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In recent years, significant attention has been paid to remotely operated

underwater vehicles (ROVs) in the performance of underwater tasks, such as

the inspection andmaintenance of the underwater infrastructure. Theworkload

of ROV operators tends to be high, even for the skilled operators. Therefore,

assistancemethods for the operators are desired. This study focuses on a task in

which a human operator controls an underwater robot to follow a certain path

while visually inspecting objects in the vicinity of the path. In such a task, it is

desirable to achieve the speed of trajectory control manually because the visual

inspection is performed by a human operator. However, to allocate resources

to visual inspection, it is desirable to minimize the workload on the path-

following by assisting with the automatic control. Therefore, the objective of

this study is to develop a cooperative path-following control method that

achieves the above-mentioned task by expanding a robust path-following

control law of non-holonomic wheeled vehicles. To simplify this problem,

we considered a path-following and visual objects recognition task in a two-

dimensional plane. We conducted an experiment with participants (n = 16) who

completed the task using the proposed method and manual control. We

compared results in terms of object recognition success rate, tracking error,

completion time, attention distribution, and workload. The results showed that

both the path-following errors and workload of the participants were

significantly smaller with the proposed method than with manual control. In

addition, subjective responses demonstrated that operator attention tended to

be allocated to object recognition rather than robot operation tasks with the

proposedmethod. These results demonstrate the effectiveness of the proposed

cooperative path-following control method.
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1 Introduction

Unmanned underwater vehicles (UUVs) have attracted

significant attention owing to the rapid increase in the

demand for underwater tasks (Shimono et al., 2016). UUVs

are classified into autonomous underwater vehicles (AUVs)

and remotely operated vehicles (ROVs). AUVs are controlled

using all the sensor information acquired by the underwater

robot. AUVs can be operated for a long time and are often used

for topographic surveys and water quality testing (Jimin et al.,

2019). However, AUVs have some limitations (Li and Du, 2021),

such as the need for preparing in advance a specific environment

(Balasuriya et al., 1997) and the difficulty in performing complex

movements (Vaganay et al., 2006). Therefore, it is problematic to

rely solely on autonomous control by the system because it is

currently limited to specific cases and cannot navigate

unexpected situations, such as disturbances. Therefore, human

operators are required to frequently participate in some complex

underwater tasks (Choi et al., 2017; Amundsen et al., 2022), such

as the inspection and maintenance of underwater infrastructure.

Therefore, human-controlled ROVs are widely used for such

tasks.

In this study, we focused on underwater inspection along a

certain trajectory or path using ROVs. It has been observed that

operation training is indispensable for ROV operators to achieve

satisfactory performance because advanced skill is required. For

example, the operator is required to operate the ROV based on a

limited source of information, such as video images having a

small field of view from a camera attached to the ROVs and/or

poor perception of the position and orientation of the robot. The

workload of the operators also tends to be high even for the

skilled operators (Ho et al., 2011; Azis et al., 2012; Christ and

Wernli, 2014). Therefore, assistance methods for the ROV

operators have been desired for improving the work efficiency,

decreasing the workload, and prolonging the workable time of

the operator.

Cooperative control, which is a combination of automatic

and human manual control, is a promising approach to assist

human operators in a variety of remotely operated or other types

of human–machine systems (Flemisch et al., 2016; Wada, 2019)

because it incorporates advanced technologies of autonomous

control and/or other machine intelligence with manual control.

Shared control is one of the cooperative control systems in which

humans and machines interact congruently in a perception-

action cycle to jointly perform a dynamic task (Mulder et al.,

2012). Haptic shared control (HSC) is a branch of shared control

in which control inputs of both humans and amachine are forced

or torqued to a single control terminal, and the human operator

perceives the input of the machine through the haptic-

information sensation generated by the terminal (Abbink

et al., 2012; Nishimura et al., 2015). HSCs have been

introduced in a wide range of fields of human–machine

cooperation, such as the automotive field to assist drivers

(Benloucif et al., 2019), telemanipulation in space (Stefan

et al., 2015), underwater robots (Kuiper et al., 2013; Konishi

et al., 2020), and aircraft control (Lam et al., 2007). All the above

studies suggest that human–machine interaction improves

overall system performance. Cooperative control methods are

designed according to the content of a given task, in which

different cooperative schemes are combined in some cases.

The present study focuses on a task in which a human

operator remotely controls an underwater robot to follow a

certain path while visually inspecting objects in the vicinity of

the path. Such a task is found in underwater missions, such as

pipe inspection (Kim et al., 2020). In this task, it is desirable to

manually achieve the speed of trajectory control because visual

inspection is performed by a human. To allocate resources to

visual inspection, it is desirable to minimize the workload on the

task of path following by assisting with the autonomous control.

