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The present work examines the delay-dependent gain-scheduling feedback control with
guaranteed closed-loop stability and induced L2 norm performance for continuous-time
linear parameter-varying (LPV) systems with arbitrary time-varying delay. An extension of
Lyapunov stability utilizing Krasovskii functionals is considered to derive stability analysis
and synthesis conditions for delay-dependent dynamic output feedback LPV control
design. The main challenges associated with this approach are selecting appropriate
Lyapunov-Krasovskii functionals (LKFs) and finding efficient integral inequalities to bound
the derivative of the LKF. Accordingly, a novel modified parameter-dependent LKF
candidate along with an affine version of Jensen’s inequality bounding technique are
employed leading to the derivation of less conservative sufficient conditions expressed in
terms of convex linear matrix inequalities (LMIs). The proposed methodology is compared
with past work in the literature in terms of conservatism reduction and performance
improvement through a numerical example. Finally, the application of the proposed output-
feedback LPV control design is evaluated on the automated mean arterial blood pressure
(MAP) regulation in critical patient resuscitation via vasoactive drug infusion. Closed-loop
simulation results are presented to illustrate the potential of the introduced LPV gain-
scheduling design to provide MAP set-point tracking in the presence of disturbances and
varying input delays.

Keywords: linear parameter-varying time-delay systems, Lyapunov-Krasovskii functionals, induced L2-norm
performance, affine Jensen’s inequality, linear matrix inequalities approach, mean arterial blood pressure
regulation and control

1 INTRODUCTION

Linear parameter-varying (LPV) systems are linear dynamical systems whose dynamic
characteristics depend on a time-varying measurable scheduling parameter vector. In this
context of the LPV systems framework, the scheduling parameter vector captures the
dynamics of nonlinear or time-varying systems in a systematic fashion (Briat, 2014) and has
found applications in flight control (Lu et al., 2006), automotive systems (Tasoujian et al., 2016;
Salavati et al., 2019), energy (Bianchi et al., 2005), and biomedical systems (Colmegna et al., 2015;
Tasoujian et al., 2019b). Traditional gain-scheduling controllers are designed by interpolation of
separately designed controllers for the system’s operation points. Such design methods suffer from
implementation difficulties and lack of closed-loop stability and performance guarantees (Shamma
and Athans, 1990; Bianchi et al., 2006). In order to tackle these challenges, the LPV gain-
scheduling control approach was introduced to provide a direct, efficient, simple-to-implement,
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and systematic design process to meet closed-loop stability and
performance of nonlinear and time-varying systems (Shamma,
1988).

Time-delay is ubiquitously encountered in numerous
engineering systems, such as automotive systems (Tasoujian
et al., 2016), biomedical systems (Tasoujian et al., 2019b),
network control systems (Witrant et al., 2007), and
manufacturing and chemical processes (Bozorg and Davison,
2006). In the context of feedback systems, time-delay or dead-
time refers to the time that takes for the closed-loop system to
receive the control input, to make the control decision, and to
generate the control action (Fridman, 2014). In control systems,
time-delay is a source of instability and performance degradation.
Time-delay induces a phase lag which generates oscillatory
behavior, diminishes the stability margin of a control system,
and limits the achievable bandwidth (Albertos, 2006). Time delay
systems cannot be treated properly using conventional control
design methods, such as Laplace domain-based methods since the
corresponding transfer function of the time-delay system is not
rational. In this regard, stability analysis and control design of
time-delay systems have been formulated into two main
directions, namely, delay-independent and delay-dependent
approaches (Fridman, 2014). Unlike the former direction,
delay-dependent techniques take the size of the delay into
consideration and result in less conservative results. Generally,
in delay-dependent methods, Lyapunov theory is extended to
either the Krasovskii method of Lyapunov functionals
(Kharitonov, 2004) or Razumnikhin theory of Lyapunov
functions (Jankovic, 2001). The former direction relies on
using Lyapunov-Krasovskii functionals (LKFs) for accounting
for the infinite-dimensionality of the system state in the time-
delay systems and usually leads to less conservative results.

In time-delay systems analysis, frequency domain approaches
are limited to systems with constant delays (Niculescu, 2001;
Michiels and Niculescu, 2007). On the other hand, time-domain
techniques utilizing LKFs have gained significant attention,
primarily because of their potential in addressing the stability
analysis and control synthesis of systems with varying time-
delays. In the Lyapunov-Krasovskii method, the prominent
sources of conservatism are rooted in choosing the LKF, the
use of model transformations, such as Newton-Leibniz
(Kolmanovskii and Richard, 1999) and Padé approximations
(Knospe and Roozbehani, 2006), and the use of bounding
techniques for constraining the quadratic integral terms of the
form −∫t

t−τ(t) _x
T(s)R _x(s)ds, obtained from the derivative of

the LKF.
In many practical engineering systems the time-delay is

varying and parameter dependent. In (Niculescu, 1999), the
air fuel ratio control problem in internal combustion engines
is examined using an LPV approach, where the measurement
delay from the sensor downstream the catalyst is a function of the
engine speed. A Padé approximation was used to obtain a rational
approximation of the variable delay. The authors in (Niculescu,
1999) used an LKF with the parametrized Newton-Leibniz model
transformation to obtain sufficient conditions for the stability of
time-delay systems. In (Park, 1999), the same type of LKF,
together with Park’s inequality, was employed for bounding

the cross-terms. Although this bounding method has helped to
better address the bounding of cross-terms and hence reducing
the conservatism, it still suffers from the use of model
transformations that has inherent conservatism. The authors
in (Zhang et al., 2002) proposed a parameter-dependent LKF
along with Jensen’s inequality for the integral term bounding, to
derive delay-dependent H∞ results for LPV time-delay systems.
This approach has avoided any model transformations, and
therefore, no conservatism has been introduced in this regard.
In addition, the resulted conditions have been derived using a
more accurate and tighter bounding technique compared to
previous work in the literature. Nevertheless, the presented
stability and performance conditions are not guaranteed for
fast varying time delays with rates greater than one. In the
same work, due to the use of a simpler version of Jensen’s
inequality, intermediary values of the delay are all neglected,
and only the worst-case delay value is considered, which leads to
conservative results and poor performance, especially when the
actual delay value is small.

