). (29)

In Figure 6 (left), we display an example of an empirical CDF for a
dataset D with N=10 samples, where the dashed line represents the
chosen value of p that should be used to compute the quantile
corresponding to select the K � 3 largest numbers from D. In Figure
6 (right), we show the associated convex objective functionwhose optimal
solution gives us the desired quantile that should be used as a threshold.

3.3.1 The algorithm
Based on the desired value of K, set p to lie in the interval in (29).

Letwi(t) denote the local estimate of z[K] by the ith node at time t. Set
wi (0) = zi, i ∈ [N]. Finally, let η(t) be a deterministic diminishing
step-size sequence, square summable but not summable, e.g., η(t) =
α/t0.51. On the tth round of local communication, we perform the
following iteration:

wi t + 1( ) � wi t( ) + ∑
j∈N i

1

max di, dj{ } wj t( ) − wi t( )( )
− η t( )si zi, wi t( )( ), (30)

where

FIGURE 6
Empirical CDF and aggregate score function for N =10 and K =3.
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si zi, wi t( )( )�def 1 − p, zi <wi t( )
−p, zi ≥wi t( ).{ (31)

Zhang et al. (2022) showed that if all the nodes adhere to this
algorithm, it converges to z[K] as t → ∞. However, due to the
diminishing step-size sequence, the convergence is often slow, and
this may lead to a large delay and communication overhead.
Accelerating this algorithm is still an open problem for investigation.

3.4 Practical considerations

Touse the top-K inference in conjunctionwith the remote estimation
system, we compute the transmit decisions at time t as follows:

ui t( ) � 1 |xi|≥wi t( )
0 otherwise.
{ (32)

and the instantaneous cost of using this strategy is given by

J x,u t( )( ) �
1
N
∑N

i�1x
2
i 1 − ui t( )( ) if ∑N

i�1ui t( )≤K
1
N
∑N

i�1x
2
i otherwise.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (33)

When the top-K algorithm converges, the instantaneous cost yields
the lowest cost possible. However, the performance can be quite poor
before the local estimates approach z[K] within a close enough range. One

way tomitigate that issue is to combine the two approaches in this section
as follows: Initially, the nodes communicate with the goal of estimating
the variance of the distribution using a simple distributed averaging
algorithm. This simple algorithm converges swiftly because it does not
require a diminishing step-size. Based on that estimate, we compute the
optimal threshold T+ for the problem without local communication,
which is quasi-convex (provided the data distribution is unimodal and
continuous) and can be efficiently solved. Finally, we use T+ as an initial
condition for the distributed quantile estimator. This 3-step procedure
works remarkably well, accelerating the convergence to the minimum
instantaneous cost by hundreds of iterations. The performance of this
scheme can be visualized in Figure 7. Furthermore, it has the additional
advantage of being robust to distribution shifts (Tibshirani et al., 2019).

The distributed algorithm considered in this section assumes that the
network is time-invariant and undirected. In practice, these assumptions
are often violated.However, a similar version of the algorithmalso can be
implemented over time-varying directed graphs, under the appropriate
technical assumptions required for convergence in that case (Nedić and
Olshevsky, 2015). An important research direction, is regarding the
possibility of having a network compromised by malicious agents
(Shang, 2023) or events that may cause some agents to misbehave
(Ballotta et al., 2023). In this case, it is not clear what is the distributed
Top-K algorithm that should be implemented, and this is an interesting
area for further research. Figure 8 summarizes and compares the existing
results and techniques for extremum information in the context of
remote estimation.

FIGURE 7
Hybrid data-driven scheme for distributed remote inference with averaging followed by quantile inference for a system with N =100 nodes and
collision channel of capacity K =10. The curve labeled as JQ corresponds to the strategy based on pure quantile inference, and the one labeled as J F

corresponds to its faster implementation using the 3-step procedure described herein. Reprinted with permission from IEEE, “Distributed Remote
Estimation Over the Collision Channel With and Without Local Communication” by Xu Zhang; Marcos M. Vasconcelos; Wei Cui and Urbashi Mitra,
licensed under 5743970328454, IEEE.

