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This paper presents a data-driven predictive controller based on the broad learning
algorithm without any prior knowledge of the system model. The predictive controller is
realized by regressing the predictive model using online process data and the
incremental broad learning algorithm. The proposed model predictive control (MPC)
approach requires less online computational load compared to other neural network
based MPC approaches. More importantly, the precision of the predictive model is
enhanced with reduced computational load by operating an appropriate approximation
of the predictive model. The approximation is proved to have no influence on the
convergence of the predictive control algorithm. Compared with the partial form
dynamic linearization aided model free control (PFDL-MFC), the control performance
of the proposed predictive controller is illustrated through the continuous stirred tank
heater (CSTH) benchmark.
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1 INTRODUCTION

Tracking control plays an important role in the modern industrial process and has drawn much
attention both in academia and industry over these years (Yin et al., 2017). As an efficient
feedforward control strategy, model predictive control (MPC) has shown its efficiency in the
tracking control of multivariable systems with various constraints. Compared with other
control strategies where the control law is calculated offline, the core idea of MPC is to
calculate an optimal control sequence by solving a finite optimal control problem online
(Mayne and Rawlings, 2001). MPC is proved to be easy for implementation and maintenance in
practical industry (Hidalgo and Brosilow, 1990; Yin and Xiao, 2017). Due to these advantages,
MPC has been successfully used in the tracking control of the hybrid energy storage system,
modular multi-level converters, wind generation system and many other applications in recent
literatures (Qin and Badgwell, 2003; Garcia-Torres et al., 2019; Guo et al., 2019; Kou et al.,
2019).

Despite the successful applications of MPC, most predictive controllers rely heavily on the
precision of the predictive model. For model-based MPC, the predictive model is usually generated
using the first principle, i.e., the controlled auto-regressive intergraded moving average (CARIMA)
model (Zhang et al., 2018). However, it is arduous to set up a precise model for modern industrial
process based on the first principle due to the complicated mechanism. Some alternative predictive
models, such as the time-domain model, are also hard to obtain in practice (Patwardhan et al., 1998).
Fortunately, there exists a huge number of underutilized process data with the development of the
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measurement and storage technology. Motivated by this, the
data-driven predictive controller design has attracted the
interest of researchers in recent years.

To propose the data-driven predictive control strategy,
multivariable statistical analysis (MSA) techniques are used to
identify the predictive model based on the available process data.
Partial least square (PLS) and its modified forms have been paid
more attention to due to the low computation complexity (Gao
et al., 2018). To extract the dynamic characteristics of the process,
a dynamic PLS based predictive control is proposed based on the
assumed autoregressive exogenous (ARX) model (Kaspar and
Ray, 1993). Subspace identification techniques are also used to
design the predictive controller, where the state space model can
be directly identified based on the process data (Yi, 2016; Garg
and Mhaskar, 2017; Meidanshahi et al., 2017; Zhou et al., 2017).
However, most investigations on subspace identification mainly
focus on the identification of linear systems (Wu et al., 2013; Li
et al., 2020). To cope with nonlinear systems, the neural network
(NN) is often applied for the predictive controller design due to
its strong learning ability in nonlinear model regression.

Over the past several years, fruitful achievements have been
reported regarding the combination of NN and MPC. A
dynamic neural network based MPC (DNN-MPC) is
proposed and demonstrated to show superior control
performance than the mathematical model based MPC for
the industrial baker’s yeast drying process (Yuzgec et al.,
2008). A self-organizing recurrent neural network (RNN)
aided nonlinear MPC is proposed (Han et al., 2016), where
the control performance is evaluated through a wastewater
treatment process. To improve the control performance for
nonlinear process, the radial basis function neural network
(RBF-NN) is applied to design the model predictive
controller (Yu et al., 2011). Particularly, an adaptive splitting
and merging RBF-NN based MPC has recently been successfully
implemented in a zinc hydrometallurgy plant. However, these
NN basedMPC strategies often require much computation load,
which limits its extension to the online implementation for real-
time control performance.

