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This paper examines the control design for parameter-dependent input-delay linear
parameter-varying (LPV) systems with saturation constraints and matched input
disturbances. A gain-scheduled dynamic output feedback controller, coupled with a
disturbance observer to cancel out input disturbance effects, was augmented with an
anti-windup compensator to locally stabilize the input-delay LPV system under saturation,
model uncertainty, and exogenous disturbances. Sufficient delay-dependent conditions to
asymptotically stabilize the closed-loop system were derived using Lyapunov-Krasovskii
functionals and a modified generalized sector condition to address the input saturation
nonlinearity. The level of disturbance rejection was characterized via the closed-loop
induced L2-norm of the closed-loop system in the form of linear matrix inequality (LMI)
constraints. The results are examined in the context of the mean arterial pressure (MAP)
control in the clinical resuscitation of critical hypotensive patients. The MAP variation
response to the injection of vasopressor drugs was modeled as an LPV system with a
varying input delay and was susceptible to model uncertainty and input/output
disturbances. A Bayesian filtering method known as the cubature Kalman filter (CKF)
was used to estimate the instantaneous values of the parameters. The varying delay was
estimated via a multiple-model approach. The proposed input-delay LPV control was
validated in closed-loop simulations to demonstrate its merits and capabilities in the
presence of drug administration constraints.

Keywords: linear parameter-varying systems, time-delay, actuator saturation, sector condition, linear matrix
inequalities, mean arterial pressure control, Bayesian filtering and cubature Kalman filter

1 INTRODUCTION

Controller saturation often leads to performance degradation and even instability in practical closed-
loop feedback systems (Li and Lin, 2018). To avoid such problems, anti-windup strategies are
typically introduced. Anti-windup control seeks to compensate for the discrepancy between the
controller output signal and the actuation input to the controlled system. Methods for anti-windup
control have been examined extensively in the control literature, e.g., see (Kapila and Grigoriadis,
2002; Benzaouia et al., 2018). The two-step method addresses the windup effects caused by actuator
saturation following the initial design of a controller for the saturation-free closed-loop system. On
the other hand, the single-step method simultaneously performs the controller and anti-windup
compensator designs using, for example, differential inclusion or sector condition methods
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(Tarbouriech et al., 2011). The generalized sector condition
method effectively facilitates linear parameter-varying (LPV)
control system designs by introducing a new state representing
a decentralized control input (Nguyen et al., 2015, 2018). In
contrast, the differential inclusion method defines saturation-free
polytopes, whichmay increase the computational complexity (Hu
et al., 2018).

Practical systems are prone to input disturbances that can
contribute to actuator saturation if not addressed. An observer
can be designed to accommodate disturbance effects in control
designs. In the literature, the input disturbance dynamics are
typically assumed to be fully known (Wei et al., 2015; Fan et al.,
2017; Gao et al., 2019; Shao et al., 2019). Other works assume that
the disturbance dynamics were affected partially by unknown
white noise signals that can better represent the varying and not
fully predictable nature of disturbances (Wei et al., 2019, 2020).
Controlling LPV systems under saturation and input
disturbances becomes more challenging when a time delay
exists in the control loop (Dou et al., 2014; de Souza et al.,
2019). Delay frequently occurs in numerous engineering systems,
such as power transmission, network and communication
systems, biomedical systems, and economics. It leads to poor
performance and in severe cases can induce oscillations and cause
instability of the closed-loop system (Fridman, 2014). The
stability and performance of time-delay LPV systems have
been studied extensively in the literature (Briat, 2015; Salavati
et al., 2019; Wang et al., 2019).

The present work examines the previously unexplored
problem of control design for uncertain LPV systems with a
parameter-dependent input delay and matched disturbances
under control input constraints. In this work, disturbance
dynamics are considered to be affected by unknown inputs.
An output feedback LPV controller is coupled with a
disturbance observer, and both are augmented with an anti-
windup compensator to ensure the local stability of the
uncertain closed-loop system. The design seeks to satisfy
desired performance objectives along with disturbance
estimation error minimization in terms of the induced
L2-norm specification. To reduce the conservatism in the anti-
windup compensator design, a parameter-dependent
representation of the modified sector condition with the
deadzone nonlinearity is employed. A Lyapunov-Krasovskii
functional (LKF) approach is followed to address the time
delay nature of the control design problem. The time
derivative of the proposed LKF is bounded via a reciprocally
convex method (Park et al., 2011) and the closed-loop stability
conditions along with the LPV controller and observer synthesis
conditions are formulated in terms of linear matrix inequalities
(LMIs). The set of admissible initial conditions, for which the
asymptotic stability of the closed-loop system without
disturbances is ensured, i.e. the domain of attraction, is estimated.

The control input is subject to disturbances and also drug
injection limitations, and the MAP response is affected by
exogenous disturbances, such as incisions, medicine
interference, suturing, hemorrhage, and trauma. Precise
automated drug delivery strategies are required to avoid over/
under regulation, which could compromise the recovery of the

patient. The proposed input-delay LPV MAP control along with
the input disturbance observer favorably tracks a prescribedMAP
profile under the model uncertainty and disturbances as closed-
loop simulation results demonstrate.

The rest of this paper is structured as follows. Section 2
describes the mathematical formulation of the problem. Due to
space limitations, the closed-loop stability and synthesis
conditions of the disturbance observer with the anti-windup
gain-scheduled controller in terms of LMIs are combined to
form a single result and presented in Section 3. Section 4
briefly discusses the modeling of the MAP response dynamics
to the vasoactive drug injection followed by the validation of
the proposed controller design through simulations of the
time-delay LPV MAP closed-loop system. Section 5
concludes the paper.