In the present work, we consider an improved parameter-
dependent LKF candidate and the affine Jensen’s inequality
(Briat, 2011) is employed for bounding the integral terms that
appears in the LKF derivative. The utilized affine Jensen’s
inequality bounding technique considers intermediary values
of delay instead of just assuming the worst-case delay value.
These choices of LKF and bounding method, and avoiding model
transformations enables the derivation of less conservative
conditions for the synthesis of delay-dependent dynamic
output-feedback controllers for the LPV time-delay systems
with large and fast-varying time delays. The proposed control
guarantees closed-loop stability and a specified performance level
of induced L2-norm disturbance attenuation. The obtained
synthesis conditions are formulated in terms of tractable
parameter-dependent linear matrix inequ–alities (LMIs),
representing convex optimization problems that are solved
using efficient numerical algorithms. The conservatism and
performance of the proposed approach have been assessed and
compared with the results of previous work in the literature
through a numerical example.

Mean arterial blood pressure (MAP) control and regulation
via the administration of vasopressor drugs is essential in
hypotensive critical emergency-care situations, such as,
resuscitation of patients with severe hemorrhage, septic shock,
maternal cesarean hypotension treatment, and traumatic brain
injury, during which the human physiology fails to maintain
homeostasis and to regulate the blood pressure to its normal
limits (Kee et al., 2005). Vasopressor medications, such as
phenylephrine (PHP), epinephrine, and norepinephrine, are
administered to elevate blood pressure by stimulating the
depressed cardiovascular system and causing vasoconstriction
(Neves et al., 2010). The precise dosage of the administered
vasopressor drug is essential to accomplish fast resuscitation
and reliable MAP recovery, and therefore, sustain perfusions
of vital organs without overdosing. Traditional drug
administration methods are performed using a syringe or
infusion pump with manual titration. Such MAP regulation
approaches are time-consuming, labor-intensive and
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inaccurate, and can lead to under- or over-resuscitation with
undesirable or potentially fatal consequences, such as cardiac
arrest. Automated and computer-aided drug administration via
feedback control strategies has been investigated to overcome the
challenges of manual drug delivery and operator monitoring.
Various feedback control paradigms have been used for the
automated closed-loop blood pressure regulation in emergency
care (Malagutti et al., 2013; Ahmed and Özbay, 2016; Sandu and
Popescu, 2016; Tasoujian et al., 2019b; Urooj and Singh, 2019). In
the present work we consider an LPV time-delay model to
represent the MAP response to PHP drug infusion dynamics,
as a benchmark example to evaluate the proposed delay-
dependent LPV control design method for MAP regulation.
Closed-loop simulations using a patient simulation model
demonstrate the superiority and effectiveness of the proposed
LPV control to achieve desired MAP reference tracking, transient
response performance, disturbance rejection and noise
attenuation.

The notation used in the paper is as follows. R denotes the set
of real numbers, R+ is the set of non-negative real numbers, and
Rn and Rk×m are used to denote the set of real vectors of
dimension n and the set of k × m real matrices, respectively.
Sn and Sn

++ represent the set of symmetric and symmetric
positive definite n × n real matrices, respectively. M_0 and
Mc0 (M30 and M60) denote the positive (negative)
definiteness and semidefiniteness of the matrix M. The
transpose and inverse of a real matrix M are designated by
MT and M−1, respectively. In a symmetric matrix, + in the (i, j)
element denotes the transpose of the ( j, i) element. C(J , K)
stands for the set of continuous functions mapping a set J to a
set K.

In the present work, we will take advantage of the following
lemma, which plays a central role in deriving the proposed results
for the delay-dependent LPV time-delay control design
framework.

Lemma 1: (Affine Jensen’s inequality) (Briat, 2011): Given a
matrix J ∈ Sn

++, a vector function g : R≥ 0 →Rn integrable over
[a, b], where 0 ≤ a < b, and a vector function w : R≥ 0 ×
R≥ 0 →Rn+m satisfying ∫b

a
g(s)ds � Mw(a, b) for a constant

matrix M ∈ Rn×(n+m), the following inequality

−∫b

a
g(s)TJg(s)ds≤w(a, b)TQw(a, b), (1)

holds for all N ∈ Rn×(n+m) with

Q � NTM +MTN + (b − a)NTJ−1N. (2)

The rest of paper is organized as follows. Section 4 introduces
the problem statement and the general LPV time-delay system
representation. Design objectives, as well as the proposed delay-
dependent LPV control synthesis is presented in Section 5.
Section 6 provides a numerical example to assess the
capability of the proposed method in reducing the
conservatism compared to a prior work. In Section 7, an
LPV formulation of the MAP response to a vasoactive drug
infusion is introduced as a case study. Subsequently, the
closed-loop validation study of the proposed control
design method is demonstrated in a simulation

environment and compared to prior control designs in the
literature. Concluding remarks and future research directions
are provided in Section 8.

2 LPV TIME-DELAY SYSTEMS

Consider a general time-delayed LPV system with the state-space
representation

_x(t) �A(ρ(t))x(t) +Aτ(ρ(t))x t − τ(ρ(t))( )+B1(ρ(t))w(t) +B2(ρ(t))u(t),
z(t) �C1(ρ(t))x(t) +C1,τ(ρ(t))x t − τ(ρ(t))( )+D11(ρ(t))w(t) +D12(ρ(t))u(t),
y(t) �C2(ρ(t))x(t) +C2,τ(ρ(t))x t − τ(ρ(t))( )+D21(ρ(t))w(t),

x(t0 + θ) � ϕ(θ), ∀θ ∈ [− ̄τ, 0], (3)

where x(t) ∈ Rnp�n is the state vector, w(t) ∈ Rnw denotes the
exogenous input vector with bounded L2-norm, u(t) ∈ Rnu is
the control input vector, z(t) ∈ Rnz stands for the vector of
controlled outputs, y(t) ∈ Rny is the vector of measured
outputs, and A(·), Aτ(·), B1(·), B2(·), C1(·), C1,τ(·), D11(·),
D12(·), C2(·), C2,τ(·), and D21 (·) are real-valued matrices
that are continuous functions of the time-varying
scheduling parameter vector ρ(·) ∈ F]

