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In this paper, the bearing-only formation control problem of a class of second-order system
with unknown disturbance is investigated, where the control law merely depends on the
relative bearings between neighboring agents. In order to offset the effect of unknown
disturbance on the system, adaptive estimation is introduced. In the design of the control
law, the back-stepping design method and the negative gradient method are used. The
Barbalat’s lemma is used to prove the global stability of the system. The simulation results
prove the effectiveness of the proposed formation control algorithm.
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1 INTRODUCTION

In recent years, formation control of multi-agent systems has attracted great attention due to its wide
application in military, scientific research, and daily life. The information commonly used in the
existing formation control are categorized into position, relative distance and relative bearing. In
particular, the research on formation control based on position or relative distance are very rich (Lin
et al., 2016; Ran et al., 2017; Han et al., 2019; Mehdifar et al., 2019; Sun et al., 2019; Zou et al., 2019;
Chen et al., 2020; Liu et al., 2020; Mehdifar et al., 2020; Yu and Chen, 2020). Relatively speaking, there
is a lack of researches on formation control based on relative bearing. However, compared to the
formation control approaches that rely on position or relative distance, bearing-only formation
control has lower requirements for sensors, so it reduces the production cost and has a wide range of
application scenarios. Therefore, the research on bearing-only formation control is of great
significance.

Zhao and Zelazo (2016) have put forward the definition of bearing rigidity for any dimension and
proved the conditions of bearing rigidity, which greatly promoted the development of formation
control based on relative bearing. Based on the definition, researchers have done a lot of research. For
different agent models such as single integrators, double integrators and unicycles, Zhao et al. (2019)
designed a series of bearing-only control laws, which can enable followers to track leaders and reach
the specified formation, and proved its stability by use of the standard Lyapunov method. Li et al.
(2021) solved the bearing-only formation control problem of the three-dimensional nonholonomic
constraints system by transforming the three-dimensional nonholonomic model into Euler-
Lagrange-like form and using the back-stepping design method. Zhao et al. (2021) considered
the system with local reference frame, they synchronized the orientations of followers with the leader
first, and then adopted bearing-only control law to solve the formation control problem of double-
integrators without global reference coordinates. Yang et al. (2020) designed a relative position
estimator, which uses the relative bearing and the linear velocity information of the leader to estimate
the relative position of the leader, and designed a controller with the estimated relative position
information to complete the task of tracking the leader. Since collision is devastating to the formation
control system, Hu and Yang (2020) proposed a distributed cooperative consensus control

Edited by:
Chunyan Wang,

Beijing Institute of Technology, China

Reviewed by:
Qing Wang,

Beihang University, China
Yang Xu,

Northwestern Polytechnical
University, China
Dandan Wang,

Beijing Institute of Technology, China

*Correspondence:
Qin Wang

qinwang@yzu.edu.cn

Specialty section:
This article was submitted to

Nonlinear Control,
a section of the journal

Frontiers in Control Engineering

Received: 25 April 2021
Accepted: 11 June 2021
Published: 15 July 2021

Citation:
Li S, Wang Q, Wang E and Chen Y

(2021) Bearing-Only Adaptive
Formation Control Using Back-

Stepping Method.
Front. Control. Eng. 2:700053.

doi: 10.3389/fcteg.2021.700053

Frontiers in Control Engineering | www.frontiersin.org July 2021 | Volume 2 | Article 7000531