2 PROBLEM STATEMENT

Consider an uncertain input-delay LPV system as follows

(P)

_xp(t) � Ap(ρ(t)) + ΔAp(t)[ ]xp(t)
+ Bp(ρ(t)) + ΔBp(t)[ ]sat u(t − θ(ρ(t))) + di(t)( )
+ Dp(ρ(t)) + ΔDp(t)[ ]d(t),

zp(t) � Cz(ρ(t))xp(t) +Dzu(ρ(t))sat u(t − θ(ρ(t))) + di(t)( )
+Dzw(ρ(t))d(t),
y(t) � Cyxp(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
xp(t0 + s) � φ(s), ∀s ∈ [−�h 0],

where xp(t) ∈ Rnp is the state vector, u(t) ∈ Rnu is the control
input vector, di(t) ∈ Rnu is the matched input disturbance vector,
d(t) ∈ Rnd is the exogenous input vector with a bounded
L2-norm, zp(t) ∈ Rnz is the controlled output vector,
y(t) ∈ Rny is the output measurement vector, and
φ(s) ∈ C1�h([−�h 0],Rnp ), i.e., a differentiable continuous
function mapping [−�h 0] to Rnp , is the initial condition. The
control input satisfies the bound |ui(t)|≤ �ui with �ui > 0, i �
1, . . . , nu and sat(ui) � sgn(ui)min |ui|, �ui{ } is the saturation
function. Ap (·), Bp(·), Dp (·), Cz (·), Dzu (·), Dzw (·), and Cy

are real-valued matrix coefficients with appropriate dimensions.
The norm-bounded uncertain matrices satisfy

ΔAp(t) ΔBp(t) ΔDp(t)[ ] � EpF(t) GAp GBp GDp[ ], (2)

where Ep and G’s are known constant matrices and the time-
varying matrix F(t) satisfies the Euclidean matrix norm bound
‖F(t)‖ ≤ 1. The scheduling parameter vector belongs to a set
ρ(t)∈ F�v

P such that

F�v
Pb ρ(t) ∈ C R,Rns( ): ρ(t) ∈ P, | _ρi(t)|≤ �vi, i � 1, 2, . . . , ns , t ∈ R≥0{ },

(3)

and P � ∩ ns
i�1[ρ i

�ρi] ⊂ Rns is a closed and bounded hyper-
rectangle. The scheduling parameters are assumed to be
measurable or estimated in real time. The parameter-
dependent delay belongs to
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H�hb θ(ρ(t)) ∈ C1 P,R≥0( ): 0≤ θ(·)≤ �h{ }. (4)

D denotes the set of all bounded energy disturbance signals

Db d(t) ∈ Rnd : ‖w(t)‖L2
≤ δ−

1
2{ }. (5)

The input disturbance dynamics is

(ID) _ω(t) � Wω(t) +Hν(t),
di(t) � Vω(t) + Jν(t),{ (6)

where ω ∈ Rnω is the disturbance state vector, and ν(t) ∈ Rn] is
the vector of finite energy unknown inputs. W, H, V, and J
are known matrices with appropriate dimensions. For
instance,

W � 0 f
−f 0
[ ],

generates a harmonic disturbance signal with the frequency f.
The domain of attraction for 1) is defined as follows.
Definition 1. For xp(t0 + s) � φ(s) ∈ C1�h, s ∈ [−�h 0], let xp (t,

φ(s)) denote the state trajectories of system (1) under saturating
controls. Then, its domain of attraction is defined by

Ψ � φ ∈ C1
�h: lim

t→0
xp(t,φ(s)) � 0{ }. (7)

We use the notation t (t) hereafter and assume the system (1) is
stabilizable and detectable. We seek to design a gain-scheduled
dynamic output feedback LPV controller, (C), along with a
disturbance observer, (IDO), to achieve a desired level of
performance. To this end, consider a full-order non-rational
gain-scheduled LPV controller

(C)

_xK(t) � AK(ρt)xK(t) + AKθ
(ρt)xK(t − θ(ρt))

+BK(ρt)y(t) + BKθ
(ρt)y(t − θ(ρt))

+ EK(ρt) �Ψ t( ),
u(t − θ(ρt)) � CK(ρt)xK(t − θ(ρt))

+DK(ρt)y(t − θ(ρt)) − d̂i(t),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(8)

di(t) is an estimate of the input disturbance vector, di(t), and is
generated by the following 103 disturbance observer

(IDO)
_xd(t) �Wω̂(t) + LK(ρt)xK(t) + LKθ

(ρt)xK(t − θ(ρt))
+ Ly(ρt)y(t) + Lyθ(ρt)y(t − θ(ρt)) + FK(ρt) �Ψ t( ),

^ω(t) � xd(t) − Ldy(t),
d̂i(t) � Vω̂(t),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(9)

where the controller and observer matrix coefficients are to be
designed in the single-step framework. �Ψ(t)

eω(t) � ω(t) − ω̂(t). (10)

Eq. 8, Eq. 9 wT(t) b[dT(t) νT(t )]ξT(t)b[ xTp(t) xTK(t)
eTω(t)]sat(f(t) ) � f(t)− Ψ(f(t))

�Ψ(t) bΨ u(t − θ(ρt)) + di(t)( )
� Ψ �Vξ(t) +K(ρt)ξ(t − θ(ρt)) + �Jw(t)( ),

�V � [0 0 V]K(ρt) � [DK(ρt)Cy(ρt) CK(ρt) 0]�J � [0 J]z(t)
b zp(t)

Ceω(ρt)eω(t)[ ]Ceω(ρt)s the deadzone nonlinearity added to

compensate for windup effects and will be defined next. It is
note that delayed terms are included in the controller to improve
closed-loop performance subject to the delayed input. The
estimation error is

(Scl)

×
_ξ(t) � A(ρt) + ΔA(t)[ ]ξ(t) + Ad(ρt) + ΔAd(t)[ ]ξ(t − θ(ρt))

+ BΨ(ρt) + ΔBΨ(t)[ ] �Ψ(t)+ Bw(ρt) + ΔBw(t)[ ]w(t),
z(t) � C(ρt)ξ(t) + Cd(ρt)ξ(t − θ(ρt)) +Dψ(ρt) �Ψ(t)

+Dw(ρt)w(t),

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(11)

Eq. 12ϕξ � ξ(s), s ∈ [−�h 0]

A(ρt) �
Ap(ρt) 0 Bp(ρt)V

BK(ρt)Cy AK(ρt) 0
LdCyAp(ρt) − Ly(ρt)Cy −LK(ρt) W + LdCyBp(ρt)V
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

Ad(ρt) �
Bp(ρt)DK(ρt)Cy Bp(ρt)CK(ρt) 0

BKθ
(ρt)Cy AKθ

(ρt) 0
LdCyBp(ρt)DK(ρt)Cy − Lyθ(ρt)Cy LdCyBp(ρt)CK(ρt) − LKθ

(ρt) 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

BΨ(ρt) �
−Bp(ρt)
EK(ρt)

−FK(ρt) − LdCyBp(ρt)
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

Bw(ρt) �
Dp(ρt) Bp(ρt)J

0 0
LdCyDp(ρt) H + LdCyBp(ρt)J
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, ΔA(t) ΔAd(t) ΔBΨ(t) ΔBw(t)[ ]