Therefore, the purpose of this study is to develop a cooperative

path-following control method for ROVs suitable for human

visual inspection to improve the path-following performance of

the overall system and reduce the workload of the operator who

simultaneously conducts visual inspection and path-following by

remotely operating the robot. Specifically, we extend the path-

following control of non-holonomic wheeled vehicles based on

the inverse optimal control law (Kurashiki et al., 2008) to

holonomic underwater robots and propose a new cooperative

path-following control method suitable for human visual

inspection tasks by combining the path-following controller

and operator guidance methods.

In the proposed method, HSC is applied to guide the

direction of the heading angle control of the robot. For

translational motion, the direction of the vehicle movement is

automatically tuned according to the magnitude of the lateral

deviation from the target path to further assist the path-following

activity of the operator, and the speed of the translational motion

is determined by the input of the operator. The proposed method

was implemented on an underwater robot, and experiments, in

which participants performed an object recognition task during

path following, were conducted to investigate the effectiveness of

the proposed method.

This paper is organized as follows: Section 2 describes the

design concept and the details of the proposed method. Section 3

describes the experimental method. In Section 4, the results of the

subjective experiment are presented. Section 5 discusses the

obtained results. Finally, conclusions are presented in Section 6.

2 Proposed method

2.1 Design of cooperative control

When the underwater robot moves in a two-dimensional

plane, the motion of the robot with three degrees of freedom

(DoF), as shown in the left part of Figure 1, must be specified.
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However, the operation of all three-DoF movements is expected

to be difficult for novice operators to master. Therefore, it is

considered that the three-DoF movement is reduced to a two-

DoF movement such that the operator can operate more

intuitively with a lower workload. Among several methods to

degenerate dimensions, the most commonly used method is to

assign the tilt and roll angles of the joystick to the translational

and rotating motions of the underwater robot, respectively

(Figure 1). When an underwater robot is used for the

recognition of objects or visual inspection while following a

path, it is important to not change the robot orientation

significantly. Thus, the dimension for the orientation controls

is assigned to the independent joystick motion.

The proposed assistance method provides two different

guidance methods for the translational and rotational motions

of the underwater robot, which are described in the following

section:

(1) Translational velocity conversion: It is the first guidancemethod

employed to automatically determine the direction of the

translational motion of the underwater robot, as indicated by

the red arrow in Figure 3. Normally, without the assistance of

the system, the robot is operated to longitudinal speed by the

joystick tilt angle, and to the robot turning speed by roll angle, as

described below in Section 3.2. As shown in Figure 2, in

translational velocity conversion, the operator determines

only the magnitude of the translational velocity of the

underwater robot by operating the joystick to adjust the tilt

angle. The system determines its direction according to the

distance to the path, as shown in Figure 3. This guidance

method cannot be interfered with by the operator only by

the joystick tilt angle while the operator can resist this guidance

by changing the orientation of the robot using the joystick roll

angle.

(2) Haptic guidance: In the second guidance method, the HSC

indicates how the operator should operate the joystick to correct

the posture of the underwater robot. As indicated by the blue

arrow in Figure 3, in the proposed method, a system and a

human cooperate through a joystick. This guidance provides the

operator with haptic information on how to operate the joystick

roll angle to achieve the target angular velocity of the

underwater robot using the control law described in Section

2.2. This guidance is mainly beneficial for following a curved

path or maintaining the posture to align the direction of the

path to stabilize the video image observed by the operator for

visual inspection. The operator can ignore or defy the haptic

guidance to operate the underwater robot as the operator

desires. The operator is allowed to defy the guidance because

the operator can overcome a situation corresponding

incomplete recognition of the desired path by responding

flexibly.

2.2 Theory of cooperative path-following
control for holonomic underwater robots

2.2.1 Translational velocity conversion
In this system, three variables of the longitudinal velocity vξ,

lateral velocity vη and angular velocity ω of the underwater robot

can be considered as inputs at the present stage. To achieve

cooperative control with humans, we consider degenerating the

input from three to two dimensions. In the context of this study,

we assume that it is important to allow the operator determine

the speed of path-following and achieve the process of path-

following in a manner that does not change the orientation of the

robot to avoid interfering with human visual inspection as much

as possible. To achieve this, we propose the translational velocity

conversion. In this method, the magnitude of the translation

FIGURE 1
Correspondence between the joystick input and the robot movement.
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velocity V of the underwater robot is determined by the lever

input in the tilt direction of the operator, and β, which is the

direction of V as shown in Figure 4, is determined by the lateral

error e2, as shown in Eqs 1, 2.

vξ � V cos β, vη � V sin β, (1)
β � arctan αe2( ), (2)

where vξ and vη are the longitudinal velocity and the lateral

velocity of the real robot, respectively (Figure 5).