In this paper, a random vector functional-link neural
network (RVFLNN), i.e., the broad learning system (Chen
and Liu, 2018), is incorporated into the predictive controller
design. By using the incremental broad learning algorithm, the
predictive model can be identified adaptively based on the
online process data. In addition, a Jacobian matrix is used to
approximate the predictive model to enhance the precision of
the predictive model. The main contributions can be
summarized as follows:

1) A data-driven predictive control strategy is proposed based on
the broad learning algorithm with no prior knowledge of the
system model;

2) The proposed data-driven predictive controller can be
updated online based on the incremental broad learning
algorithm while requiring little computation load;

3) The proposed broad learning aided MPC strategy is verified
on the continuous stirred tank heater (CSTH) benchmark for
temperature adjustment.

The rest of this paper is organized as follows. Section 2
introduces the basic knowledge of the model predictive
control and the fundamental structure of the broad
learning system. Section 3 discusses the incremental broad
learning algorithm for new training data and proposes the
incremental broad learning based MPC. Section 4 verifies the
control performance of the proposed broad learning based
MPC through the CSTH benchmark. Section 5 concludes
this paper.

2 PRELIMINARIES

2.1 Basic Knowledge of Model Predictive
Control
Given a nonlinear process described as follows:

y(t) � f y(t − 1), . . . , y t − ny( ), u(t), . . . ,( (1)

u t − nu( )) + d(t) (2)

where y(t) ∈ Rm is the output of the system, u(t) ∈ Rl is the
output of the controller, nu and ny represent the order of the
system.

The core idea of MPC is to optimize the following quadratic
problem online

min J � ∑np
i�1

ysp(k + i) − y(k + i)( )Tλ1 ysp(k + i)−(
y(k + i)) + ∑nc

i�1
Δu(k + i)Tλ2Δu(k + i),

(3)

or equivalently,

min J
ΔU

� ‖Ysp − Ŷ‖2λ1 + ‖ΔU‖2λ2 , (4)

umin ≤ u(t + j)≤ umax

s.t. Δumin ≤Δ u(t + j)≤Δumax

ymin ≤ y(t + j)≤ymax,
(5)

where Ysp is the setpoint of the process, Ŷ is the prediction of
the output and ΔU is the incremental value of the controller
output to be calculated. λ1 and λ2 are two weights to make a
trade-off between the tracking error and the cost of the control
action.

2.2 Basic Knowledge of Broad Learning
As an improved neural network generated from the RVFLNN,
broad learning has been proven to be an efficient algorithm for
regression and classification, where it is important to extract
the features from the training data. A random initialization of
the features is always a popular way due to its easy
computation. However, the feature extracted by random
projection may suffer from unpredictability and needs
guidance. To avoid this, a set of sparse features can be
extracted from the training data using the sparse
autoencoder (SAE) discussed in Gong et al. (2015). In this
way, the alternating direction method of multipliers (ADMM)
technique can be used to solve the lasso problem in the broad
learning algorithm (Chen and Liu, 2018) to fine-tune the
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weight matrices. The details of the broad learning is given
as below.

Assume that U ∈ RN×l and Y ∈ RN×m respectively denote the
collected input and output data with N samples. The ith mapped
feature Zi ∈ RN×α can then be calculated as

Zi � ϕ UWei + βei( ), (6)

where ϕ(·) denotes the projection function, Wei ∈ Rl×α and
βei ∈ RN×α are two random matrices.

Denote Zn ≡ [Z1, Z2, . . ., Zn] as the concentration of the
mapped feature. Zn can then be used to generate the jth
enhancement node Hj ∈ RN×c as

Hj � ζ ZnWhj + βhj( ), (7)

where ζ(·) denotes the projection function, Whj ∈ Rα×c and
βhj ∈ RN×c are two random matrices.

Similarly, denoteHm ≡ [H1,H2, . . .,Hm] as the collection of the
enhancement nodes. In this way, the global model can be
represented as

Y � Zn | Hm[ ]Wm � Am
n W

m. (8)

where Am
n ∈ RN×(nα+mc) denotes the input matrix and

Wm ∈ R(nα+mc)×p denotes the weight matrix.
It is straightforward that Wm can be calculated as

Wm � Am
n( )+Y. (9)

where (·)+ represents the moore-penrose pseudoinverse. To
reduce the computation complexity, the broad learning
algorithm makes use of the ridge regression theory proposed
in Hoerl and Kennard (2000).