� Ediag(F(t), F(t), F(t)) GAp GAd
GBΨ GBw[ ],

E �
Ep 0 0
0 0 0

LdCyEp 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,GA �
GAp 0 GBpV
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

GAd
�

GBpDK(ρt)Cy GBpCK(ρt) 0
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

GBΨ �
−GBp

0
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,GBw �
GDp GBpJ
0 0
0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,C(ρt) � Cz(ρt) 0 Dzu(ρt)V
0 0 Ceω(ρt)[ ],

Cd(ρt) � Dzu(ρt) DK(ρt)Cy CK(ρt) 0
0 0 0

[ ],DΨ(ρt) � −Dzu(ρt)
0

[ ],
Dw(ρt) � Dzd(ρt) Dzu(ρt)J

0 0
[ ], (12)

The design objective is to asymptotically stabilize the
closed-loop system 11) and minimize the energy content of
the mapping from the disturbance vector to the controlled
output, that is

min
C

‖Tzw‖i,2 � min
C

sup
ρt∈ F �v

P

sup
0≠w(t)∈L2

‖z(t)‖L2

‖w(t)‖L2

, (13)

In this work, instead of the optimal problem (Eq. 13), we address
the problem of the minimization of the bounded induced
L2-norm of the controlled output or

‖z(t)‖2L2
< c2 ‖w(t)‖2L2

+ c( ), (14)

where γ and c are positive scalars.
The assumption and lemmas used throughout this paper are as

follows.
Assumption 1. The initial value of the scheduling parameter

satisfies ρs∈ F �v
P , s ∈ [−�h 0].

Lemma 1. (Fridman, 2014). (Jensen’s Inequality) For a
positive definite matrix P ∈ Sn++, a positive scalar τ > 0, and a
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vector x: [−τ 0]1Rn with well defined integrations, the
following inequality holds

−τ∫ 0

−τ
xT(μ)Px(μ)dμ≤ − ∫ 0

−τ
xT(μ)dμP∫ 0

−τ
x(μ)dμ.

Lemma 2. (Fridman, 2014). For any positive scalar ε > 0,
constant matrices Π and Ω and a time-varying matrix Δ(t)
satisfying ‖Δ(t)‖ < 1 with appropriate dimensions, we have

ΠΔ(t)Ω +ΩTΔT(t)ΠT6
1
ε
ΠΠT + εΩTΩ.

Proof. The proof follows from the fact that

‖ε−1
2Π − ε

1
2ΩTΔT(t)‖≥ 0.

Lemma 3. (Park et al., 2011). If f1, f2, . . . , fn: R
m1R with

positive values in an open subset D ⊂ Rm are given, then, the
following lower bound for the reciprocally convex combination of
fi’s over D holds

min
α1 ,...,αN

∑N
i�1

1
αi
fi(t) �∑N

i�1
fi(t) +max

gi,j(t)
∑N
i,j�1
i≠ j

gi,j(t), (15)

with

gi,j: R
m1R, gi,j(t) � gj,i(t), fi(t) gi,j(t)

* fj(t)[ ]c0{ },
where the scalar αi belongs to the unit simplex {αi: αi > 0, i �
1, . . . , N ∑N

i�1 αi � 1}.
Lemma 4. For a vector of positive scalars �u � [�u1 �u2 . . . �unu]T,

the vectors ρt ∈ P and ξ(t), the real matrices K(ρt) and G(ρt),
and a diagonal matrix T (ρt) _0, if the symmetric polyhedron
given by

Sρ(K,G, �u, t)b ξ(t) ∈ R2np : K(i,: )(ρt) −G(i,: )(ρt)[ ]ξ(t)∣∣∣∣ ∣∣∣∣{
≤ �ui, �ui > 0, i � 1, . . . , nu}, (16)

is nonempty, then the following generalized sector condition
holds

�Ψ
T(t)T(ρt) �Ψ(t) − G(ρt) −K(ρt) + �V K(ρt) �J[ ] ξ(t)

ξ(t − θ(ρt))
w(t)

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

≤ 0. (17)

Similarly for the delay state, ξ(t − θ(ρt)), and a real matrixG1(ρt)
we have

�Ψ
T(t)T(ρt) �Ψ(t) − �V G1(ρt) �J[ ] ξ(t)

ξ(t − θ(ρt))
w(t)

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ ≤ 0.

Proof. The proof is similar to Lemma 2 in (Gomes da Silva Jr
et al., 2013).

Lemma 5. (Tarbouriech et al., 2011). For a parameter-
dependent positive definite matrix P (ρt), a positive scalar β,
the variables in Lemma 4, and an ellipsoidal set

E(P(ρt), β)b ξ(t): ξT(t)P(ρt)ξ(t)≤ β−1{ }, (18)

the ellipsoid is inside the polyhedron, i.e., E(P(ρt), β)4
Sρ(K,G, �u, t) if and only if

β − K ρt( ) −G ρt( )[ ](i,: )�u−2
i P−1 ρt( ) K ρt( ) −G ρt( )[ ]T(i,: ) ≥ 0,

(19)

and similarly for the delay state.

3 MAIN RESULTS

The LPV controller and observer synthesis conditions are
provided in the following result.

Theorem 1. For positive scalars ε, γ > 0, a real scalar κ,
parameter and delay spaces (ρt, θ(ρt))∈ F v

P×H�h, and the set
5), suppose there exist parameter-dependent positive definite
matrices �P(ρt) ∈ C1F v

P ,S
2np+nω++ , �Q(ρt), �S(ρt): P1S

2np+nω++ , a
parameter-dependent positive definite diagonal matrix
�T(ρt): P1Snu++, parameter-dependent real matrices
~AK(ρt), ~Aθ(ρt): P1Rnp×np , ~BK(ρt), ~Bθ(ρt): P1Rnp×ny ,
~LK(ρt), ~LKθ

(ρt): P1Rnω×np , ~Ly(ρt), ~Lyθ
(ρt): P1Rnω×ny ,

~Cθ(ρt): P1Rnu×np , ~EK(ρt): P1Rnp×nu , ~FK(ρt): P1Rnω×nu ,
DK(ρt): P1Rnu×ny , ~G(ρt), ~G1(ρt): P1Rnu×2np , a real
positive definite matrix �R ∈ S

2np+nω++ , real matrices ~Ld ∈ Rnω×ny ,
�S1 ∈ R2np×(2np+nω), X,Y ∈ Snp , Z ∈ Snω , and a positive scalar β
such that the following LMIs hold.