ORIGINAL RESEARCH
published: 15 July 2021

doi: 10.3389/fcteg.2021.700053

http://crossmark.crossref.org/dialog/?doi=10.3389/fcteg.2021.700053&domain=pdf&date_stamp=2021-07-15
https://www.frontiersin.org/articles/10.3389/fcteg.2021.700053/full
https://www.frontiersin.org/articles/10.3389/fcteg.2021.700053/full
http://creativecommons.org/licenses/by/4.0/
mailto:qinwang@yzu.edu.cn
https://doi.org/10.3389/fcteg.2021.700053
https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles
https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org/journals/control-engineering#editorial-board
https://doi.org/10.3389/fcteg.2021.700053


algorithm, and proved that this control method can prevent
agents from colliding effectively. Besides, Luo et al. (2020)
used the maximal clique graph instead of infinitesimal rigidity
to express the communication topology betweenmulti-agent with
non-holonomic constraints, and designed a bearing-only
formation control law to solve the problem of how to achieve
global stability without leaders. Compared with these existing
research on bearing-only formation control, most of existing
research are focused on linear system, while the system
studied in this paper is a nonlinear system with unknown
time-varying disturbance. Disturbance is inevitable in reality,
so it seems of more practical significance to study nonlinear
system.

The main contribution of this paper is to propose a novel
bearing-only formation control law that can handle second-order
system with unknown disturbance. The control algorithm based
on the negative gradient method only uses the information of
relative bearings between neighboring agents. The adaptive
estimation method is introduced to counteract the unknown
disturbance, and the back-stepping design method is used in
the design process. Then, the global stability of the bearing-only
formation system is demonstrated by use of the Barbalat’s
Lemma.

2 PROBLEM STATEMENT

Consider a formation system comprising of n agents, and the
model of each agent is as follows:

{ _ri � vi
_vi � ui + dui

(1)

In the formula above, ri ∈ Rd stands for the position of
agent i, and vi and ui represent velocity and control input of
agent i, respectively. Here, i � 1, 2,/, n. dui is the unknown
disturbance, and we assume ‖dui‖≤Dui, Dui is unknown
constant.

In this paper, we use an undirected graph G � (V , E) to
represent the communication relationship of the system. V �
{1, 2,/, n} represents the set of agents in the system, and E4V × V
represents the set of edges in the system. The edge (i, j) ∈ E
indicates that agent i can measure the relative bearing of agent j,
and hence agent j is neighbor of i. Let Ni � {j ∈ V : (i, j) ∈ E}
denote the set of neighboring vertices of vertex i, and we also have
(i, j) ∈ E5(j, i) ∈ E.

Define the edge vector and bearing vector, respectively:

rij � ri − rj, gij � rij����rij����
As shown above,

����rij���� stands for the Euclidean distance
between agent i and agent j, j ∈ Ni is neighbor of agent i. gij
means the bearing of ri relative to rj. In this chapter, assuming
that all agents can perceive the global coordinate system, there are
rij � −rji, gij � −gji. Relative bearing of agents can usually be
measured by onboard vision in practice.

In this paper, considering the control of formation without
leader, the position information of multiple agents is
r � [rT1 ,/, rTn ]T . An oriented graph G

→
is obtained by orienting

each edge in the undirected graph G, that is, the direction of any
edge inG is calibrated (Biggs, 1974). Define the edge in the graphG,
tagging the order from 1 to m, m represents the total number of
edges in graph G. Number the edges in G

→
from E1 to Em, then get

the corresponding incidence matrix H � H(G) � (hij) ∈ Rm×n.
The incidence matrix H is a matrix composed of 0, 1, and −1.
The elements on the rows of the incidence matrix are indexed by
edges E4V × V , and the value elements on the columns are
indexed by vertices V � {1, 2,/, n}, namely: except for [H]ki
and [H]kj, all elements in the row k of the incidence matrix H
are zero. Among them, when vertex i is the last vertex of edge k,
[H]ki � −1, and when vertex j is the first vertex of edge k, [H]kj � 1.

Therefore, the incidence matrix is defined as:

e � H ⊗ Idr � Hr (2)

where ⊗ denotes the Kronecker product, and Id ∈ Rd×d is the
identity matrix.

Assuming that the edge (i, j) in the graph corresponds to
the edge k in the directed graph, where k ∈ {1,/,m}. The edge
and bearing vectors for the kth directed edge can be expressed as:
ek � rij � ri − rj, gk � ek/‖ek‖, where e � [eT1 ,/, eTm]T ,
g � [gT1 ,/, gTm]T .