Assume that Am
n is of full column rank, we have

Am
n( )+ � lim

λ→0
λI + Am

n( )TAm
n( )−1 Am

n( )T, (10)

and consequently,

Wm � lim
λ→0

λI + Am
n( )TAm

n( )−1 Am
n( )TY. (11)

The functional-linked broad learning model is shown in
Figure 1. More details on the broad learning can be referred
to Chen and Liu (2018).

3 BROAD LEARNING BASED PREDICTIVE
CONTROL

3.1 Incremental Broad Learning Algorithm
Though broad learning has been proven to be efficient for
classification and regression, it is not easy to regress the
process model based on the online data due to the
unpredictable noise, model uncertainty and dynamic
characteristics. To implement the predictive control in the
framework of the broad learning, it is essential to develop
the equivalent incremental broad learning algorithm. By
updating the parameters of the broad learning model, the
precision of the regression model can be further enhanced.
The incremental broad learning algorithm for new training
data was briefly discussed in Chen and Liu (2018). The details
of the incremental broad learning for new training data will be
presented in this section.

According to Chen and Wan (1999), the stepwise updating
algorithm of a functional-linked neural network for a new
enhancement node can be equivalently represented as adding
several columns to the input matrix. Denote the initial input
matrix as An, the final input matrix is then given as An+1 � [An|a]
when a new enhancement node a is added to the neural network.

Inspired by the moore-penrose pseudo inverse of partitioned
matrix mentioned in Diaz and Gutierrez (2006), the pseudo
inverse of An+1 can be calculated as

FIGURE 1 | Functional-linked broad learning model.
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An+1 � A+
n − dbu

bu
[ ], (12)

where

bu � { c+ if c≠ 0
1 + dud( )−1duA+

n if c � 0
, (13)

d � A+
na, (14)

c � a − And. (15)

In this way, the new weights Wn+1 can be calculated as

Wn+1 � Wn − dbuYn

buYn
[ ], (16)

Denote Xa and Ya as a group of new training input data and
the corresponding output data. The incremental algorithm
broad learning for new training data can be demonstrated as
Figure 2.

The original combination of feature nodes and enhancement
nodes forms the following input matrix Am

n :

Am
n � ϕ UWe1 + βe1( ), . . . , ϕ UWen + βen( ) |[ (17)

ξ ZnWh1 + βh1( ), . . . , ξ ZnWhm + βhm( )]. (18)

The input matrix uAm
n trained by the new input data can be

calculated as

uAm
n � [ϕ(aUWe1+aβe1), . . . , ϕ(aUWen+aβen) |

ξ(aZnWh1+aβh1), . . . , ξ(aZnWhm+aβhm)], (19)

where

aU � U
Ua

[ ], aβei � βei
βaei

[ ], i � 1, . . . , n, (20)

aZn � Zn

Za[ ], aβhi � βhi
βahi

[ ], i � 1, . . . , m, (21)

Za � ϕ UaWe1 + βae1( ), . . . , ϕ UaWen + βaen( )[ ). (22)

It is obvious that uAm
n can be equivalently constructed

as adding several rows generated by Ua to the bottom of Am
n .

Denote the input matrix generated by the new training dataUa

as Au, uAm
n can then be represented as

uAm
n � Am

n

Au
[ ], (23)

where

Au � ϕ UaWe1 + βae1( ), . . . , ϕ UaWen + βaen( ) |[
ξ ZaWh1 + βah1( ), . . . , ξ ZaWhm + βahm( )]. (24)

The pseudoinverse of uAm
n can be calculated as

(uAm
n )+ � Am

n( )u | Au
u[ ]+( )u

� Am
n( )+( )u −DBu

Bu
[ ]u

� Am
n( )+ − BDu | B[ ],

(25)

where

B � Cu( )+ if C≠ 0
Am

n( )+D 1 +DuD( )−1 if C � 0
{ , (26)

Du�Au Am
n( )+, (27)

Cu � Au −DuAm
n . (28)

The weight matrix of the new broad learning model can be
calculated as

FIGURE 2 | Incremental broad learning for new training data.
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uWm
n � Am

n( )+ − BDu | B[ ] Y
Ya

[ ]
� Am

n( )+Y − BDuY + BYa

� Wm
n + B Ya − AuW

m
n( ), (29)

The incremental broad learning algorithm for new training
data can be summarized in Algorithm 1.