�Λ11
�Λ12

�Λ13
�S1 �Λ15

p −2κ Y I
I X
[ ] + �h

2 �R κÂd(ρt) 0 κB̂Ψ(ρt)
p p �Λ33

�R − �S
T
1

~G
T

1 (ρt) + K̂T(ρt)
p p −�S(ρt) − �R 0
p p p p −4�T(ρt)
p p p p p

p p p p p

p p p p p

p p p p p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
B̂w(ρt) ĈT(ρt) Ê(ρt) ε ~G

T

A

κB̂w(ρt) 0 κÊ(ρt) 0

0 Ĉ
T

d(ρt) 0 ε ~G
T

B

0 0 0 0

2�J �T(ρt) −Dzu(ρt)
0

[ ]T 0 ε�T(ρt)
−GB

0
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
T

−I Dzd(ρt) Dzu(ρt)J
0 0

[ ]T 0 ε
GD GBJ
0 0
0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
T

p −c2I 0 0
p p −εI 0
p p p −εI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

30,

(20a)

�R �S1
* �R
[ ]c0, (20b)

β K̂(i,: )(ρt) − ~G(i,: )(ρt)
p �P(ρt)
[ ]_0, i � 1, . . . , nu, (20c)
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β K̂(i,: )(ρt) − ~G1(i,: )(ρt)
p �P(ρt)
[ ]_0, i � 1, . . . , nu, (20d)

δ − β≥ 0, (20e)

�Λ11 � Â(ρt) + ÂT(ρt) + �S(ρt) + �Q(ρt) ± ∑ns
i�1

�vi
z�P(ρt)
zρi(t)

⎛⎝ ⎞⎠ − �R,

(21a)

�Λ12 � �P(ρt) − Y I
I X
[ ] + κÂT(ρt), (21b)

�Λ13 � �R − �S1 + Âd(ρt), (21c)

�Λ15 � B̂Ψ(ρt) + ~G
T(ρt) − K̂T(ρt) + 2 �VT

, (21d)

�Λ33 � − 1 ∓ ∑ns
i�1

�vi
zθ

zρi(t)
⎛⎝ ⎞⎠ �Q(ρt) − 2�R + �S1 + �ST1 , (21e)

with the matrices

Â(ρt) �
Ap(ρt)Y Ap(ρt) Bp(ρt)V
~AK(ρt) XAp(ρt) + ~BK(ρt)Cy XBp(ρt)V
~LK(ρt) ~LdCyAp(ρt) − ~Ly(ρt)Cy ZW + ~LdCyBp(ρt)V

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦,

Âd(ρt) �
Bp(ρt)~Cθ(ρt) Bp(ρt)DK(ρt)Cy 0

~Aθ(ρt) ~Bθ(ρt)Cy 0
~LKθ

(ρt) ~Lyθ(ρt)Cy 0

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦,

B̂Ψ(ρt) �
−Bp(ρt)�T(ρt)

~EK(ρt)
~FK(ρt)

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, K̂(ρt) � ~Cθ(ρt) DK(ρt)Cy 0[ ],

B̂w(ρt) �
Dp(ρt) Bp(ρt)J
XDp(ρt) XBp(ρt)J

~LdCyDp(ρt) ZH + ~LdCyBp(ρt)J
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

Ĉ(ρt) � Cz(ρt)Y Cz(ρt) Dzu(ρt)V
0 0 Ceω(ρt)[ ],

Ĉd(ρt) � Dzu(ρt)
~Cθ(ρt) DK(ρt)Cy 0
0 0 0

[ ], Ê(ρt) � Ep 0 0
XEp 0 0

~LdCyEp 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
~GA �

GApY GAp GBpV
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, ~GB �
GBp

~Cθ(ρt) GBpDK(ρt)Cy 0
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦.
(22)

Then, the response of the closed-loop system 11) remains
bounded under the initial conditions

{λmax U−1
1
�P(ρt)U−T

1[ ] + �hλmax U−1
1
�Q(ρs)U−T

1[ ] + �hλmax U−1
1
�S(ρs)U−T

1[ ]}‖ϕξ‖2c
+
�h
3

2
λ U−1

1
�RU−T

1( )‖ _ϕξ‖2c ≤ β−1 − δ−1, (23)

with U1 given in (38), and satisfies the induced L2-norm
constraint given by (14). The corresponding controller
matrices can be obtained using the following relations

XY +MN � I, (24a)

~Cθ(ρt) � DK(ρt)CyY + CK(ρt)N, (24b)

~Bθ(ρt) � XBp(ρt)DK(ρt) +MBKθ
(ρt), (24c)

~Aθ(ρt) � ~Bθ(ρt)CyY + XBp(ρt)CK(ρt)N +MAKθ
(ρt)N, (24d)

~BK(ρt) � MBK(ρt), (24e)

~AK(ρt) � XAp(ρt)Y + ~B(ρt)Cy(ρt)Y +MAK(ρt)N, (24f)

~EK(ρt) � −XBp(ρt) +MEK(ρt)[ ]�T(ρt), (24g)

and the observer is realized via

~Ld � ZLd, (25a)

~Ly(ρt) � ZLy(ρt), (25b)

~LK(ρt) � ~LdCyAp(ρt) − ~Ly(ρt)Cy[ ]Y − ZLK(ρt)N, (25c)

~Lyθ(ρt) � ~LdCyBp(ρt)DK(ρt) − ZLyθ(ρt), (25d)

~LKθ
(ρt) � ~LdCyBp(ρt)~Cθ(ρt) − ZLyθ(ρt)CyY − ZLKθ

(ρt)N,
(25e)

~FK(ρt) � − ~Ld(ρt)CyBp(ρt) + ZFK(ρt)[ ]�T(ρt). (25f)

Proof. The following Lyapunov-Krasovskii functional (LKF)
candidate is considered (Salavati et al., 2019)

V(t, ρt, ξt, _ξt) �∑4
i�1

Vi, (26)

where

V1 � ξT(t)P(ρt)ξ(t),
V2 � ∫ t

t−θ(ρt)
ξT(μ)Q(ρμ)ξ(μ)dμ,

V3 � ∫ t

t−�h
ξT(μ)S(ρμ)ξ(μ)dμ,

V4 � �h∫ 0

−�h
∫ t

t+τ
_ξ
T(μ)R _ξ(μ)dμdτ,

with a differentiable positive definite matrix P (ρt) and positive
definite matrices Q (ρt), S (ρt), and R. The time derivative of (Eq.
26) along the trajectories of (Eq. 11) is