P. The scheduling
parameter vector is assumed to be measurable or estimated
in real-time and the set F]

P denotes the set of allowable
trajectories defined as

F]
Pb{ρ(t) ∈ C(R+,Rns ) : ρ(t) ∈P, | _ρi(t)|≤]i, i � 1,2, . . . ,ns},

(4)

where ns is the number of parameters and P is a compact subset
of Rns . Moreover, in (3), ϕ(θ) ∈ C([− ̄τ 0],Rn) is the functional
initial condition, and τ(ρ(t)) is a differentiable scalar function
representing the parameter-varying time delay which is
considered to be dependent on the scheduling parameter
vector and lies in the set Fμ defined as

Fμb{τ(ρ(t)) ∈ C(P,R+) : 0≤ τ(·)≤ ̄τ <∞, _τ(·)≤ μ}. (5)

In the next section, we investigate the stability and H∞
performance specification for the LPV time-delay system.

3 OUTPUT-FEEDBACK LPV CONTROL
DESIGN FOR TIME-DELAY SYSTEMS

A gain-scheduled dynamic LPV controller is considered to
accomplish the following design objectives:

• Asymptotic stability of the LPV system (3) in the presence
of parameter and delay variations,

• Minimization of the worst case amplification of the controlled
output, z, to a disturbance signal, w, with bounded energy.
That is, solution of the upper-boundminimization problem of
induced L2-norm (energy-to-energy gain) of the closed-loop
mapping Tzw: w → z given by

min‖Tzw‖i,2 � min sup
ρ∈F]

P

sup
‖w‖2 ≠ 0,w∈L2

‖z‖2
‖w‖2. (6)
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However, instead of the optimal objective (6) we are interested in
the upper bound suboptimal problem

‖z‖2 < c‖w‖2, (7)

where c is a positive scalar.
A full-order dynamic output-feedback LPV controller is

considered in the following form

_xK(t) � AK(ρ(t))xK(t) + Aτ,K(ρ(t))xK(t − τ(ρ(t))) + BK(ρ(t))y(t),
u(t) � CK(ρ(t))xK(t) + Cτ,K(ρ(t))xK(t − τ(ρ(t))) +DK(ρ(t))y(t),

(8)

where xK(t) ∈ Rn is the controller state vector and xK(t −
τ(ρ(t))) ∈ Rn is the delayed state of the controller, which is
included in the controller structure to improve the closed-loop
results compared a the memoryless controller. It should be noted
that, in order to obtain convex conditions, the controller is
assumed to be full order, i.e. the order of the controller is
equal to n. Considering Eq. 3, 8, and defining the closed-loop
state vector as xTcl(t)b[ xT(t) xTK(t)], the final closed-loop
dynamics results in following representation

_xcl(t) � Acl xcl(t) + Aτ,cl xcl(t − τ(ρ(t))) + Bcl w(t),
z(t) � Ccl xcl(t) + Cτ,cl xcl(t − τ(ρ(t))) +Dcl w(t), (9)

where

Acl � A+B2DKC2 B2CK

BKC2 AK
[ ],Aτ,cl � Aτ +B2DKC2,τ B2Cτ,K

BKC2,τ Aτ,K
[ ],

Bcl � B1 +B2DKD21

BKD21
[ ],Ccl � C1 +D12DKC2 D12CK[ ],

Cτ,cl � C1,τ +D12DKC2,τ D12Cτ,K[ ],Dcl �D11 +D12DKD21,

(10)

and the dependence on the scheduling parameter has been
dropped for brevity.

3.1 Closed-Loop Stability and Induced
L2-Norm Performance Analysis
In order to achieve less conservative control synthesis results for
time-delay LPV systems, we take advantage of the Lyapunov-
Krasovskii approach by employing a new extended-state based
quadratic LKF candidate with modified integral terms, which
depend explicitly on the time delay. The utilized approach avoids
a model transformation; hence, it leads to further conservatism
reduction. Additionally, the affine Jensen’s inequality is used to
bound the LKF derivative’s cross-terms. In order to derive
tractable LMI-based results, other conservative bounding
approaches, such as the rational Jensen’s inequality, consider
the worst-case time-delay value to upper-bound the rational term.
On the other hand, this paper’s utilized inequality is affine with
respect to the time-delay (hence convex), so it provides a tighter
bound of the integral terms of the LKF derivative by taking all the
possible intermediate time-delay values into account. The
following theorem provides sufficient conditions for the
synthesis of a delayed dynamic output-feedback LPV
controller to meet the control design objectives, namely,
closed-loop asymptotic stability and a specified level of

disturbance attenuation performance Eq. 7 for the closed-loop
system Eq. 9.

Theorem 1. There exists an output-feedback LPV controller
of the form Eq. 8 to asymptotically stabilize the LPV system Eq.
3 and satisfy the induced L2-norm bound performance
specification Eq. 7 with parameter trajectories ρ ∈ F]

P and
τ ∈ Fμ, if we can find a continuously differentiable parameter

dependent positive-definite matrix functions ~P(ρ(t)) : F]
P →S2n

++,
X(ρ(t)),Y(ρ(t)) : F]

P →Sn, positive-definite matrices ~Q,
~R ∈ S2n

++, symmetric real matrices ~W, ~T ∈ S2n
++, real matrices

~N1, ~N2, ~N3 ∈ R2n×2n, parameter dependent real matrices
̂A(ρ(t)), ̂Aτ(ρ(t)) : F]

P →Rn×n, ̂B(ρ(t)) : F]
P →Rn×ny ,

̂C(ρ(t)), ̂Cτ(ρ(t)) : F]
P →Rnu×n, DK(ρ(t)) : F]

P →Rnu×ny , a
positive scalar c, given scalars λ2, λ3, and λ4 such that the
following LMI condition