At the same time, assign an expected vector to each edge vector
gij in graph G, which is called gpij . In the same way, define gpk � gpij
and gp � [gpT1 , gpT2 ,/, gpTm ]T .

In this paper, we use the infinitesimally bearing rigidity to
express the communication topology of multi-agent systems. It
means that the shape of the formation can be uniquely
determined. Zhao and Zelazo (2016) put forward the
definition of infinitesimally bearing rigidity for any dimension
and proved the conditions of infinitesimally bearing rigidity,
which is shown in the following lemma.

Lemma 1: (Zhao and Zelazo, 2016): A framework G in Rd is
infinitesimally bearing rigid if and only if rank (R(r)) � dn − d − 1,
where R(r) � zFB(r)

zr , FB(r) � [gT1 , gT2 ,/gTm]T .
In order to design the globally stable formation control

strategy, we give the following assumption and the potential
function.

Assumption 1: The initial positions of agents do not coincide,
and neighboring agents will not collide during formation.

The potential function between agent i and its neighboring
agent j is defined as follows:

Vij �
�����gij − gpij

�����2����rij���� (3)

Define:

ρij �
zVij

zrij
� 2(gij − gpij) (4)

The definition of total potential function of agent i is

Vi � ∑
j∈Ni

Vij (5)
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The problem of the bearing-only formation control to be
solved in this paper is formally described as follows.

Problem 1: Consider multi-agent systems of n agents with
unknown disturbance, its communication topology is defined by
infinitesimal bearing rigidity. For any initial condition other than
coincidence ri(0) ∈ Rd , i � 1, 2,/n, design a bearing-only
control law to control the relative bearings between agents
reaches the desired value, and all agents are moving at the
desired velocity vp, which make the multi-agent systems form
the specified formation, that is:

lim
t→∞

gij � gpij , lim
t→∞

vi � vp, (i � 1, 2,/n, j ∈ Ni)

3 DESIGN OF GLOBAL STABILIZER

Define ~ri � ri − rp, ~vi � vi − vp, _rp � vp, ~ui � ui − _vp, then we have

{ _~ri � ~vi
_~vi � ~ui + dui

i � 1, 2,/, n (6)

Also, let ~r � [~rT1 ,/,~rTn ]T , ~v � [~vT1 ,/,~vTn ]T , ~u � [~uT1 ,/, ~uTn ]T ,
du � [du1,/, dun] , then ~rij � rij,~vij � vij, so the whole system can
be written in the form as:

{ _~r � ~v
_~v � ~u + du

(7)

Then, the control law is designed by use of the back-stepping
design method.

Step 1:
Focus on the following subsystems of Eq. 7:

_~r � ~v (8)

In this subsystem, ~v � h(~r) � [hT1 , hT2 ,/, hTn ]T , and we use the
feedback controller h(~r) to control the relative bearing.

The Lyapunov function candidate is chosen as follows:

W1(t) � ∑n
i�1

Vi � ∑n
i�1

∑
j∈Ni

Vij (9)

Owing to rij � −rji, Vi is symmetric about rij, we have
zVij/zrij � zVij/zri � −zVij/zrj, j ∈ Ni, then

_W1(t) � d
dt

∑n
i�1

Vi � 2∑n
i�1

~vTi ∇riVi

The virtual control law ~v � h(~r) is chosen as

hi(~r) � −∑
j∈Ni

2(gij − gpij) (10)

~v � h(~r) (11)

and it follows that

_W1(t) � 2∑n
i�1

~vTi ∇riVi � −2∑n
i�1

������ ∑
j ∈ Ni

2(gij − gpij)
������2 ≤ 0 (12)

Step 2:
Then, introducing the error variable

v � [vT1 , vT2 ,/, vTn ]T � ~v − h(~r) (13)

Take the derivative of the above equation, that is

{ _~r � v + h(~r)
_v � ~u + du − _h(~r) (14)

For the above system, the Lyapunov function candidate is
chosen as follows:

W2(~r, v) � W1(t) +∑n
i�1
[vTi vi + 1

λi
(ci − ĉi)T (ci − ĉi)] (15)

where ci � [Dui,/,Dui]T ∈ Rd , ĉi is the estimated value of ci at
time t.