_V �∑4
i�1

_Vi, (27)

with

_V1 � _ξ
T(t)P(ρt)ξ(t) + ξT(t)P(ρt) _ξ(t) + ξT(t) _P(ρt)ξ(t) (28a)

_V2 � ξT(t)Q(ρt)ξ(t) − 1 −∑ns
i�1

_ρi(t)
zθ

zρi(t)
⎛⎝ ⎞⎠ξT(t − θ(ρt))

Q ρt−θ(ρt)( )ξ(t − θ(ρt)) (28b)

_V3 � ξT(t)S(ρt)ξ(t) − ξT(t − �h)S(ρt−�h)ξ(t − �h), (28c)

_V4 � �h
2 _ξ

T(t)R _ξ(t) − �h∫ t

t−�h
_ξ
T(μ)R _ξ(μ)dμ. (28d)

Using Lemma 1, the last term can be upper bounded by
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−�h∫ t

t−�h
_ξ
T(μ)R _ξ(μ)dμ � −�h∫ t−θ(ρt)

t−�h
_ξ
T(μ)R _ξ(μ)dμ

− �h∫ t

t−θ(ρt)
_ξ
T(μ)R _ξ(μ)dμ≤

− ∫ t

t−θ(ρt)
_ξ(μ)dμ

∫ t−θ(ρt)
t−�h

_ξ(μ)dμ
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

T
1
α1

R 0

*
1
α2

R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×
∫ t

t−θ(ρt)
_ξ(μ)dμ

∫ t−θ(ρt)

t−�h
_ξ(μ)dμ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

where 1
α1
� �h

�h−θ(ρt) and
1
α2
� �h

θ(ρt). Using Lemma 3, there exists a real

matrix S1 such that the following inequality holds

−�h∫ t

t−�h
_ξ
T(μ)R _ξ(μ)dμ≤ − ξ(t) − ξ(t − θ(ρt))

ξ(t − θ(ρt)) − ξ(t − �h)[ ]T R S1
* R
[ ]

× ξ(t) − ξ(t − θ(ρt))
ξ(t − θ(ρt)) − ξ(t − �h)[ ],

(29)

and

R S1
p R
[ ]c0. (30)

Through the descriptor method (Fridman, 2014), two slack
variable matrices are introduced by adding the following term
to (Eq. 27)

2 ξT(t)PT
1 + _ξ

T(t)PT
2[ ]{ A(ρt) + ΔA(t)[ ]ξ(t)

+ Ad(ρt) + ΔAd(t)[ ]ξ(t − θ(ρt))
+ BΨ(ρt) + ΔBΨ(t)[ ] �Ψ(t) + Bw(ρt) + ΔBw(t)[ ]w(t) − _ξ(t)}
� 0.

(31)

For satisfying the performance index

J � ∫∞
t0
( 1
c2z

Tz − wTw)dt< 0, the derivative of the LKF (27) is

also augmented with dJ
dt, i.e.

_Vaug � _V + 1
c2
zT(t)z(t) − wT(t)w(t)

� _V + ηTCT
zc

−2Czη − wT(t)w(t)< 0. (32)

where

Cz� C(ρt) 0 Cd(ρt) 0 DΨ(ρt) Dw(ρt)[ ],
and

η � ξT(t) _ξ
T(t) ξT(t − θ(ρt)) ξT(t − �h) �Ψ

T(t) wT(t)[ ]T.
Next, using the inequalities of Lemma 4 and the S-procedure, we
have

_Vaug − 2 �Ψ
T(t)T(ρt) �Ψ(t) − G(ρt) −K(ρt) + �V( )ξ(t)[{

+K(ρt)ξ(t − θ(ρt)) + �Jw(t)]}
−2 �ΨT(t)T(ρt) �Ψ(t) − �Vξ(t) +G1(ρt)ξ(t − θ(ρt))[{

+ �Jw(t)]}< 0. (33)

By applying the Schur complement formula (Fridman, 2014), for
the dissipative part 32) and using Lemma 2 with Schur
complement for the uncertainty part, 33) gives the following LMI

Λ11 P(ρt) − PT
1 + AT(ρt)P2 R − S1 + PT

1Ad(ρt) S1 Λ15 PT
1Bw(ρt) CT(ρt) PT

1 E εGT
A

p −P2 − PT
2 + �h

2
R PT

2Ad(ρt) 0 PT
2BΨ(ρt) PT

2Bw(ρt) 0 PT
2 E 0

p p Λ33 R − ST1 Λ35 0 CT
d(ρt) 0 εGT

Ad

p p p −S(ρt) − R 0 0 0 0 0
p p p p −4T(ρt) 2T(ρt)�J DT

Ψ(ρt) 0 εGT
BΨ

p p p p p −I DT
w(ρt) 0 εGT

Bw
p p p p p p −c2I 0 0
p p p p p p p −εI 0
p p p p p p p p −εI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
30,

(34a)

with

Λ11 � PT
1A(ρt) + AT(ρt)P1 + S(ρt) +Q(ρt) + ∑ns

i�1
_ρi(t)

zP(ρt)
zρi(t)

⎛⎝ ⎞⎠
− R,

(34b)

Λ15 � PT
1BΨ(ρt) +G

T(ρt)T(ρt) −KT(ρt)T(ρt) + 2 �VTT(ρt),
(34c)

Λ33 � − 1 −∑ns
i�1

_ρi(t)
zθ

zρi(t)
⎛⎝ ⎞⎠Q(ρt) − 2R + S1 + ST1 , (34d)

Λ35 � G
T
1(ρt)T(ρt) +KT(ρt)T(ρt). (34e)

To restrict the closed-loop system trajectory ellipsoid inside
the polyhedron (Eq. 16), using Lemma 5 for the delay free and
delayed states and the Schur complement formula, the LMIs

β K(i,: )(ρt) −G(i,: )(ρt)
p �u2

i P(ρt)[ ]c0, i � 1, . . . , nu, (35)

β K(i,: )(ρt) −G1(i,: )(ρt)
p �u2

i P(ρt)[ ]c0, i � 1, . . . , nu, (36)

are obtained.
In order to facilitate the derivation of the LPV controller and

observer and avoid nonconvex synthesis conditions, we assume that
the matrix variable P1 is full rank and satisfies P1 ∈ S2np+nω and P2 �
κP1 where κ ∈ R. Then, P1 and its inverse are partitioned as follows