~Ξ11
~P − ~V + λ2A

T ~Ξ13 (1 − _τ)τ ~W + λ4A
T B CT 0 τ ~N

T

1

+ τ~R + τ2τ ̄2

4
~W − 2λ2 ~V λ2Aτ − λ3 ~V −λ4 ~V λ2B 0 0 0

+ + ~Ξ33 λ4A
T
τ λ3B CT

τ 0 τ ~N
T

2

+ + + (1−τ ̇)(~NT

3 + ~N3 − ~W) λ4B 0 τ ~N
T

3 0

+ + + + −c2I DT 0 0

+ + + + + −I 0 0

+ + + + + + −τ~T 0

+ + + + + + + −τ~R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

30,

(11)

Is feasible and in the given LMI Eq. 11

~Ξ11 � ∑ns
i�1

± ]i
z~P(ρ)
zρi

( )[ ]+ ~Q+(A+AT)+ 1−∑ns
i�1

± ]i
zτ

zρi
( )[ ] ~N

T

1 + ~N1 − τ2 ~W( )+ τ~T,
~Ξ13 � 1−∑ns

i�1
± ]i

zτ

zρi
( )[ ](−~NT

1 + ~N2)+Aτ +λ3AT ,

~Ξ33 � 1−∑ns
i�1

± ]i
zτ

zρi
( )[ ] −~NT

2 − ~N2( )− ~Q+λ3(Aτ +AT
τ ),

~V � Y I

I X
⎡⎣ ⎤⎦, A� AY+B2 ̂C A+B2DKC2

Â XA+ B̂C2

⎡⎢⎣ ⎤⎥⎦,Aτ �
AτY+B2 ̂Cτ Aτ +B2DKC2,τ

̂Aτ XAτ + B̂C2,τ

⎡⎢⎣ ⎤⎥⎦,
B � B1 +B2DKD21

XB1 + ̂BD21

⎡⎣ ⎤⎦,C� C1Y+D12 ̂C C1 +D12DKC2[ ],
Cτ � C1,τY+D12 ̂Cτ C1,τ +D12DKC2,τ[ ], D� D11 +D12DKD21[ ], _τ � ∑ns

i�1
± ]i

zτ

zρi
( ).

(12)

Remark 1: Due to the affine presence of the derivative of the
scheduling parameter, we may replace ∑ns

i�1 _ρi(t) zP(ρ(t))zρi(t) and

∑ns
i�1 _ρi(t) zτ(t)

zρi(t) by ∑ns
i�1 ± ]izP(ρ(t))zρi(t)( ) and ∑ns

i�1 ± ]i zτzρi( ),
respectively, where the notation ∑ns

i�1 ± (·) indicates that every
combination of + (·) and − (·) should be included in the LMI
condition (e.i. all combinations of lower and upper bounds of ρ

̇
i).

Consequently, this leads to 2ns LMIs that must be checked
simultaneously.

Proof. The proof relies on employing an LKF candidate of the
form

V(xclt , _xclt , ρ, t) �V1(xcl, ρ, t) + V2(xclt , ρ, t) + V3( _xclt , ρ, t)
+ V4(xclt , ρ, t) + V5( _xclt , ρ, t)

(13)
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with

V1(xcl, ρ, t) � xTcl(t)P(ρ(t))xcl(t),
V2(xclt , ρ, t) � ∫t

t−τ(t) x
T
cl(η)Qxcl(η)dη,

V3( _xclt , ρ, t) � ∫0

−τ(t) ∫t

t+θ _x
T
cl(η)R _xcl(η)dηdθ,

V4(xclt , ρ, t) � ∫0

−τ(t) ∫t

t+θ x
T
cl(η)Txcl(η)dηdθ,

V5( _xclt , ρ, t) � ∫0

−τ(t) ∫0

α
∫t

t+θ _x
T
cl(η)

̄τ2

2
W _xcl(η)dηdθdα,

The notation xclt(θ) refers to xcl (t + θ) for θ ∈ [ − ̄τ 0] where
xclt ∈ C([− τ ̄ 0],Rn) is the infinite-dimensional state vector of
the system.Our next task is to establish the asymptotic stability
and L2-gain performance of the LPV system, based on
Lyapunov stability theory. Accordingly, our aim is to
evaluate the time derivative of the LKF Eq. 13 along the
trajectories of the closed-loop LPV system Eq. 9. After
applications of Leibniz integral rule, the time derivative of
LKF is obtained as follows

_V(xclt , _xclt , ρ, t) � _V1(xcl, ρ, t) + _V2(xclt , ρ, t) + _V3( _xclt , ρ, t)
+ _V4(xclt , ρ, t) + _V5( _xclt , ρ, t), (14)

where

_V1(xcl , ρ, t) � 2 _xTcl(t)P(ρ(t))xcl(t) + xTcl(t) ∑ns
i�1

_ρi(t)
zP(ρ(t))
zρi(t)

⎡⎣ ⎤⎦xcl(t),
_V2(xclt , ρ, t) � xTcl(t)Qxcl(t) − 1 − ∑ns

i�1
_ρi(t)

zτ(t)
zρi(t)

⎛⎝ ⎞⎠xTcl(t − τ(t))Qxcl(t − τ(t)),

_V3( _xclt , ρ, t) � τ(t) _xTcl(t)R _xcl(t) − 1 − ∑ns
i�1

_ρi(t)
zτ(t)
zρi(t)

⎛⎝ ⎞⎠ ∫t

t−τ(t)
_xTcl(η)R _xcl(η)dη,

_V4(xclt , ρ, t) � τ(t)xTcl(t)Txcl(t) − 1 − ∑ns
i�1

_ρi(t)
zτ(t)
zρi(t)

⎛⎝ ⎞⎠ ∫t

t−τ(t)
xTcl(η)Txcl(η)dη,

_V5( _xclt , ρ, t) �
τ2(t) ̄τ2

4
xTcl(t)Wxcl(t) − 1 − ∑ns

i�1
_ρi(t)

zτ(t)
zρi(t)

⎛⎝ ⎞⎠
×∫0

−τ(t)
∫t

t+θ
_xTcl(η)