Differentiate the function W2(~r, v) with respect to time, we
have

_W2(~r, v) � 2∑n
i�1

⎡⎢⎢⎣ ∑
j ∈ Ni

2(gij − gpij)⎤⎥⎥⎦
T

vi +∑n
i�1

⎡⎢⎢⎣ ∑
j ∈ Ni

2(gij − gpij)⎤⎥⎥⎦
T

hi(~r)

+ 2∑n
i�1

vTi ~ui + 2∑n
i�1

vTi dui − 2∑n
i�1

vTi
_hi(~r) − 2

λi
∑n
i�1
[ĉi.T(ci − ĉi)]

(16)

Motivated by Wang et al. (2015), the global stabilized
formation control law is designed as follows

~ui � −vi + hi(~r) + _hi(~r) − Biĉi, i � 1, 2,/, n (17)

Because of ui � ~ui + _vp, the control law is as follows,

ui � −vi + hi(~r) + _hi(~r) − Biĉi + _vp, i � 1, 2,/, n (18)

The adaptive law is shown as:

_̂ci � λiBivi (19)

Here Bi � diag[sgn(vi1),/, sgn(vid)], where vid represents
the dth element in vi, i � 1, 2,/, n, and the sign function is
shown as follows:

sgn(x) �
⎧⎪⎨⎪⎩

1,
0,
−1,

x > 0
x � 0
x < 0

Remark 1: _hi(~r) � − ∑
j∈Ni

2 _gij. In practice, gij can generally be

measured by onboard vision. At the same time, the rate of change
of relative bearing can also be measured by onboard vision with
optical flow technology, so _gij can be measured.

Remark 2: The sign function in the control law would cause
the chattering phenomenon. In simulation or engineering
practice, the saturation function sat(x/φ) is usually used to
replace the sign function to solve the problem of chattering.
When

∣∣∣∣s/φ∣∣∣∣≤ 1, sat(x/φ) � x/φ; when
∣∣∣∣x/φ∣∣∣∣> 1,

sat(x/φ) � sgn(x/φ), where φ represents the width of the
boundary layer. Whether the saturation function or the sign
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function is used, the results in engineering practice and
simulation are unchanged.

4 STABILITY ANALYSIS

The formation stability is analyzed as follows.
Theorem 1: Under the control law (Eq. 18), the multi-agent

systems converges asymptotically to the desired shape and all
agents move at the desired velocity vp, and the closed-loop system
is globally asymptotically stable.

Proof: The Lyapunov function candidate W2(~r, v) is
determined by Eq. 15, and note that W2 is smooth and hence
regular; its generalized gradient (Clarke, 1983) is a singleton
which is equal to its usual gradient everywhere in the state
space: zW2 � {∇W2} (Shevitz and Paden, 1993). Along with
Eqs. 13–19, we can obtain

_W2(~r, v) � 2∑n
i�1

(∇riVi)Tvi +∑n
i�1
⎡⎢⎢⎢⎣2vTi _vi − 2

λi
_̂ci
T(ci − ĉi)⎤⎥⎥⎥⎦

� −2∑n
i�1

������ ∑
j ∈ Ni

2(gij − gpij)
������2 − 2∑n

i�1
vTi vi + 2∑n

i�1
vTi (dui

− Bici)≤ − 2∑n
i�1

������ ∑
j ∈ Ni

2(gij − gpij)
������2 − 2∑n

i�1
vTi vi ≤ 0

(20)

the above inequality is obtained when _̂ci � λiBivi.
Eq. 20 proves that W2(rij(t)) is non-increasing, and Eq. 15

shows that W2(rij(t)) greater than zero, so it can be inferred
that it has a limit W2(rij(t)(∞)). Define T(gij(t)) �
8∑n
i�1