P1b
X M 0
MT • 0
0 0 Z

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,P−1
1 b

Y NT 0
N ◇ 0
0 0 Z−1
⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦, (37)

which decouples the observer and controller designs and the •
and ◇ block matrices do not contribute to the synthesis
problem. Partitioning (37) also verifies (Eq. 24a). Then, we
define

U1b
Y NT 0
I 0 0
0 0 I

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦,U2b
I 0 0
X M 0
0 0 Z

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � U1P1. (38)
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The subsequent congruent transformations are as follows. diag
{U1, U1,U1,U1, T

−1 (ρt), I, I, I, I} and its transpose pre- and post-
multiplies (Eq. 34a), diag{U1,U1} multiplies (30), and finally, diag
{I, U1} multiplies (35) and (36). We, then, substitute for closed-
loop matrices (12) and redefine the resulting matrix
multiplications using the notations �□bU1□UT

1 ,
�T(ρt)bT−1(ρt), and ~G

T
i (ρt)bU1G

T
i (ρt). Further, since the

derivatives of the parameter are in an affine format, they are
replaced with the lower and upper bounds, i.e.
∓ �vi, i � 1, 2, . . . , ns. This results in the final LMI condition.

To verify the boundedness of all trajectories of (Eq. 11),
integrating (32) yields

∫ T

0

_Vaugdt � V(t � T) − V(t � 0) + ∫ T

0
[ 1
c2
zT(t)z(t)

− wT(t)w(t)]dt< 0, (39)

which implies that

‖z(t)‖2L2
≤ c2 ‖w(t)‖2L2

+ V(t � 0)( ), (40)

since V (t � T)|T→∞ → 0 and satisfies (14). Moreover, (39) also
yields

V(t � T)≤V(t � 0) + ∫ T

0
wT(t)w(t)dt≤ σ + δ−1 ≤ β−1,

or ξT(T)P (ρT)ξ(T) ≤ V (t � T) ≤ β−1, ∀w(t),ϕξ , _ϕξ and also (20e)
is obtained.

Based on (26) and Assumption 1, the basin of attraction is

V(t � 0)≤ ξT(0)P(ρ0)ξ(0) + ∫ 0

−�h
ξT(μ)Q(ρμ)ξ(μ)dμ

+ ∫ 0

−�h
∫ 0

τ

_ξ
T(μ)R _ξ(μ)dμdτ

≤ λmax P(ρt)( ) + �hλmax Q(ρs)( ) + �hλmax S(ρs)( )[ ]‖ϕξ‖2c

+
�h
3

2
λ(R)‖ _ϕξ‖2c ≤ σ, (41)

which verifies

ξT(s)P(ρs)ξ(s)≤ λmax P(ρt)( )‖ϕξ‖2c ≤ β−1, s ∈ [−�h 0].
and thus ξ(t) ∈ E(P(ρt), β), t ∈ [−�h ∞) or equivalently, the
trajectories of the system will not leave the ellipsoidal set.

It is noted that conditions (20) are LMIs for constant values of
the scalar parameters κ and ε. A 2D search can be exploited to
solver the values of the parameters such that the LMIs (20) are
feasible.

3.1 Saturation Control Objectives
Saturation control generally leads to three distinct optimization
objectives.

• Worst-case disturbance amplification minimization: This is
the induced L2-norm minimization problem or

min
C

c

subject to (20), (42)

and is of main interest in this paper.

• Disturbance tolerance maximization: Since β ≤ δ and
‖w(t)‖L2

≤ δ−
1
2, this problem corresponds to

min
C

β

subject to (20a) − (20d). (43)

• Initial condition set maximization: Seeks to minimize the
eigenvalues of the positive definite matrices P (ρt),Q (ρt), S
(ρt), and R that increases the initial values ‖ϕξ‖c and ‖ _ϕξ‖c
that verify (41). To formulate this eigenvalue
minimization problem, for instance, consider the
definition of the positive definite matrix
Q(ρt) � U−1

1
�Q(ρt)U−T

1 . We have

U1 − �Q(ρt)( )T �Q−1(ρt) U1 − �Q(ρt)( )c0

5U1 + UT
1 − �Q(ρt)6UT

1
�Q−1(ρt)U1 � Q−1(ρt)

5λmax Q(ρt)( )I6 U1 + UT
1 − �Q(ρt)[ ]−1,

(44)

Then, consider the following LMIs

λ �P(ρt)( )I I
* U1 + UT

1 − �P(ρt)[ ] c0, (45a)

λ �Q(ρt)( )I I
p U1 + UT

1 − �Q(ρt)[ ] c0, (45b)

λ �S(ρt)( )I I
p U1 + UT

1 − �S(ρt)[ ] c0, (45c)

λ �R( )I I
p U1 + UT

1 − �R
[ ] c0, (45d)

from which, for instance (Eq. 45b), we can conclude that

U1 + UT
1 − �Q(ρt)[ ]−16λ �Q(ρt)( )I.

With a similar approach for all LKF matrix variables, this
objective can be formulated as follows

min
C

α1λ �P(ρt)( ) + α2λ �Q(ρt)( ) + α3λ �S(ρt)( ) + α4λ �R( )
subject to (20) and (45),

(46)

where αi, i � 1, . . . , 4 are weights to be selected based on the
design requirements and t ∈ [−�h tf].

Remark 1. To solve the infinite-dimensional LMIs for LPV
systems with any form of parameter dependence as in (1), we use
the parameter space gridding technique (Apkarian and Adams,
1998) with a 2-D search for the scalars κ and ϵ, and then we check
the obtained results on a denser grid to ensure the feasibility of
the LMIs.

Moreover, the LKF matrix variables are assumed to be second-
order polynomials facilitating the calculation of their derivative
with respect to the parameter if needed, i.e.