Frontiers in Complex Systems frontiersin.org10

Vasconcelos and Mitra 10.3389/fcpxs.2024.1322785

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2024.1322785


4 Max-dissent and extremum
information exchange in distributed
optimization

In the previous sections, we discussed the important role of
extremum information, i.e., observations, data, or
measurements, in problems of remote estimation. In this
section, we shift gears and consider a different application:
distributed convex optimization. In such applications, nodes
exchange messages with the goal of optimizing an aggregate
objective function,

f x( )�def∑N
i�1

fi x( ), (34)

where each fi is available at node i. Moreover, the nodes are not
allowed to share the function with its neighbors. This assumption is
sometimes attributed to privacy, but it reality it can be that each local
function may depend to local data sets which may themselves be too
large, or perhaps to valuable to share, in addition to the privacy
concerns. Distributed optimization is a large research area with a
rich history dating back to seminal work of Tsitsiklis et al. (1986).
Revitalized by Nedić and Ozdaglar (2009) and many others, this
research area continues to be relevant due to the abundant number
of existing distributed Machine Learning applications, and the fact
that in general it is not viable to consolidate all the data stored at
local nodes in a single server to solve a centralized optimization
problem (Nedić, 2020).

Within this context, we asked the following question: if a node is
forced to choose only one of its neighbors to communicate, which one
should it be? This question is closely related to the problem discussed
in the previous sections, and surprisingly, the answer aligns with our
previous findings: we should talk to the agent who disagrees with us
the most. In this section, we will provide intuition as to why this is
the case and how it would work in practice.

4.1 Max-dissent gossiping algorithms

Before we discuss the notion of how to chose an informative
neighbor in the context of distributed optimization, we need to
introduce the notion of a gossip algorithm (Shah, 2009). Gossiping is
a class of asynchronous algorithms with its origins in computer
science, where a node in a network randomly “awakes” and interacts
with one of its neighbors. The type of interaction depends on what is
the overall goal of the network, which could be, for example,
spreading a rumor or information (hence the moniker “gossip”).
In distributed optimization, gossiping is typically used as an
averaging mechanism: two nodes exchange their local variables
and compute the average of those two numbers reaching a local
average consensus, that propagates over the network as the
process continues.

One crucial detail that it is often overlooked is how a node
that has just woken up should choose with whom to
gossip. Traditionally, a node selects one of its neighbors
uniformly at random. While this seems to be a fair choice, it
does not necessarily lead to the best possible convergence
properties. Let the state of the network system at time k, the
local information available at each of the N nodes, i.e., x(k) =
[x1(k), . . ., xN(k)]. Between time k and k + 1, node i wakes up,
and chooses j ∈ N i to average its state with. Consider, for
example, as an “instantaneous optimality measure” the
sample variance of the of the vector x(k), Var(x(k))2.The
closer this value is to 0, the more concentrated the vector is
around its average, our desired goal. Therefore, we should be
always looking for the maximal possible reduction in the sample
variance, and that happens when the node i gossips with the

FIGURE 8
Comparison of extremum information results and techniques for different system architectures for remote estimation.

2 The sample variance is defined as:
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node that is most distant from xi(k), leading to the notion of the
local max-dissent edge:

Var x k( )( ) � 1
N
∑N
i�1

xi k( ) − Avg x k( )( )( )2, (35)

where Avg(x(k)) is the sample average.

e+i k( ) � i, argmax
j∈N i

‖xj k( ) − xi k( )‖( ). (36)

One may argue that instead of letting a random node wake up
and gossip with its max-dissent neighbor, we may select the edge
over the entire graph. This defines the global max-dissent edge, i.e.,

e+ k( ) � arg max
i,j( )∈E ‖xj k( ) − xi k( )‖. (37)