Remark 1. In fact, the broad learning algorithm is herein used to
the establish the predictive model for control purpose. Note that the
predictive model does not need to be retrained when the new data
arrives if the incremental broad learning algorithm is applied. The
main computation is spent on the update of the new weights
(i.e., uWm

n ) and the pseudo inverse of input matrix (i.e., uAm
n )

based on the previous value when the predictive model needs to be
updated, which requires less computational load compared with
the basic broad learning algorithm (i.e., requires retraining the
network model with full data)

3.2 Incremental Broad Learning Based
Predictive Control
For predictive control purpose, the cost function J(k) to be
minimized at the kth instant can be given as follows,

J(k) � ‖Ysp(k + 1) − Y(k + 1|k)‖2λ1 + ‖ΔU(k + 1)‖2λ2 , (30)

where

Ysp(k + 1) �
ysp(k + 1)
ysp(k + 2)

«
ysp k + np( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R ny×np( )×1, (31)

Y(k + 1|k) �
y(k + 1|k)
y(k + 2|k)

«
y k + nc|k( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R ny×nc( )×1, (32)

ΔU(k + 1) �
Δu(k + 1)
Δu(k + 2)

«
Δu k + nc( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R nu×nc( )×1, (33)

Δu(k + i) � u(k + i) − u(k). (34)

and ny, nu, np, and nc are the dimension of an output vector, the
dimension of the input vector, the predictive horizon and the
control horizon, respectively.

Remark 2. It is worth mentioning that np should be set to be
longer than the settling time in order to satisfy the convergence
condition of the predictive control (Rossiter, 2003). np has no
influence on the convergence of predictive control if np is
greater than the settling time. However, np is often
determined based on the practical experience since the
settling time is unknown. In this paper, the length of the
control horizon nc and prediction horizon np are both set to
be 50.

In the broad learning algorithm, the relationship between input
training data U and output training data Y can be represented as

Y � UW0 + β0, (35)

where

W0 � We,WeWh[ ]Wm, (36)

We � We1, . . . ,Wen[ ], Wh � Wh1, . . . ,Whn[ ], (37)

β0 � βe, βeWh + βh[ ]Wm, (38)

βe � βe1, . . . , βen[ ], βh � βh1, . . . , βhn[ ]. (39)

Therefore, regardless of the activation function, the correlation
between u(k) and y(k) can be presented as

y(k) � Wm( )T WT
e u(k)

WT
hW

T
e u(k)[ ], (40)

However, the activation function F(·) is necessary to extract
the nonlinear characteristics. In the broad learning, the prediction
of y(k) is calculated as

ŷ(k) � Wm( )T WT
e u(k)

F(Wu(k))[ ]

� Wm( )T
WT

e u(k)
f w1,1u1 +/ + w1,nuunu( )

«
f wh,1u1 +/ + wh,nuunu( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Wm( )T
WT

e u(k)
f1(u)

«
fh(u)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(41)

where

f(net) � 1 − enet

1 + enet
. (42)

Note that the nonlinearity brings challenges to the receding
optimization of the predictive control since the cost function to be
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minimized is nonlinear. Therefore, an appropriate
approximation of the predictive model is necessary.