̄τ2

2
W _xcl(η)dηdθ.

The affine Jensen’s inequality (introduced in Lemma 1) can now
be used to bound the derivative terms with the negative integral
cross term. This direct bounding technique enables us to provide
a delayed-scheduled tight upper bound on the time derivative of
the LKF and therefore obtain less conservative results. In this
context, the third derivative term is bounded as follows

V
·
3(x· clt , ρ, t)≤ τ(t)x·Tcl(t)Rx· cl(t) + 1 − ∑ns

i�1
ρ· i(t) zτ(t)zρi(t)

⎛⎝ ⎞⎠[ xTcl(t)xTcl(t − τ(t))]︸��������︷︷��������︸
w(t−τ(t),t)T

⎛⎝ NT
1 + N1 −NT

1 +N2

NT
2 − N1 −NT

2 −N2
[ ]︸����������︷︷����������︸

NTM+MTN

+ τ(t) NT
1

NT
2

[ ]︸��︷︷��︸
NT

R−1︸�︷︷�︸
J−1

[N1N2 ]︸���︷︷���︸
N

⎞⎠ xcl(t)
xcl(t − τ(t)[ ]︸������︷︷������︸

w(t−τ(t),t)

(15)

where by considering the affine Jensen’s inequality (1), we choose
the function g(t)bx·cl(t), integrable over [t − τ(t), t] and verifying

∫t

t−τ(t) x
·
cl(t)dt �Mw(t − τ(t), t), where Mb[I, −I] ∈ R2n×4n

and w(t − τ(t), t)b xcl(t)
xcl(t − τ(t))[ ] ∈R4n. Also, J�R ∈S2n

++, and

N� [N1, N2] ∈R2n×4n where R, N1 ∈R2n×2n, and N2 ∈R2n×2n are
additional matrix variables to be determined to hold the
inequality. By employing the same bounding technique on the
next derivative terms we obtain

_V4(xclt , ρ, t)≤ τ(t)xTcl(t)Txcl(t)
+ 1 − ∑ns

i�1
_ρi(t)

zτ(t)
zρi(t)

⎛⎝ ⎞⎠∫t

t−τ(t)
xTcl(η)dη︸������︷︷������︸

w(t−τ(t),t)T

NT
3 +N3︸���︷︷���︸

NTM+MTN

+ τ(t) NT
3︸�︷︷�︸

NT

T−1︸�︷︷�︸
J−1

N3︸�︷︷�︸
N

⎛⎜⎜⎝ ⎞⎟⎟⎠∫t

t−τ(t)
xcl(η)dη︸������︷︷������︸

w(t−τ(t),t)

, (16)

and

_V5( _xclt , ρ, t)≤
τ2(t) ̄τ2

4
_xTcl(t)W _xcl(t)

− 1 − ∑ns
i�1

_ρi(t)
zτ(t)
zρi(t)

⎛⎝ ⎞⎠ ̄τ2

τ2(t) τ(t)xcl(t) − ∫t

t−τ(t)
xcl(η)dη[ ]T

W τ(t)xcl(t) − ∫t

t−τ(t)
xcl(η)dη[ ], (17)

where we choose MbI ∈ R2n×2n and w(t − τ(t), t)b∫t

t−τ(t) xcl(η)dη ∈ R2n, J � T ∈ S2n
++, and N � N3 ∈ R2n×2n where

T, W ∈ S2n
++, and N3 are matrix variables to be determined.

The remaining task is to formulate the results in an LMI
form. To this end, the descriptor technique (Fridman, 2014) is
used, which introduces slack variables V1, V2, V3, and V4 as
follows

Ib xTcl(t)VT
1 + _xTcl(t)VT

2 + xTcl(t − τ(t))VT
3 + ∫t

t−τ(t)
xTcl(η)dηVT

4[ ]
Aclxcl(t) + Aτ,clxcl(t − τ(t)) + Bclw(t) − _xcl(t)( ) � 0.

(18)

By considering the derivative of the utilized LKF Eq. 14 and
adding the terms 2I and − c2wT(t)w(t) + zT(t)z(t) to establish the
prescribed closed-loop performance level c given in Eq. 7, we
obtain the following inequality

_V(xclt , _xclt , ρ, t) + 2I − c2wT(t)w(t)
+ zT(t)z(t)≤ ζT(t)Ωζ(t)< 0, (19)

where the augmented state vector ζ(t) is defined as:

ζT(t)b xTcl(t) _xTcl(t) xTcl(t − τ(t)) ∫t

t−τ(t) x
T
cl(η)dη wT(t)[ ],

(20)

with

Ω �

Ξ11 P − VT
1 + AT

clV2 Ξ13 (1 − _τ)τW + AT
clV4 VT

1Bcl

+ τR + τ2 ̄τ2

4
W − V2 − VT

2 VT
2Aτ,cl − V3 −V4 VT

2Bcl

+ + Ξ33 AT
τ,clV4 VT

3Bcl

+ + + (1 − _τ)(NT
3 + N3 −W) VT

4Bcl

+ + + + −c2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ ΓTΓ + τ ΠTT−1Π +ΦTR−1Φ( ),

(21)
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where

Ξ11 � ∑ns
i�1

± ]i
zP(ρ)
zρi

( )⎡⎣ ⎤⎦ + Q + VT
1Acl + AT

clV1

+ 1 − ∑ns
i�1

± ]i
zτ

zρi
( )⎡⎣ ⎤⎦ NT

1 +N1−τ2W( )+τT,
Ξ13� 1 − ∑ns

i�1
± ]i

zτ

zρi
( )⎡⎣ ⎤⎦(−NT

1 +N2) + VT
1Aτ,cl + AT

clV3,

Ξ33 � 1 − ∑ns
i�1

± ]i
zτ

zρi
( )⎡⎣ ⎤⎦ −NT

2 − N2( ) − Q + VT
3Aτ,cl + AT

τ,clV3,

Γ � Ccl 0 Cτ,cl 0 Dcl[ ],Π � 0 0 0 N3 0[ ],
Φ � N1 0 N2 0 0[ ]. (22)

The slack variables in relation Eq. 18 are chosen as
λ1V1bV ∈ S2n, V2 b λ2V, V3 b λ3V, and V4 b λ4V,
where λ1 � 1, λ2, λ3, and λ4 are real constants and V is a

real-valued symmetric matrix which is partitioned as

Vb
X N
N T

+
[ ], V−1b Y M

MT +
[ ], such that

XY +NMT � I. Next, substituting the closed-loop matrices
Eq. 10 into Eq. 21 and then applying the Schur complement

formula toΩ in Eq. 21, we obtain a 8 × 8 block matrix. Finally,

by defining Zb
Y I

MT 0
[ ], and performing a congruence

transformation diag ZT,ZT,ZT,ZT, I, I,ZT,ZT( ) on the 8 × 8

block matrix and redefining the matrix multiplications as
~⊡bZT⊡ Z, the LMI Eq. 11 is obtained and the proof is
complete.