The selection of the agents with the largest disagreement leads to
the largest possible reduction in the variance at time k. This greedy
approach does not necessarily yield an overall faster convergence rate
and the proof that this scheme is the optimal neighbor selection policy
overall possible state-dependent gossiping algorithms is still a
challenging open problem. However, this heuristic shows a
consistent improvement over all of the asynchronous state-
independent gossiping algorithms we have examined. Figure 9
illustrates the convergence of these three schemes for a graph
sampled from the Erdös-Rényi ensemble with N = 200 nodes and
edge probability p = 0.01. Figure 10 shows an example of how the three
Gossip algorithms considered herein compare in terms of reduction in
the variance of the state vector x(t) after one iteration. Random Gossip
consistently shows a slowest convergence compared to local and global
max-dissent gossip. Notice global max-dissent gossip requires a full
order of magnitude less iterations to achieve the same level of
performance of random gossip. This substantial gain in convergence
may lead to much longer deployments, and overall increase in
productivity if the system is used to perform other distributed tasks.

4.2 A state-dependent subgradient method
and its analysis

There are many algorithms for distributed optimization, and
any attempt to summarize it in this section would be a futile
exercise. We refer the interested reader to the excellent survey by
Yang et al. (2019). Instead, we adopt the class of algorithms
originally proposed in (Nedić and Ozdaglar, 2009). In classical
sub-gradient algorithms/methods, we have

W k + 1( ) � A k( )X k( ), (38)
whereX(k) is a matrix whose columns are the local estimates of the
optimal solutions to the objective function in Eq. 34 at time k.
The matrix A(k) is a time-varying, random averaging matrix.
After an iteration of averaging, each agent in the network takes a
step of size α(k + 1) in the direction of its local subgradient
computed at its local value wi(k + 1) � [W(k + 1)]i. Collectively,
the system state evolves as:

X k + 1( ) � W k + 1( ) − α k + 1( )G k + 1( ), (39)
where G is the matrix whose columns are subgradients of the
local functions at the local estimates at time k + 1. Notice that the
matrix A(k) is not state-dependent, e.g., random gossip, and that
leads to more tractable convergence analysis to the optimal
solution of the problem under the appropriate technical
conditions.

Suppose now that the agents would like to use information
about the state when choosing who they are going to gossip with.
In other words, the averaging matrix in Eq. 38 becomes a function
of X(k):

W k + 1( ) � A k,X k( )( )X k( ). (40)
The literature on such algorithms is scarce, and the available
techniques are quite complex. We refer to (Lobel et al., 2011;

FIGURE 9
(A) Erdös-Rényi graph with N =200 nodes. (B) Example of convergence for three Gossip algorithms: random gossip, local max-dissent gossip and
global max-dissent gossip regarding the instantaneous objective function Var(x(k)).
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Etesami and Başar, 2015; Alaviani and Elia, 2021) for previous
work in state-dependent averaging in various contexts. In the
past works, the emphasis was placed on the vector xi(k) being the
position of the ith agent at time k. Consider for example,
applications in robotics where the agents may be trying to
find an optimal configuration in the environment that
optimizes an aggregate objective function on the basis of local
information (Cortes et al., 2004), or perhaps, the placement of
mobile wireless base stations in a geographic area (Mozaffari
et al., 2017). Another application where the state may be related
to position is optimal sensor placement in the Internet of Things
(Firouzabadi and Martins, 2008). It is natural to assume that in
such applications, the agents that are closer should communicate

more frequently, due to the communication channels having a
higher signal to noise ratio. For example, Lobel et al. (2011) use a
probabilistic state-dependent model of gossiping between a pair
of agents (i, j) defined as:

P Aij k( )> 0 | X k( ) � �X( )≥min δ,
K

‖�xi − �xj‖C2
{ }, (41)

where K, C are positive constants and δ ∈ (0, 1]. We highlight
two properties of the probabilistic model above: (1) closer
nodes have a higher chance of gossiping; and (2) two nodes
that are far apart always have a nonzero probability of
communicating, including the two nodes corresponding to
the max-dissent edge.

FIGURE 10
Example of the three Gossip algorithms: random gossip, local-max gossip and global max-gossip regarding the instantaneous objective function
Var(x(t)).