���� ∑
j ∈ Ni

(gij − gpij)
����2, so T(gij(t))≤ − _W2. Integrating both

sides of the equation, we have

lim
t→∞

∫t

0
T(gij(τ))dτ ≤ − lim

t→∞
∫t

0

_W2(rij(τ))dτ
� W2(rij(0)) −W2(rij(∞))

which means that ∫t

0
T(gij(τ))dτ exists and is finite. Now we

show that ∫t

0
T(gij(τ))dτ is also uniformly continuous.

Since gij � rij/
����rij����, gij are bounded. It is concluded that

_gij �
(Id−gijgTij )
‖rij‖ _rij and

����rij���� are not equal to zero because it is
assumed that agents will not collide. So _gij are bounded, which
indicates gij are uniformly continuous with ∀t ∈ [0,+∞). Since
T(gij(t)) is continuous, it is uniformly continuous with ∀gij(t), so
it can be deduced that T(gij(t)) is uniformly continuous with
∀t ∈ [0,+∞). According to Barbalat’s lemma (Ge et al., 2002), we
can get lim

t→∞
T(gij(t)) � 0, and we can deduce:

lim
t→∞

∣∣∣∣∣∣
∣∣∣∣∣∣∑
j∈Ni

(gij − gpij)∣∣∣∣∣∣
∣∣∣∣∣∣2 � 0

In the same way

lim
t→∞

vi(t) � 0

That is
������ ∑
j ∈ Ni

(gij − gpij)
������2 � 00 ∑n

i�1
∑
j∈Ni

(gij − gpij) � 0

In the following, put the above equation into matrix-vector
form

H
T(gij − g*ij) � 0 (21)

Combining Eq. 2 and Eq. 21, we have:

rTH
T(g − gp) � eT(g − gp) � ∑m

k�1
eTk (gk − gpk ) � ∑m

k�1
‖ek‖gTk (gk − gpk )

� ∑m
k�1

‖ek‖(1 − gTk g
p
k ) � 1

2
∑m
k�1

‖ek‖
����gk − gpk

����2
� 0

We can get lim
t→∞

(gij(t) − gpij(t)) � 0. It means that all the
relative bearing vectors gij meet the expected value g*ij, that is,
the multi-agent systems meets the expected formation, and the
system is globally asymptotically stable.

So, lim
t→∞

hi(~r) � − lim
t→∞

∑
j∈Ni

2(gij − gpij) � 0. It can be seen from

Eq. 13, lim
t→∞

~vi(t) � 0, that is to say, lim
t→∞

vi � vp.
In summary, the system will converge to the following set:

M � {rij, vi∣∣∣∣∣gij � gpij , vi � 0, j ∈ Ni, i � 1, 2,/, n}
That is, the relative bearings between agents reach the desired

value, and all agents are moving at the same desired velocity; then
the multi-agent systems achieve the desired formation shape.

5 SIMULATIONS

In the simulation, the dynamic model of agents is expressed by
the following equation:

FIGURE 1 | The trajectories of agents.
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{ _ri � vi
_vi � ui + 1.2 cos ri

i � 1, 2,/, 5

Then, we prove the effectiveness of the control law through 2D
and 3D simulation examples.

5.1 Simulation for 2-Dimensional
In simulation, we choose Di � 1.2, ĉi(0) � [0.1, 0]T , λi � 2,
i � 1,/, 5. Set the initial position of each agent to r1 � [1, 2]T ,
r2 � [2, 1]T , r3 � [3.5, 2.5]T , r4 � [3, 3]T , r5 � [2, 4]T , the initial
velocities of the agents are set to v1 � [1, 1]T , v2 � [0.5, 0]T ,
v3 � [1,−1]T , v4 � [1, 0.5]T , v5 � [0,−1]T . g � [gT12, gT13,
gT14, g

T
15, g

T
23, g

T
34, g

T
45]T is the desired relative bearing vector,

where g12 � [−1, 0]T , g13 � [−0.809,−0.588]T ,
g14 � [−0.309,−0.951]T , g15 � [0.309,−0.951]T ,
g23 � [−0.309,−0.951]T , g34 � [0.809,−0.588]T ,

g45 � [0.809, 0.588]T , and the desired velocity is vp � [2, 2]T .
The simulation results are shown in Figures 1–3.