According to Eq. 41, the prediction at the instant k can be
rewritten as

ŷ(k) � G(u(k)), (43)

Assume that u(k) is known, G(u(k)) can then be calculated
easily via the general inverse. However, the incremental ΔU is
to be calculated by solving the quadratic problem as Eq. 30.
Take the prediction of the y(k + 1) at the instant k as an
example,

ŷ(k + 1) � G(u(k + 1))
� G(u(k) + Δu(k + 1)), (44)

where Δu(k + 1) is unknown.
Since G(u) is continuous differentiable at any u, define the

Jacobian matrix of G(u) as

JG(u) � G′(u), G′(u)ij � zGi

zuj
(u), (45)

In this way, the approximation of G(u(k + 1)) can be given as

Ĝ(u(k + 1)) � G(u(k)) + JG(u(k))Δu(k + 1). (46)

According to the definition of G(·) and f(net) as presented
in Eqs 41, 42. It holds that f′(net) � 1 − f(net)2 ≤ 1 and
G(u) is continuously differentiable for any u ∈ Rnu . The
Jacobian matrix JG(u) is Lipschitz continuous for u ∈ Rnu .
Therefore, there exists a Lipschitz constant c such that for
any v ∈ Rnu

‖JG(v) − JG(u)‖≤ c‖v − u‖. (47)

Theorem 1. Let Eqs 41, 42, 47 holds, replacing G(u(k)) with
Ĝ(u(k)) has no influence on the convergence of the quadratic
problem as shown in Eq. 30.

Proof. Define the deviation EG between Ĝ(u(k + 1)) and
G(u(k + 1)) as

EG � G(u(k + 1)) − Ĝ(u(k + 1)), (48)

According to the mean value theorem, we have

EG � G(u(k + 1)) − G(u(k)) − JG(u(k))Δu(k + 1)
� ∫1

0
JG(u(k) + tΔu(k + 1))dt[ ]Δu(k + 1)

−JG(u(k))Δu(k + 1)
� ∫1

0
JG(u(k) + tΔu(k + 1))[ ]Δu(k + 1)dt

−JG(u(k))Δu(k + 1)
� ∫1

0
JG(u(k) + tΔu(k + 1)) − JG(u(k))[ ]Δu(k + 1)dt,

(49)

Consider the equivalence of Riemann sum and integral, it
yields

‖EG‖ � ‖G(u(k + 1)) − G(u(k)) − JG(u(k))Δu(k + 1)‖
≤ ∫1

0
‖JG(u(k) + tΔu(k + 1))
−JG(u(k))‖‖Δu(k + 1)‖dt

≤ ∫1

0
c‖tΔu(k + 1)‖‖Δu(k + 1)‖dt]

� c

2
‖Δu(k + 1)‖2,

(50)

Ĵ(k) � ∑np
i�1

‖ysp(k + i) − Ĝu(k + i)‖2λ1

+∑np
i�1

‖Δu(k + i)‖2λ2

≤ ∑np
i�1

‖ysp(k + i) − G(u(k + 1))‖2λ1

+∑np
i�1

c

2
‖Δu(k + i)‖2λ1 +∑np

i�1
‖Δu(k + i)‖2λ2 ,

(51)

Consider that λ1 and λ2 are two weight constants and it holds
that λ2 ≫ λ1, it yields

Ĵ(k)≤ ∑np
i�1

‖ysp(k + i) − G(u(k + 1))‖2λ1

+∑np
i�1

‖Δu(k + i)‖2
λ1+ c

2
+ λ2

≈ ∑np
i�1

‖ysp(k + i) − G(u(k + 1))‖2λ1

+∑np
i�1

‖Δu(k + i)‖c
2
+ λ2

2

� ‖Ysp(k + 1) − Y(k + 1|k)‖2λ1 + ‖ΔU(k + 1)‖c
2
+ λ2

2,

(52)

Therefore, the convergence of Ĵ(k) is equivalent to the
convergence of J(k), which thus completes the proof.

Remark 3. The Lipschitz constant c is related to the spectral radius
of W. In practice, Δu is often constrained due to the mechanical
structure of the actuators. The deviation EG can be acceptable with
an appropriate W.