Frontiers in Complex Systems frontiersin.org13

Vasconcelos and Mitra 10.3389/fcpxs.2024.1322785

https://www.frontiersin.org/journals/complex-systems
https://www.frontiersin.org
https://doi.org/10.3389/fcpxs.2024.1322785


If only the agents who are closer to each other were allowed
to communicate, that would lead to an echochamber, a social
network phenomenon where individuals with the same opinion
reinforce each others beliefs and opinions. Echochambers have
the opposite effect of what Max-dissent has: they do not lead to
convergence as it can be seen in Figure 11.

If echochambers do not work, how can we explain the
convergence of algorithms such as the one considered in (Lobel
et al., 2011)? The key to answering this question is to realize that
when there is a non-zero probability of gossiping with one of your
max-dissent neighbors, over time this non-zero probability leads to a
contraction in expectation of the Lyapunov function for the state
dependent averaging algorithm. To study that phenomenon, Verma
et al. (2023) established the following property for the state dependent
averaging matrix for the different algorithms considered herein:

E A k,X k( )( )TA k,X k( )( ) | F k[ ]
i+j+

≥ δ

�

1
Nmaxi|N i| randomgossip

1
N

localmax gossip

1
2

globalmax gossip,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(42)

where F k is a filtration at time k (Cinlar, 2011).
If the value of δ in Eq. 42 is large, the two neighbors in the

graph with largest disagreement will gossip more often. Not
surprisingly, this increased gossiping leads to larger
contractions on the Lyapunov function used to measure the
empirical variance of the states of the network system. While it
is possible to prove that schemes such as max-dissent converge,
establishing its exact convergence rate is challenging. A detailed
analysis can be found in (Verma et al., 2023).

A more easily computable and intuitive piece of evidence of the
benefits of state-dependent averaging can be obtained by looking at

the contraction factor. The contraction factor, λ, quantifies the
expected decrease in the Lyapunov function V(X), i.e.,

E V X k + 1( )( ) | F k[ ]≤ λV X k( )( ). (43)
Moreover, it can be precisely characterized and is given by:

λ � 1 − 2δ

N − 1( )diam G( )2, (44)

where δ depends on the averaging algorithm as specified in Eq. 42.
The larger the δ, the larger the contraction and the best possible δ for
a single pair of nodes engaging in gossip is obtained via global
max-dissent.

4.3 Practical considerations

The benefit of having two agents with the largest possible
disagreement exchanging information seems clear and intuitive.
However, the implementation of the max-dissent mechanism is
not trivial. Let us start by discussing local max-dissent. When a node
wakes up, before it decides who it will gossip with, it must compare
its state with the states of its neighbors. This requires the nodes in the
neighborhood to share information before the gossiping starts,
which leads to a communication overhead that is absent in
random gossiping. Therefore, the gains in convergence come at
the expense of communication overhead.

One way to address this issue is to create a two-layer network
infrastructure where the agents post their current states to a trusted
server as they change. When a node wakes up, instead of pulling
information from the neighbors, it asks the server which one of its
neighbors it should gossip with. The server is in charge of
computing the max-dissent edge, and not the nodes. That also
preserves privacy in the state variables of the other non-gossiping
agents. This architecture is summarized in the diagram
of Figure 12.

FIGURE 11
Convergence of Max-Dissent vs Divergence of Echochambers.
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A two-layer federated architecture (Reisizadeh et al., 2020; Kairouz
et al., 2021; Wang et al., 2021, and references therein) would also be able
to implement global-max gossip, where an intermediate server
determines which agents should gossip in the network at every time.
It is important to note that this differs from having a centralized server
solve the optimization problem, because the local functions remain local
information at the nodes and are never exchanged. The communication
overhead is also kept under control because at every time, only one pair
of nodes update their variables and communicate with the server, and
the entire neighborhood does not need to communicate. In both cases,
the additional cost comes from having to implement a secure centralized
server to which the information is posted. Figure 13 summarizes the
existing results for extremum information in the context of
distributed learning.

5 Perspectives for future work

Transmitting information strategically based on the value of the
observations and the state offers many benefits such as better
performance, optimal resource allocation (e.g., spectrum and battery
power), as well as potentially speeding up convergence in distributed
systems. However, there is a wealth of open problems related to the
multi-faceted nature of the problem.Herein, we discuss a subset of them
related to privacy and security, distributed learning and applications in
the spread of information in social-networks.