3.2 Output-Feedback LPV Gain-Scheduled
Controller Synthesis
Utilizing the LMI decision variables X, Y, ̂A, ̂Aτ , ̂B, ̂C, ̂Cτ , andDK,
obtained by solving the LMI condition Eq. 11, the matrices of the
delayed output-feedback controller Eq. 8 are computed with the
following steps (Wu et al., 1996):

3.2.1 Determine M and N From the Factorization
Problem

I − XY � NMT, (23)

where the obtainedM and N matrices are square and invertible
in the case of a full-order controller.

3.2.2 Compute the Following Parameter Matrices

Â �XAY + XB2DKC2Y +NBKC2Y + XB2CKMT

+NAKMT,
Âτ � XAτY + XB2DKC2,τY +NBKC2,τY + XB2Cτ,KMT

+NAτ,KMT,
̂B � XB2DK +NBK ,

̂C � DKC2Y + CKMT,
̂Cτ � DKC2,τY + Cτ,KMT. (24)

3.2.3 Finally, the Controller Matrices Are Computed in
the Following Order

Cτ,K �( ̂Cτ −DKC2,τY)M−T,
CK �( ̂C −DKC2Y)M−T,
BK � N −1( ̂B − XB2DK ),
Aτ,K � −N −1(XAτY + XB2DKC2,τY +NBKC2,τY + XB2Cτ,KMT −Âτ)M−T,
AK � −N −1(XAY + XB2DKC2Y +NBKC2Y + XB2CKMT − Â)M−T.

(25)

4 NUMERICAL EXAMPLE

A numerical example is examined to assess the performance and
the conservatism reduction capability of the proposed control
design methodology compared to previous work in the literature.
We consider an LPV state-delayed system with the following
state-space representation (Zope et al., 2012)

_x(t) � 0 1 + 0.2ρ(t)
−2 −3 + 0.1ρ(t)[ ]x(t)

+ 0.2ρ(t) 0.1
−0.2 + 0.1ρ(t) −0.3[ ]x t − τ(ρ(t))( )

+ 0.2
0.2

[ ]d(t) + 0.2ρ(t)
0.1 + 0.1ρ(t)[ ]u(t),

z(t) �
ϕ 0
0 ξ
0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦x(t) + 0
0
ψ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦u(t),
y(t) � 1 0[ ]x(t),

(26)

where ρ(t) � sin(t) is the LPV system scheduling parameter,
τ(ρ(t)) � ̄τ|sin(αt)| is the parameter-dependent time-varying
delay with 0≤ τ(t)≤ ̄τ and | _τ|≤ ] � ̄τα. Weighting scalars ϕ, ξ,
and ψ are selected to construct the desired controlled output vector,
z(t), by penalizing the states of the system and the control input.

Based on the results of Theorem 1, an output-feedback controller
of the form Eq. 8 is designed to minimize the induced L2-norm (or
H∞-norm) of the closed-loop LPV time-delay system Eq. 9. The
design objective is to guarantee closed-loop stability andminimize the
effect of the disturbance using the measurement information of state
x1, while maintaining the control input within reasonable limits over
the entire range of the scheduling parameter and delay variations.

The condition in Theorem 1 leads to an infinite-dimensional
convex optimization problem with an infinite number of LMI
constraints. To tackle this issue, we take advantage of the
gridding approach to convert the infinite-dimensional problem to
a finite-dimensional convex optimization problem (Apkarian
and Adams, 1998). In this regard, a quadratic parameter
dependence is adopted for the parameter dependent

matrices as follows: G(ρ(t)) � G0 + ∑ns
i�1

ρi(t)Gi1 + 1
2 ∑ns
i�1

ρ2i (t)Gi2,

where G (ρ(t)) represents any of the involved LMI decision
variables. Finally, gridding the scheduling parameter space at
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appropriate intervals leads to a finite set of LMIs to be solved for the
unknown LMI variables and c. Also, in order to improve the results,
a 3-dimensional search over the three scalar variables λ2, λ3, and λ4 is
performed to obtain the minimum value of c. The MATLAB®
toolbox YALMIP is used to solve the corresponding LMI
optimization problems (Lofberg, 2004).

In the considered numerical example Eq. 26, the weighting
scalars are chosen as ϕ � 1, ξ � 10, and ψ � 1. The time delay is
considered to be τ(t) � 3|sin (0.3t)| (i.e. ̄τ � 3 and α � 0.3). The
results of the proposed LPV control design approach are compared
with prior results of an LPV time-delay control design with simpler
LKF candidate with a conservative bounding technique (Tasoujian
et al., 2019a).Figure 1 demonstrates the closed-loop responses ofEq.
26 for the proposed control and the one in (Tasoujian et al., 2019a).
As illustrated, the proposed control scheme outperforms the one in
(Tasoujian et al., 2019a) by regulating both system states to zero by
minimizing the effect of the disturbance. We consider a simulation
scenario where a pulse disturbance d(t) � 5 for t ∈ [5 8] sec and zero
elsewhere, is assumed to affect the system. It should be noted that the
same weighting scalars, parameter-dependence basis function, and
the scheduling parameter grid points are considered for both
approaches. The obtained optimal energy-to-energy performance
levels c are 1.1786 and 3.1546 for the proposed control and the one
in (Tasoujian et al., 2019a), respectively. Accordingly, Theorem 1
provides better disturbance attenuation, faster regulation, and
improved induced L2-norm performance levels compared with
the prior results.