As is shown in Figure 1, the formation converges to the
desired regular pentagon. Figure 2 shows the bearing errors
converge to zero. Figure 3 illustrates that the velocities of
agents converge to desired one. The above results prove the
effectiveness of the proposed control law in two dimensions.

Increasing the disturbance by a factor of three, and comparing
the results of Figures 4–6with Figures 1–3, it can be seen that the
magnitude of the disturbance will affect the time required for the
system to reach stability. The larger the disturbance, the longer it
takes to reach stability.

5.2 Simulation for 3-Dimensional
In simulation, we choose Di � 1.2, ĉi(0) � [0.1, 0, 0]T , λi � 2,
i � 1,/, 5. Setting the initial position of each agent to
r1 � [1, 3, 0]T , r2 � [2, 2, 2]T , r3 � [3.5, 5, 3]T , r4 � [3, 4, 5]T ,

FIGURE 2 | The bearing errors.
∣∣∣∣∣∣∣∣∣∣gij − g*ij

∣∣∣∣∣∣∣∣∣∣.

FIGURE 3 | The velocities of agents.

FIGURE 4 | The trajectories of agents.

FIGURE 5 | The bearing errors.
∣∣∣∣∣∣∣∣∣∣gij − g*ij

∣∣∣∣∣∣∣∣∣∣.
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r5 � [1, 4, 2]T , the initial velocities of the agents are set to
v1 � [5, 4, 6]T , v2 � [0, 2, 0]T , v3 � [2, 7, 1]T , v4 � [4, 3, 2]T ,

v5 � [3, 5, 7]T . g � [gT12, gT13, gT14, gT15, gT23, gT34, gT45]T is the desired
relative bearing vector, where g12 � [−1, 0, 0]T ,
g13 � [−0.707,−0.707, 0]T , g14 � [0,−1, 0]T ,
g15 � [−0.408,−0.408,−0.816]T , g23 � [0,−1, 0]T ,
g34 � [1, 0, 0]T , g45 � [−0.408, 0.408,−0.816]T , and the desired
velocity is v* � [2, 2, 2]T . The simulation results are shown in
Figures 7–9.

As shown in Figure 7, the formation converges to the
desired right square pyramid. Figure 8 shows the bearing
errors converge to zero. Figure 9 illustrates that the velocities
of agents converge to desired one. The above results prove
the effectiveness of the proposed control law in three
dimensions.

6 CONCLUSION

This paper proposes an adaptive formation control algorithm
based on negative gradient method to solve the formation
problem of a class of second-order system with uncertain
disturbances, and the control law only uses the information of

FIGURE 6 | The velocities of agents.

FIGURE 7 | The trajectories of agents.

FIGURE 8 | The bearing errors.
∣∣∣∣∣∣∣∣∣∣gij − g*ij

∣∣∣∣∣∣∣∣∣∣.

FIGURE 9 | The velocities of agents.
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relative bearing between neighboring agents. The algorithm
introduces adaptive estimation to counteract unknown
disturbances. Furthermore, the back-stepping design method is
used in the design process. Then, the global stability of the whole
formation system is proved by Barbalat’s lemma. In the end, the
simulation results in 2D and 3D show the effectiveness of the
algorithm.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

SL contributed to the design of control law, simulation and writing of
the original draft. QWhelpedwith themethodology, guidance, review
and editing. EW and YC helped with review and editing. All authors
contributed to the article and approved the submitted version.

FUNDING

This work was supported in part by the National Natural Science
Foundation of China under Grants 61803331, 61873229,
61806175, and 61873346, in part by the Jiangsu Planned
Projects for Postdoctoral Research Funds 1601024B.