P(ρt)bP0 +∑ns
i�1

ρitPi1 +
1
2
∑ns
i�1

ρ2itPi2, (47)

where Pi’s are constant matrices.
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4 MAP RESPONSE INPUT-DELAY LPV
MODEL AND CONTROL

The automated closed-loop drug delivery for blood pressure
control in critical patients suffering from hypotension can be
beneficial compared to traditional medical interventions. It is
fast and precise and avoids medication administration errors
which can result in over/under MAP regulation. To provide a
closed-loop strategy for such patients modeling the associated
dynamics is the first step. The MAP dynamics in response to
the administration of vasopressor drugs can be represented
via a first-order input-delay LPV system (Tasoujian et al.,
2019)

τ(t)ΔP• (t) + ΔP(t) � β(t)I t − θ(t)( ),
P(t) � ΔP(t) + Pb(t),

{ (48)

where ΔP(t) is the output MAP deviation from the baseline value,
namely Pb(t) (in mmHg), I(t) is the input or injected PNP rate (in
mL/h), β(t) is the time-varying gain or sensitivity (inmmHg · h/mL),
τ(t) is the time-varying lag time of the plant or the drug diffusion
time constant in s, and θ(t) is the delay introduced during drug
injection or the time it takes for the MAP dynamics to respond to
PNP administration (in s). The vector of scheduling parameters is
then ρt � [ ρ1t ρ2t ρ3t ρ4t ]T � [ τ(t) β(t) θ(t) Pb(t) ]T.
Since these parameters are not known beforehand,
estimation techniques are used to acquire their values in
real time. Past work has shown the challenges associated
with the closed-loop control of such a system due to the
varying nature of the model parameters and the varying
delay (Wassar et al., 2014).

4.1 LPV Parameters and Delay Estimation
via Cubature Kalman Filter
In order to provide the controller with instantaneous values of
the scheduling parameters, a Bayesian estimator known as
cubature Kalman filter (CKF) is used. CKF propagates the
sample points via equally valued cubature points which are
twice the system size. It uses a cubic rule to derive the covariance
and approximates the moments integrals through a normal
distribution using the third-degree spherical-radial cubature
rule. Unlike EKF, CKF neither requires nonlinear model
linearization nor as many sampling points as UKF. At the
same computational cost of cubic order like EKF, CKF has
better nonlinear performance, accuracy, and numerical
stability. Random sampling filters like particle filters are
likely to suffer from computational problems, particle
degradation and curse of dimensionality in practical
applications.

Consider the following general nonlinear discrete-time
stochastic system

xk+1 � f(xk, uk) + wk,
yk � g(xk, uk) + vk, k � 0, 1, . . . ,
{ (49)

where xk ∈ Rn is the state vector or the unmeasurable states of the
system, uk ∈ Rnu is the input vector, and yk ∈ Rny is the
measurement vector at the time k. The nonlinear mappings
f(xk, uk): (Rn,Rnu )1Rn and g(xk, uk): (Rn,Rnu )1Rny are
known and the vectors wk ∈ Rn and vk ∈ Rny denote the
mutually independent process and measurement noise,
respectively. The probability distribution functions (PDFs) of
noise, namely p (wk) and p (vk) are assumed to be known, as
well as, the initial state PDF given by p (x0).

CKF estimates the state vector in a conditional PDF form, i.e. p
(xk|y

k) where ykb[y0 y1 . . . yk ]T denotes the vector of the
measurements. However, in some cases, a Gaussian approximation
of the conditional PDF allows to only compute the first two
conditional moments, i.e. the mean x̂k|k � E[xk|yk] and the error
covariance matrix Pk|k � cov [xk|y

k] which results in
p(xk|yk) ≈ N {xk; x̂k|k,Pk|k}.

Moments integral in CKF are computed via the third-degree
spherical-radial rule. Consequently, for a Gaussian white noise
signal, the prediction and correction steps are carried out via
integrating a nonlinear function with regards to a normal
distribution, that is

x̂k+1|k�E[xk+1|yk]
�∫

Rn

f(xk, uk)p(xk+1|yk)dxk ≈ ∫
Rn

f(xk, uk)N {xk; x̂k|k,Pk|k}dxk,

ŷk+1�E[yk+1|xk+1]�∫ Rng(xk+1, uk+1)p(yk+1|xk+1)dxk+1

≈ ∫
Rn

g(xk+1, uk+1)N {xk+1; x̂k+1|k,Pk+1|k}dxk+1. (50)

Next, suppose an arbitrary function h(x) with Σ as the covariance
of x. Then, the integral

I(h) � ,,,
2π

√ |Σ|−1
2∫
Rn
h(x)exp −1

2
(x − μ)TΣ−1(x − μ)[ ]dx, (51)

can be expressed in the spherical coordinate system as

I(h) � (2π)−n
2∫ ∞

r�0
∫

Un

h(Crz + μ)dzrn−1e−r2
2 dr, (52)

where x � Crz + μ with ‖z‖ � 1, μ is the mean and C is the
Cholesky factor of the covariance matrix Σ, and Un denotes the
unit sphere. Then, the symmetric spherical cubature rule further
approximates the integral as follows

I(h) � 1
2n
∑2n
i�0

h( ,n√ (Cξ i + μ)), (53)

where ξi denotes the ith cubature point at the intersection of
the unit sphere and its axes. The main advantage of this
method is that the cubature points are obtained off-line
using a third-degree cubature rule. For the detailed steps
regarding the computation of states estimates through CKF,
one can see (Tasoujian et al., 2020b). In order to avoid
numerical problems, square-root CKF based on
orthogonal triangular decomposition is adopted.
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For the system given in (Eq. 48), assuming a small enough
sampling time, Ts, we can rewrite the state equations as

xk+1 � 1 − Ts

τ
( )xk + βTs

τ
u
k−

θ

Ts

,

yk � xk + Pb,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (54)

The state vector is augmented with the parameters to be
estimated assuming local random-walk dynamics, i.e.

Xk � [X1
k X2

k X3
k X4

k ]T � [ΔPk βk τk Pbk ]T. (55)

However, since the varying input delay cannot be described via a
random-walk process, a multiple-model (MM) paradigm is used
for delay estimation. It is noted the Padé rational approximation
may introduce numerical errors specifically, for large delays and
thus is not favorable. The MM approach uses N parallel SRCKFs
(MMSRCKF) with dedicated delay values covering the whole
delay space as θ1, θ2, . . . , θN. Then, a hypothesis testing is used to
calculate the delay, θ̂

MM

k , as a weighted sum of N SRCKFs outputs

FIGURE 1 | Bank of N parallel SRCKFs for delay estimation.

FIGURE 2 | Animal experiment drug injection input and blood pressure measurement output.

TABLE 1 | Weights, tuning parameters, and performance index.

Weights Tuning parameters Index

cw1 � 0.01, cw2 � 0.1,We � 0.2,Wu � 0.0001 κ � 2.7, ϵ � 20.7 γ � 13.61
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with the filter with lowest error covariance, having the largest
weight (Figure 1).