Table 1 compares the obtained performance level c for both
control design methods and for different maximum delay values, ̄τ.
It is noted that the control synthesis condition in (Tasoujian et al.,
2019a) is not feasible for ̄τ≥ 3.5. On the other hand, the proposed
LPV delay-dependent control scheme, which utilizes the improved
LKF candidate and the efficient use of the affine Jensen’s inequality
bounding technique, can handle much larger allowable maximum
delay values and provides considerably less conservative results for a
larger delay range and delay variation rates ] > 1.

5 LPV CONTROL DESIGN FOR MAP
REGULATION IN HYPOTENSIVE PATIENTS

5.1 MAP Response Dynamics
To assess the capability of the proposed LPV control, we consider
the problem of automated MAP regulation in critical hypotensive
patients using vasoactive drug infusion. The following model is
utilized to characterize the MAP response dynamics subject to
PHP drug infusion (Luspay and Grigoriadis, 2015; Sandu and
Popescu, 2016; Tasoujian et al., 2020a; Cao and Grigoriadis, 2020)

T(t) · _ΔMAP(t) + ΔMAP(t) � K(t) · u(t − τ(t)), (27)

where ΔMAP(t) denotes the MAP variations in mmHg from its
baseline value, i.e. ΔMAP(t) � MAP(t) − MAPb(t), u(t) is the drug
infusion rate inml/h, K(t) is the patient’s sensitivity to the drug, T(t)
is the lag time representing the uptake, distribution, and
biotransformation of the drug (Isaka and Sebald, 1993), and τ(t)
represents the time delay for the drug to reach the circulatory system

from the infusion pump. Figure 2 shows an experimental MAP
response to a step PHP infusion versus a matched simulated
response of Eq. 27. The experimental data shown correspond to
a swine experiment performed at the Resuscitation Research
Laboratory at the University of Texas Medical Branch (UTMB),
Galveston, Texas (Luspay and Grigoriadis, 2015). The figure also
shows the interpretation of the model parameters K(t), T(t), τ(t),
MAPb(t) obtained using a least-squares optimization method to fit
the actual MAP response.

It is noted that due to the patient’s physiological response
variability, the model parameters and the delay could vary
significantly from patient-to-patient (inter-patient variability),
as well as, for a given patient over time (intra-patient
variability) (Isaka and Sebald, 1993; Rao et al., 2003). Based on
clinical observations (Tasoujian et al., 2019b), the model
parameter variations can be approximated for simulation
purposes as nonlinear functions of the drug injection rate as
follows.

ak _K(t) + K(t) � k0exp{−k1U(t)}, (28a)

T(t) � sat [Tmin ,Tmax] bT ∫t

0
U(t) dt{ }, (28b)

aτ,2τ
... (t) + aτ,1τ

··(t) + _τ(t) � bτ,1 _U(t) +U(t), t ≥ t0,
τ(t) � 0, otherwise,

{
(28c)

where ak, k0, k1, bT, aτ,2, aτ,1, and bτ,1 are uniformly distributed
random coefficients given in Table 2 andU denotes the injection
rate in mm/h (Craig and Stitzel, 2004). Consequently, the
parameters variation ranges considered in our work are K(t) ∈
[0.2,0.8]mmHg · h/ml, T(t) ∈ [100,400]sec, and τ(t) ∈ [0,70]
sec. Also, the MAP baseline value,MAPb(t), is assumed to stay
at a constant 70 mmHg value. For more details regarding the
MAP response dynamics under drug infusion and the real-
time model parameter estimation algorithm see (Tasoujian
et al., 2020b) and the references therein.

5.2 MAP Response LPV Modeling
To design the proposed delay-dependent LPV control synthesis
for the MAP regulation problem, we first formulate the MAP
response dynamics Eq. 27 into an LPV time-delay model
representation. Considering the state variable as x(t) �
ΔMAP(t), the state space representation of the MAP response
model is rewritten as follows

_x(t)� − 1
T(t) x(t) +

K(t)
T(t) u(t − τ(t)),

y(t) �x(t) + do(t),
(29)

where y(t) is the patient’s measured MAP response and do(t)
denotes output disturbances. In Eq. 29, the varying time delay,
τ(t), is appearing in the input signal. In order to utilize the
proposed time-delay LPV system control design framework, we
transform the input delay system into a state-delay LPV
representation. To this end, we introduce a low-pass input
dynamics as follows
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u(s) � Ω
s + Λ ua(s), (30)

where Ω and Λ are positive scalars that are selected based on the
bandwidth of the actuators. Then, the state-space state-delay LPV

representation of theMAP response dynamics takes the following
form

_xa(t) � A(ρ(t))xa(t) + Aτ(ρ(t))xa(t − τ(t))
+ B1(ρ(t))w(t) + B2(ρ(t))ua(t),

z(t) � C1(ρ(t))x(t) + C1,τ(ρ(t))x t − τ(t)( ) +D11(ρ(t))w(t)+D12(ρ(t))ua(t),
ya(t) � C2(ρ(t))xa(t) + C2,τ(ρ(t))xa(t − τ(t)) +D21(ρ(t))w(t),

(31)

where xa(t) � [ x(t) u(t) xe(t)]T is the augmented state
vector and xe(t) is defined for command tracking purposes,
i.e. x·e(t)be(t) � r(t) − y(t) � r(t) − (x(t) + do(t)), ρ(t) �
[K(t) T(t) τ(t)]T denotes the scheduling parameter
vector, w(t) � [ r(t) do(t)]T stands for the exogenous

FIGURE 1 | Closed-loop response of system states x1, and x2 subject to disturbance.