5.1 Max-scheduling of information for
remote estimation under privacy constraints

In the setup introduced by Vasconcelos and Mitra (2020), the
receiver is indifferent about which of the sources it observes.
However, this is rarely the case in practice. A more sensible model
should account for different optimality metrics when the receiver has a
bias towards a source. Here is a possiblemodel for this situation: LetΘ be
a random variable distributed on the interval [0,1]. This variable is
private to the receiver. Then, the objective function for the designer is:

J γ, η( ) � E Θ X1 − X̂1( )2 + 1 − Θ( ) X2 − X̂2( )2[ ]. (45)

This scenario is considered in the block diagram of Figure 14, where
the curator plays the role of the scheduler. This seems to be only a
minor modification on the problem. However, there is more to the
problem than one might notice at first glance. One major difference
is that the objective functions in the ensuing game are now
misaligned. That is because the receiving agent observes the
realization of its preference, i.e., Θ = θ, whereas the transmitter
only has a belief on Θ, i.e., its probability density function, πΘ. A
second aspect is that with the increased asymmetry in information
patterns between the transmitter and the receiver, we now have a
potential incentive for the receiver to communicate with the
transmitter. For example, whether is bias is towards X1, i.e., Θ >
1/2, or towards X2, i.e., Θ < 1/2.

FIGURE 12
Two-layer federated architecture for state dependent gossiping
algorithms.

FIGURE 13
Comparison of gossip algorithms depending on the level of extremum information used. The communication overhead assumes that a real number
is encoded using 32 bits. The number of bits per iteration required to implement global max dissent is unknown.
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The signaling aspect to the problem is completely new, and has not
been studied. It is also possible to extend this setup using statistical
learning techniques, similar to the ones used in (Vasconcelos andMitra,
2021). However, new scheduling strategies would also need to
incorporate the private data sequence {θk}Nk�1 in non trivial ways,
especially if there is interaction between the transmitter and receiver.
Suppose that the transmitter acts first and then collects feedback about
θk, building a better belief on πΘ. Then not only the sequence of
scheduling decision have the role to minimize the expected distortion,
but also to learn what the probability distribution of Θ is, turning this
into a stochastic bandit problem (Bubeck and Cesa-Bianchi, 2012).

5.2 Using neural networks to learn the
optimal estimators for the max-
scheduling policies

In Vasconcelos and Mitra (2021), a suboptimal approach to
replace the MMSE estimator, which is nonlinear, with a linear
function led to the DC decomposition and an efficient data-
driven optimization algorithm. We may be interested in using a
parameterizable class of nonlinear functions to approximate the
MMSE estimator instead. For example, by choosing neural
networks, we might approximate the optimal estimators, and this
approach would allow us to trade-off the complexity of the
architecture with the residual approximation error (Tabuada and
Gharesifard, 2023). A few open questions are: Can we exploit the
structure and obtain efficient algorithms such as CCP for an
estimation policy implemented by a neural network? Can we do
better than stochastic gradient descent? Do these suboptimal
solutions reveal anything about the elusive MMSE estimator and
its associated max-scheduling policy?

5.3 Characterizing the robustness of
decentralized and distributed top-K
strategies

The algorithms used to find the top-K observations across a
multi-agent network rely on the unrealistic assumption that the data is
identically distributed. In (Zhang et al., 2022), an example showed by
means of a random perturbation approach, that even if the distributions
are not the same across sensors, using the policy designed as if a single
distribution generated the entire data set does not lead to a significant
loss in performance. In fact, this approach can be quite robust to

perturbations of the probabilistic model. However, a complete analysis
of this robustness margin is still lacking.