Denote W as

W �
W1

«
Wh

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (53)

The Jacobian matrix JG(u(k)) can be constructed as

JG(u(k)) � Wm( )T · WT
e

FW+W
[ ], (54)

where + denotes the Hadamard product and

FW �
1 − f2 W1u(k)( )( ) . . . 1 − f2 W1u(k)( )

« 1 «
1 − f2 Whu(k)( )( ) . . . 1 − f2 Whu(k)( )

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦. (55)

In addition, the prediction of y(k + i) at the kth instant y(k + i|
k) can be given as
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y(k + i|k) � G(u(k)) + JG(u(k))Δu(k + i)
� y(k) + JG(u(k))Δu(k + i), (56)

which leads to

Y(k + 1|k) � Y(k) +M(k + 1)ΔU(k + 1), (57)

where

Y(k) � [y(k) . . . , y(k)]T ∈ R ny×nc( )×1, (58)

M(k) � JG(u(k)) . . . , JG(u(k))[ ]T ∈ R ny×nc( )×nu . (59)

Substituting Eqs 57, 59 into Eq. 30, the cost function can be
rewritten as

min J(k)
ΔU(k+1)

� ‖E(k) −M(k)ΔU(k + 1)‖2λ1
+‖ΔU(k + 1)‖2λ2,

(60)

subject to the same constraint as Eq. 5, where E(k) � Ysp(k) − Y(k).
The proposed predictive control is illustrated in Figure 3.

4 BENCHMARK STUDY ON CONTINUOUS
STIRRED TANK HEATER

In this section, the proposed predictive control is applied
to tune the temperature in the continuous stirred tank

FIGURE 3 | Incremental broad learning based predictive control scheme.

FIGURE 4 | CSTH system in IIT Bombay.
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heater (CSTH) benchmark. The performance of the proposed
control strategy is compared with the partial form dynamic
linearization aided model free control (PFDL-MFC) strategy
proposed in Hou and Jin (2013) and Hou and Jin (2011). The
PFDL-MFC algorithm is chosen for comparison because both
algorithms need little prior knowledge of the system model
and calculate the optimal control input sequence based
on Eq. 4.

The continuous stirred tank heater (CSTH) is a typical pilot
plant for control performance evaluation and process
monitoring. The experimental CSTH system is developed in
the Automation Laboratory at Department of Chemical
Engineering, IIT Bombay as shown in Figure 4 (Thornhill
et al., 2008). It mainly consists of two separated water storage
tanks. The water is heated separately and recycled between the
two tanks. The CSTH benchmark can be regarded as a 5-input-
3-output system. u1, u2, and u3 represent the inputs controlled
by separate valves. u4 and u5 represent the outputs of two
heaters. The three outputs are the water temperature T1 (Tank
1), T2 (Tank 2) and the water level h2 (Tank 2), respectively.
Table 1 gives the parameters of the CSTH benchmark in
steady state.

Consider that the heat input is added to the state variables
in the form of polynomial functions (Thornhill
et al.,2008), the controlled system is nonlinear even if the
flow rate is steady. For simplicity, we only use u4 and u5 as
the controller outputs to be calculated. The designed
predictive controller aims to make T1 track its setpoint. If
not specified, the other variables are set to be steady state in
Table 1. The practical constraints in the CSTH benchmark are
set to be

0≤ u≤ 100
−0.2≤ Δu≤ 0.2 . (61)

Smooth approximation is a popular method to enhance the
tracking performance (Chi and Liang, 2015). By smooth
approximation, the setpoint can be changed smoothly from
one desired state to the other. In the simulation, the setpoint is
given as

ysp(k) �
ys1, 0< k≤ 800
λspysp(t − 1) + 1 − λsp( )ys2, 800< k≤ 1400

λspysp(t − 1) + 1 − λsp( )ys1, 1400< k≤ 2000

⎧⎪⎪⎨⎪⎪⎩ ,

where ys1 � 49, ys2 � 50 and the smoothing coefficient λsp is set to
be 0.98.

Consider that the proposed predictive control requires
initializing its predictive model based on the available
process data. In this simulation, the process inputs are set
to be random square waves with white noise in the first 200 s.
The initial predictive model is calculated using the process
data collected in the first 200 s. After the 200th instant,
the predictive model is updated based on the online
process data.