TABLE 1 |Performance levels γ of bothmethods for different time-delay maximum
values ̄τ

Method ̄τ= 1 ̄τ= 3 ̄τ= 3.2 ̄τ= 3.5 ̄τ= 10 ̄τ= 50

Proposed 0.59 1.18 1.44 1.45 3.92 5.37
(Tasoujian et al., 2019a) 0.46 3.15 8.39 Inf Inf Inf

FIGURE 2 | Closed-loop MAP response and control effort (PHP injection rate) of LPV controller against fixed structure PI controller for disturbance and noise
free case.
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disturbance vector including the reference command and
output disturbance signal. Thus, the state space matrices of
the augmented LPV system Eq. 31 are obtained as

A(ρ(t)) �

− 1
T(t) 0 0

0 −Λ 0

−1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Aτ(ρ(t)) �

0
K(t)
T(t) 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B1(ρ(t)) �
0 0

0 0

1 −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,B2(ρ(t)) �
0

Ω
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,C1(ρ(t)) �
0 0 ϕ

0 0 0
⎡⎣ ⎤⎦,

C1,τ(ρ(t))� 02×3,

D11(ρ(t))� 02×2,D12(ρ(t)) � 0
ψ

[ ],
C2(ρ(t)) � 1 0 0[ ],C2,τ(ρ(t)) � 01×3,D21(ρ(t)) � 0 1[ ].

(32)

The scheduling parameters K(t), T(t), and τ(t) are assumed to
be estimated in real-time. In a practical scenario, a Bayesian-
based square-root cubature Kalman filtering algorithm can be

used to estimate the scheduling parameters (Tasoujian et al.,
2020b).

5.3 Closed-Loop MAP Control Simulation
Results
In the MAP dynamics LPV model Eq. 31, the performance
controlled output vector is defined as z(t) �
[ϕ · xe(t) ψ · u(t)]T where the tracking error, xe(t), and the
control effort, u(t), are penalized by the weighting scalars ϕ
and ψ, respectively. The choice of these scalars determines the
relative weighting in the optimization scheme and depends on
desired performance objectives. Following the controller
synthesis steps in Section 5.2, the output-feedback delay-
dependent LPV controller Eq. 8 is designed to provide
asymptotic stability for the closed-loop LPV time-delay system
Eq. 9 and to minimize the worst-case disturbance amplification
over the entire range of the model parameter variations. Theorem
1 is employed to design a robust LPV output-feedback controller
for the MAP regulation case study. We utilize the patient MAP
response simulation model Eq. 27 with parameter and time-delay
variabilities based on the relations in (28), to evaluate the
proposed control design method.

For comparison purposes, we also evaluate the proposed
controller performance against a fixed structure PI controller,
see (Wassar et al., 2014), in an hour-long simulation scenario with
a piecewise constant commanded reference MAP. Given the
following nominal values of the model parameters and time-
delay, ̄K � 0.55,T ̄ � 150, and ̄τ � 40, the tuned PI controller
transfer function is selected as follows

Gc(s) � 3 + 0.017
s

, (33)

TABLE 2 | Probabilistic distributions of the nonlinear patient coefficients in (28).

Parameter Distribution

ak U(500, 600)
k0 U(0.1,1)
k1 U(0.002, 0.007)
bT U(10−4 ,3 × 10−4)
aτ,1 U(5, 15)
aτ,2 U(5, 15)
bτ,1 U(80, 120)

FIGURE 3 | Typical MAP response due to step vasopressor drug infusion.
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which is calculated based on the prescribed gain and phase
margin control design constraints (Zhong, 2006). In the
absence of disturbances and measurement noise, the MAP
reference tracking profile and the control effort are shown in
Figure 3, where the objective is to regulate the MAP
response to track the commanded MAP with minimum
overshoot, rise time, settling time, and zero steady-state
error. According to these results, the closed-loop response
overshoot remains within the acceptable range, and the
delay-dependent LPV controller provides faster response

with a smaller settling time compared to the conventional PI
controller.

Subsequently, we assume that the closed-loop system is subject
to measurement noise and output disturbances. These
disturbances could result from medical interventions and
physiological response variations due to hemorrhage or other
administered medications like lactated ringers. Figure 4 shows a
typical profile of such disturbances. Figure 5 depicts the
performance of the LPV and PI controllers, where the
measurement noise is a white noise signal with intensity of

FIGURE 4 | Profile of output disturbances.

FIGURE 5 | Closed-loop MAP response and control effort (PHP injection rate) of LPV controller against fixed structure PI controller subject to disturbance and
measurement noise.

Frontiers in Control Engineering | www.frontiersin.org August 2021 | Volume 2 | Article 68780710

Tasoujian et al. Improved Delay-Dependent LPV Control

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles


10–3. As expected, the proposed LPV controller outperforms the
fixed structure PI controller with respect to the response’s rise
time and speed due to its scheduling structure. The results
demonstrate that the proposed time-delay LPV gain-
scheduling control methodology provides desirable closed-loop
performance in terms of commanded MAP tracking and
disturbance rejection in the presence of model parameter
variations, varying time-delay, and output disturbances.

6 CONCLUSION

In the present study, a Lyapunov-Krasovskii based approach has
been used to derive delay-dependent LPV control synthesis
conditions for LPV time-delay systems. In this regard, an
improved parameter-dependent Lyapunov Krasovskii
functional (LKF) candidate was proposed, followed by an
efficient bounding technique using the affine Jensen’s
inequality, for the design of output-feedback LPV controllers.
This choices of LKF and integral inequality constraints reduced
the conservatism of the method by limiting the bounding gap in
the integral cross-terms of the LKF derivative. By introducing
appropriate slack variables, the final relaxed synthesis conditions
have been formulated in terms of tractable convex linear matrix
inequalities (LMIs). A numerical example compared the
performance of the proposed scheme to past work in the
literature. It is shown that the proposed delay-dependent LPV
control that utilizes an improved LKF formulation and a more
general Jensen’s inequality results in less conservative design and
larger values of allowable delay. Finally, the mean arterial blood
pressure (MAP) regulation in critical hypotensive patients was
examined to evaluate the proposed control design in a challenging
practical control problem. Closed-loop simulation results
demonstrated the ability of the proposed time-delayed LPV
control to regulate MAP in the presence of varying input delays
and disturbances in comparison with past results in the literature.
In the present work, the time-varying delay is considered to be a
known quantity that can be estimated or evaluated in real time.

Future work will investigate the stability analysis and robust control
design for LPV systems with uncertain time-varying delays.
Additionally, the effect of saturation constraints on the
magnitude of the control input will be examined.
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