Another important observation is the robustness with respect to
the family of distributions. An example in (Zhang et al., 2022) shows
that if the system is designed under the assumption that the data is
Gaussian distributed, it may perform extremely well for other
distributions, such as Laplace. The hypothesis is that provided
that the distance between the distributions under an appropriate
metric such as the symmetric Kullback-Liebler divergence (Csiszar
and Shields, 2004) is within a reasonable margin, the degradation in
performance is bounded. This notion is akin to the notion of
estimating a Lipschitz constant for a function, where the input is
our distribution and the output is the performance of the system
designed for that distribution. The question is how to quantify this
Lipschitz constant or at least to obtain a good bound for it. Such
results are important is many fields, in particular in Machine
Learning, where there is an important class of problems related
to the so-called distribution shift via conformal prediction
(Tibshirani et al., 2019).

5.4 Adversarial settings in max-dissent
algorithms

While multi-agent network systems are typically robust to node
failures and other disturbances, they are extremely vulnerable to
cyber-attacks. Such vulnerabilities are exacerbated if the agent share
information over a low-power wide-area network, which is the case
in most practical applications (Zhang and Vasconcelos, 2023a, and
references therein). Therefore, securing distributed systems is an
important research topic, that includes enabling resilience to
adversarial agents in distributed optimization (Sundaram and
Gharesifard, 2018; Zhao et al., 2019).

Max-dissent algorithms are particularly susceptible to nodes
behaving maliciously. When operating without the aid of a server, an
adversarial nodes may launch a data spoofing attack by flat out lying
about their states, making them always very large and leading to
them being selected in a local max-dissent algorithm with a much
higher probability than other nodes. Thus, skewing the result to a
point that does not correspond to the optimal for the legitimate
agents. In a similar context, Mitra et al. (2021) studied a clever way to
discard information received by agents in a distributed non-
Bayesian learning setting: assuming there exists a limited number
of malicious agents connected to every legitimate node, each node
then ignores the neighbors that have opinions that are too distant or
too close from their own. A similar approach was used in
(Chattopadhyay and Mitra, 2019) to improve the performance of
a Kalman filter with multiple sensors subject to false data-
injection attacks.

The approach of discarding discrepant nodes is effective in a
network system where the gossiping nodes are not chosen based on
their state. However, the implementation of this principle in a max-
dissent algorithm would eventually rule out the max-dissent
neighbors, leading to a conundrum for the system designer as
well as the attacker, as to what strategy should be used. If each
node has at most one malicious neighbor, occasionally selecting the
second most dissenting neighbor might help the system achieve
robustness, but would lead to some degradation in convergence rate.

FIGURE 14
Data curation with privacy constraints.
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The cyber-attack issues when there is a server involved is somewhat
mitigated, because the server would be able to notice any unusual
behaviors by some agents in the network. For example, when an agent
reports a state that has not changed significantly after a few times it has
been selected to gossip, this node may than be ignored all together by
the server in future iterations. The federated architecture is still
vulnerable to other types of attacks, since it fundamentally depends
on the server to operate, if for any reason the server ceases to work, the
entire system is at risk. Therefore, in addition to having an additional
implementation cost due to the server, there needs to be an additional
cyber-infrastructure cost to protect the server to possible attacks. The
most detrimental attack, could be, for example, if instead of selecting the
max-dissent node, the server selects the min-dissent (echochamber)
leading to the worst possible convergence performance of the entire
optimization process.

6 Final remarks

Distributed processing of information over networks to
support decision-making and control is an area with more open
problems than solutions. There are numerous research
opportunities that extend beyond the traditional goals in
communication networks, which typically focus on maximizing
data rates between information sources and their corresponding
receivers. Furthermore, in this paper, we have illustrated several
examples of new principles that emerge in control and estimation
when the transmitter faces communication constraints, requiring
choices about what and with whom to communicate. These principles
revolve around the notion of extremum information and give rise to a
wide array of challenges, only a few of which have been discussed here.
In particular, we have focused on the problem of identifying and
computing extremum information in the context of remote
estimation when different network architectures are available. We
have also identifiedmax-dissent as a version of extremum information
in the context of distributed learning, and argued that when an agent
must choose who to talk to, it should choose the agent with largest
disagreement within its neighborhood. We strongly believe that
similar themes will continue to emerge, and the concept of

extremum information transfer for control and learning will play
an important role in many of the current applications and those yet to
be invented.
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