To avoid truncation and cumulative numerical errors, we
use the square-root CKF (SRCKF) utilizing the square root
decomposition of the covariance matrix (Tasoujian et al.,
2020b). For validation purposes, we applied the proposed
MMSRCKF estimation framework to animal experiment
data collected at the Resuscitation Research Laboratory at
the Department of Anesthesiology, the University of Texas
Medical Branch (UTMB) in Galveston. The dataset contained
the input PNP infusion rates and output MAP measurements
for a 55 kg anesthetized swine. The swine was maintained
under anesthetic conditions by the continuous infusion of
propofol and an intramuscular injection of ketamine was
used to sedate it. During a 6-h experiment, the PNP drug
was infused through a bodyguard infusion pump. A Philips
MP2 transport device with a sampling period of 0.05 s
recorded the blood pressure response. Figure 2 depicts the
piece-wise constant PNP drug infusion profile versus the
corresponding measured blood pressure response and the
MAP response over time.

4.2 Closed-Loop MAP Control Design and
Validation
The main objective of the MAP control design is to track a target
blood pressure while maintaining an acceptable level of
disturbance rejection and avoid control input saturation. To
this end and as per the internal model principle (Tasoujian
et al., 2019) and in order to improve the tracking behavior, it
is assumed that the integral of the error signal is fed to the
controller. We define _x2(t) � r(t) − y(t) where r(t) denotes the
reference MAP signal and y(t) � x1(t) � ΔP(t) is the output. Thus,
a state space realization of system (48) is

Ap(ρt) �
− 1
ρ1t

0

−1 −ς

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,GAp �
0.002 0

0 0
⎡⎣ ⎤⎦,Bp(ρt) �

ρ2t
ρ1t

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,GBp �
0.002

0
⎡⎣ ⎤⎦,

Dp(ρt) �
0 0

0 −1
⎡⎣ ⎤⎦,GDp �

0.002 0

0 0
⎡⎣ ⎤⎦,Cy � 1 0

0 ς
⎡⎣ ⎤⎦,Cz(ρt) �

0 We

0 0
⎡⎣ ⎤⎦,

Dzu(ρt) �
0

Wu

⎡⎣ ⎤⎦,Dzd(ρt) � 02×2,Cew(ρt) �
cw1 0

0 cw2

⎡⎣ ⎤⎦, Ep � 0.005 0

0 0
⎡⎣ ⎤⎦,

F(t) � sin 0.001πΔP(t)( )I2×2 ,W � −0.2 0.01

0.001 0
⎡⎣ ⎤⎦,H � 0.02

0.02
⎡⎣ ⎤⎦,V � 1 −0.5[ ], J � 0,

(56)

where ς is a positive scalar added to avoid numerical singularities,
We and Wu denote the weights introduced to penalize the
tracking error and the control effort, respectively, and Cew

contains the observer estimation error weights.
To examine the LPV controller performance and the closed-

loop stability over the MAP response envelope, a simulation
model resembling realistic conditions is used.

4.2.1 Closed-Loop MAP Control Results
To conduct closed-loop patient’s model-in-the-loop simulations,
we use a developed nonlinear patient MAP response simulator to
generate the scheduling parameters (Luspay and Grigoriadis,
2015). Simulations are conducted via MATLAB and the LMIs
are solved using YALMIP (Lofberg, 2004) and MOSEK with the
numerical data provided in (Tasoujian et al., 2020a). The
numerical results for the minimization of the performance
index upper bound are shown in Table 1.

To better assess the design robustness, the input disturbance
matrices are multiplied by a factor of 5. Figures 3, 4 show the
disturbance profiles with the input disturbance estimation and
reference MAP tracking results. Although the output disturbance
and input saturation induce divergence in the disturbance
observer output, the estimation is regarded in the admissible

FIGURE 3 | Input disturbance along with its estimation and output disturbance.
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range as the tracking error remains close to zero and no
significant over/under shoot occurs in the output MAP
response. It can be concluded that the proposed disturbance
rejection output-feedback LPV framework can properly regulate
the patient’s MAP response to PNP injection to follow a target
reference MAP profile while the system is subject to model
mismatch, drug injection constraints, and disturbances.

5 CONCLUSION

The present work considers the design of an anti-windup linear
parameter-varying (LPV) dynamic output feedback controller
for input-delay LPV systems with input saturation constraints
and matched disturbances under uncertainty. An anti-windup
LPV controller and an LPV disturbance observer were
introduced to characterize the disturbance attenuation level
via the induced L2-norm specification of the closed-loop
system. To this end, a Lyapunov-Krasovskii functional (LKF)
was proposed where the cross terms in its time-derivative were
bounded via a reciprocally convex approach. A modified
version of the generalized sector condition was used to
derive sufficient delay-dependent stabilizing results in a
linear matrix inequality (LMI) design framework. An
estimation of the domain of attraction or the region of
asymptotic stability was provided via the proposed LKF.
Three optimization problems in the context of saturation
control were formulated to achieve either the maximum
worst-case disturbance attenuation or the maximum
disturbance energy tolerated or the maximum domain of
attraction.

To validate the control design method, we examined
automated mean arterial blood pressure (MAP) regulation in
response to vasopressor drug infusion for critical hypotensive

patient resuscitation. To this end, a first-order input-delay LPV
model described the MAP response dynamics. Based on data
collected from animal experiments, a real-time Bayesian
filtering estimator, known as cubature Kalman filter (CKF),
confirmed the validity and sufficiency of the proposed model.
To conduct the closed-loop simulations with a hypothetical
patient-in-the-loop, the associated varying parameters of the
MAP response dynamic model were generated in a patient
simulation environment in accordance with clinical
observations. Then, the LPV gain-scheduled saturation
controller, as well as the CKF estimator were coupled with
an input disturbance LPV observer and cascaded to the
parameter generator to simulate the performance of the
closed-loop system in tracking a target MAP signal under
model uncertainty, medicine injection limitation, and
matched input disturbances. Closed-loop simulations
demonstrated desirable tracking performance in the presence
of model uncertainty, parameter variations, disturbance, and
input saturation constraints.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because The dataset is collected at the University of Texas,
Medical Branch at Galveston and not the University of
Houston. Requests to access the datasets should be directed to
karolos@uh.edu.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FIGURE 4 | Tracking of reference MAP with anti-windup design and associated constrained control efforts.
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