Define the prediction error Ep at the instant k as

Ep(k) � ∑np
i�1‖y(k + i) − y(k + i|k)‖2

np
. (62)

where nc and np are both set to be 50.
Other parameters in the PF-MFPC algorithm are

respectively set to be λ � 27, μ � 1, ρ � [1, 1, 1], η � 1, and
L � 3. The illustrations of the designed parameters are shown
in Table 2. The comparison of the prediction error is shown in
Figures 5, 6, from which it can be seen that there exists
a fluctuation at the 200th, 800th, and 1400th instant. The
fluctuation is caused by the setpoint change. Therefore,
both algorithms need to update the model dynamics
based on the online process data. The comparison shows
that the prediction of the proposed control strategy
converges much faster than the PFDL-MFC algorithm. In
addition, the fluctuation peaks of the proposed broad learning
aided MPC is also much lower than the PFDL-MFC
algorithm.

It is worth mentioning that the fluctuation of Ep occurs before
the setpoint changes at the 1400th and 4800th instant since the
proposed predictive controller is based on the multi-step
prediction. In this simulation, it holds that nc � np � 50,
which implies that the prediction of the output and the
incremental of the input can be foreseen in the future 50
sample instants.

The control performance of the proposed broad learning
aided MPC and the PFDL-MFC algorithm are demonstrated
in Figures 7, 8, respectively. As the setpoint changes, the
input signal converges after a few steps of adjustment.
Both algorithms show the efficiency in the tracking control
for nonlinear systems. However, the proposed algorithm

TABLE 1 | Nominal model parameters and steady state.

Parameter Description Value

V1 Volume of tank 1 1.75 × 10−3 m3

A2 Cross sectional area of tank 2 7.854 × 10−3 m2

r2 Radius of tank 2 0.05 m
U Heat transfer coefficient 235.1 W/m2K
Tc Cooling water temperature 30°C
Ta Atmospheric temperature 25°C
u1 Flow F1(%Input) 60%
u2 Flow F2(%Input) 55%
u3 Flow FR(%Input) 50%
u4 Heat input Q1(%Input) 60%
u5 Heat input Q2(%Input) 80%
T1 Steady state temperature(tank 1) 49.77°C
T2 Steady state temperature(tank 2) 52.92°C
h2 Steady state level 0.3599 m

TABLE 2 | Illustration of the designed parameters.

Parameter Description Value

nc Length of control horizon 50
np Length of prediction horizon 50
L Order of pseudo-partial derivative 3
Λ Weighting constant 27
M Weighting factor 1
η Step size constant 1
ρ Step size vector [1, 1, 1]
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converges much faster than the PFDL-MFC algorithm though
it requires to collect the data during the first several instants.
In addition, the parameters of the PFDL-MFC algorithm
have a great influence on the control performance. In

contrast, only the weight λ1, λ2 and the prediction horizon
np can be adjustable in the proposed predictive control
strategy, which shows minor influence on the control
performance.

FIGURE 5 | Prediction error of broad learning aided predictive control.

FIGURE 6 | Prediction error of PFDL-MFC algorithm.
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5 CONCLUSION

This paper proposes a broad learning based data-driven predictive
control strategy without any prior knowledge of the systemmodel.

The online computation load of the proposed predictive controller
is reduced by using the incremental broad learning algorithm. In
addition, the prediction precision is enhanced by approximating
the predictive model using a Jacobian matrix. The convergence of

FIGURE 7 | Control performance of broad learning aided predictive control.

FIGURE 8 | Control performance of PFDL-MFC algorithm.
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the predictive control strategy is discussed theoretically, which
demonstrates that the approximation has no influence on the
convergence of the predictive control algorithm. The
effectiveness of the proposed broad learning based MPC is
demonstrated for temperature adjustment through the
continuous stirred tank heater benchmark.

Compared with other NN based predictive control strategies,
the proposed strategy can update the predictive model online
with less online computation burden. Meanwhile, the proposed
predictive controller generates the local nonlinearity between the
input and output data compared with the dynamic linearization
based model free control strategy, which enhances the prediction
precision and control performance. The simulation result shows
that the proposed predictive control strategy shows faster
convergence both in the control performance and the
prediction than the PFDL-MFC algorithm. In the future, more
work can be done to further reduce the online computation
burden.
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