REFERENCES

Biggs, N. (1974). Algebraic Graph Theory. Cambridge: Cambridge University Press.
doi:10.1017/cbo9780511608704

Chen, L., Mei, J., Li, C., and Ma, G. (2020). Distributed Leader-Follower Affine
Formation Maneuver Control for High-Order Multiagent Systems. IEEE Trans.
Automat. Contr. 65, 4941–4948. doi:10.1109/tac.2020.2986684

Clarke, F. H. (1990).Optimization and Nonsmooth Analysis. New York: JohnWiley
& Sons. doi:10.1137/1.9781611971309

Ge, S. S., Hang, C. C., Lee, T. H., and Zhang, T. (2002). Stable Adaptive Neural
Network Control. New York: Springer US. doi:10.1007/978-1-4757-6577-9

Han, Z., Guo, K., Xie, L., and Lin, Z. (2019). Integrated Relative Localization and
Leader-Follower Formation Control. IEEE Trans. Automat. Contr. 64, 20–34.
doi:10.1109/TAC.2018.2800790

Hu, Z., and Yang, J. (2020). Collision Avoidance Cooperative Attack with Multiple
Pursuers Based on Bearing-Only Measurements. J. Franklin Inst. 357, 437–456.
doi:10.1016/j.jfranklin.2019.11.061

Li, X., Wen, C., and Chen, C. (2021). Adaptive Formation Control of Networked
Robotic Systems with Bearing-Only Measurements. IEEE Trans. Cybern. 51,
199–209. doi:10.1109/TCYB.2020.2978981

Lin, Z., Wang, L., Han, Z., and Fu, M. (2016). A Graph Laplacian Approach to
Coordinate-free Formation Stabilization for Directed Networks. IEEE Trans.
Automat. Contr. 61, 1269–1280. doi:10.1109/TAC.2015.2454711

Liu, Y., Huang, P., Zhang, F., and Zhao, Y. (2020). Distributed Formation Control
Using Artificial Potentials and Neural Network for Constrained Multiagent
Systems. IEEE Trans. Contr. Syst. Technol. 28, 697–704. doi:10.1109/
TCST.2018.2884226

Luo, X., Li, X., Li, X., Yan, J., and Guan, X. (2020). Globally Stable Formation
Control of Nonholonomic Multiagent Systems with Bearing-Only
Measurement. IEEE Syst. J. 14, 2901–2912. doi:10.1109/JSYST.2019.2935162

Mehdifar, F., Bechlioulis, C. P., Hashemzadeh, F., and Baradarannia, M. (2020).
Prescribed Performance Distance-Based Formation Control of Multi-Agent
Systems. Automatica 119, 109086. doi:10.1016/j.automatica.2020.109086

Mehdifar, F., Hashemzadeh, F., Baradarannia, M., and de Queiroz, M. (2019).
Finite-time Rigidity-Based Formation Maneuvering of Multiagent Systems
Using Distributed Finite-Time Velocity Estimators. IEEE Trans. Cybern. 49,
4473–4484. doi:10.1109/TCYB.2018.2876608

Ran, D., Chen, X., Misra, A. K., and Xiao, B. (2017). Relative Position Coordinated
Control for Spacecraft Formation Flying with Communication Delays. Acta
Astronautica 137, 302–311. doi:10.1016/j.actaastro.2017.04.011

Shevitz, D., and Paden, B. (1993). “Lyapunov Stability Theory of Nonsmooth
Systems,” in Proceedings of 32nd IEEE Conference on Decision and Control,
San Antonio, TX, December 15, 1993 (Piscataway, NJ: IEEE), 416–421.
doi:10.1109/CDC.1993.325114

Sun, Z., de Marina, H. G., Seyboth, G. S., Anderson, B. D. O., and Yu, C. (2019). Circular
Formation Control of Multiple Unicycle-type Agents with Nonidentical Constant
Speeds. IEEE Trans. Contr. Syst. Technol. 27, 192–205. doi:10.1109/TCST.2017.2763938

Wang, Q., Zhu, Y., Li, J., and Hua, Q. (2015). “Globally Stable Rigid Formation
Control for Multi-Robot Systems,” in 2015 34th Chinese Control Conference
(CCC), Hangzhou, China, July 28–30, 2015 (Piscataway, NJ: IEEE), 7505–7510.
doi:10.1109/ChiCC.2015.7260829

Yang, Z., Zhu, S., Chen, C., Feng, G., andGuan, X. (2020). Leader-follower Formation
Control of Nonholonomic mobile Robots with Bearing-Only Measurements.
J. Franklin Inst. 357, 1628–1643. doi:10.1016/j.jfranklin.2019.11.025

Yu, D., and Chen, C. L. P. (2020). Automatic Leader-Follower Persistent Formation
Generation withMinimumAgent-Movement in Various Switching Topologies.
IEEE Trans. Cybern. 50, 1569–1581. doi:10.1109/TCYB.2018.2865803

Zhao, J., Yu, X., Li, X., andWang, H. (2021). Bearing-only Formation TrackingControl
of Multi-Agent Systems with Local Reference Frames and Constant-Velocity
Leaders. IEEE Control. Syst. Lett. 5, 1–6. doi:10.1109/LCSYS.2020.2999972

Zhao, S., Li, Z., and Ding, Z. (2019). Bearing-only Formation Tracking Control of
Multiagent Systems. IEEE Trans. Automat. Contr. 64, 4541–4554. doi:10.1109/
TAC.2019.2903290

Zhao, S., and Zelazo, D. (2016). Bearing Rigidity and Almost Global Bearing-Only
Formation Stabilization. IEEE Trans. Automat. Contr. 61, 1255–1268.
doi:10.1109/TAC.2015.2459191

Zou, Y., Wen, C., and Guan, M. (2019). Distributed Adaptive Control for Distance-
based Formation and Flocking Control of Multi-agent Systems. IET Control.
Theor. Appl. 13, 878–885. doi:10.1049/iet-cta.2018.6001

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Li, Wang, Wang and Chen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Control Engineering | www.frontiersin.org July 2021 | Volume 2 | Article 7000537

Li et al. Bearing-Only Adaptive Formation Control

https://doi.org/10.1017/cbo9780511608704
https://doi.org/10.1109/tac.2020.2986684
https://doi.org/10.1137/1.9781611971309
https://doi.org/10.1007/978-1-4757-6577-9
https://doi.org/10.1109/TAC.2018.2800790
https://doi.org/10.1016/j.jfranklin.2019.11.061
https://doi.org/10.1109/TCYB.2020.2978981
https://doi.org/10.1109/TAC.2015.2454711
https://doi.org/10.1109/TCST.2018.2884226
https://doi.org/10.1109/TCST.2018.2884226
https://doi.org/10.1109/JSYST.2019.2935162
https://doi.org/10.1016/j.automatica.2020.109086
https://doi.org/10.1109/TCYB.2018.2876608
https://doi.org/10.1016/j.actaastro.2017.04.011
https://doi.org/10.1109/CDC.1993.325114
https://doi.org/10.1109/TCST.2017.2763938
https://doi.org/10.1109/ChiCC.2015.7260829
https://doi.org/10.1016/j.jfranklin.2019.11.025
https://doi.org/10.1109/TCYB.2018.2865803
https://doi.org/10.1109/LCSYS.2020.2999972
https://doi.org/10.1109/TAC.2019.2903290
https://doi.org/10.1109/TAC.2019.2903290
https://doi.org/10.1109/TAC.2015.2459191
https://doi.org/10.1049/iet-cta.2018.6001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

	Bearing-Only Adaptive Formation Control Using Back-Stepping Method
	1 Introduction
	2 Problem Statement
	3 Design of Global Stabilizer
	4 Stability Analysis
	5 Simulations
	5.1 Simulation for 2-Dimensional
	5.2 Simulation for 3-Dimensional

	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