2.2.2 Haptic shared control for operating
guidance

The second guidance method, haptic guidance, informs the

operator through the haptic sensation how the underwater robot

should be turned by the HSC. The blue arrow in Figure 3 depicts

the feedback of the designed HSC.

Fukao (2004) proposed a trajectory control method of a

non-holonomic vehicle using inverse optimal control

(Sontag, 1983). Araki et al. (2017) and Kurashiki et al.

(2008) expanded this method by Fukao (2004) to the

path-following problem. In the present study, we propose

a new cooperative path-following control method for a

holonomic vehicle suitable for human cooperation based

on Araki et al. (2017) and Kurashiki et al. (2008). The

first guidance method, translational velocity conversion, is

incorporated into the control law, and the second guidance

method, optimal angular velocity of the robot for HSC, is

derived.

FIGURE 2
Assigning velocity control between humans and systems.

FIGURE 3
Block diagram of the proposed method used for an underwater robot. e2, e3: The lateral and angular errors between the virtual reference and
real robots. u: The calculated input angular velocity. ϕdy : The desired lateral angle of the joystick. F, Fhuman: The forces on joystick from themotors and
operator. ϕx, ϕy: The longitudinal and lateral angles of the joystick, V: Magnitude of robot velocity. ωd: The desired angular velocities of the underwater
robot. vξ, vη: The longitudinal and lateral velocities of the underwater robot. The red arrow is the first guidance, translational velocity conversion,
the blue arrow is the second guidance, haptic guidance.
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As shown in Figure 5, we consider a reference robot

moving on a desired path and design a control input that

reduces the error between the real and reference robots.

Although there is a delay between the input to the

thrusters and the velocity of the underwater robot owing to

the complexity of the system dynamics, we derive the

dynamics of the controlled plant, in which the translational

and angular velocities of the robot in the robot-fixed

coordinate system are considered as the input by assuming

the robot motion in the low-velocity range.

The position and orientation of the real robot in the world

coordinate system q � [x, y, θ]T and the velocity in the robot-

fixed coordinate system [vξ, vη, ω] satisfy Eq. 3.

d

dt

x
y
θ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � cos θ −sin θ 0
sin θ cos θ 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ vξ
vη
ω

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (3)

where vξ, vη, and ω denote the longitudinal, lateral, and angular

velocities of the robot, respectively.

The position error between the real robot (i.e., [x, y, θ]) and

virtual reference robot (i.e., [xr, yr, θr]), which has the same

dynamics as the real robot, as shown in Figure 5, satisfies the

following equation:

e1
e2
e3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � cos θ sin θ 0
−sin θ cos θ 0

0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ xr − x
yr − y
θr − θ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (4)

Differentiating Eq. 4 with respect to time yields the following

equation:

d

dt

e1
e2
e3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � vξr cos e3
vξr sin e3

ωr

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + −1 0 e2
0 −1 −e1
0 0 −1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ vξ
vη
ω

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (5)

Where vξr, vηr, and ωr denote the longitudinal, lateral, and

angular velocities of the virtual reference robot, respectively, and

the condition vηr = 0 is applied. Then, considering the

translational velocity conversion, substituting Eq. 1 into Eq. 5

and rewriting Vr = vξr, we obtain Eq. 6 as follows:

d

dt

e1
e2
e3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � Vr cos e3
Vr sin e3

ωr

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + −cos β e2
−sin β −e1

0 −1
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ V

ω
[ ]. (6)

In the case of path following, the longitudinal speed of the

real robot is arbitrary, and the virtual reference robot is always

designed in the y-axis direction of the real robot. Thus, the

longitudinal error is always e1 = 0; therefore, de1/dt = 0. The Vr

that satisfies this relationship is given by

Vr � V cos β − e2ω

cos e3
. (7)

The angular velocity of the virtual reference robot ωr is

determined by ωr = ρVr, where ρ denotes the curvature of the

path at the point where the virtual reference robot is located.

According to the above discussion, the error dynamics of the

controlled plant can be expressed by an input-affine system, as

referenced in Eq. 6, with state variables e ≔ [e2, e3]T and input u≔ω

_e � f e( ) + g e( )u (8)

Where

f e( ) ≔ Vr sin e3 − V sin β
ωr

[ ], g e( ) ≔ 0
−1[ ]. (9)

The inverse optimal control (Kurashiki et al., 2008) is

designed for Eq. 8. We consider the following positive definite

function:

V0 e( ) � 1
2
K2e

2
2 +

1
2
K3e

2
3. (10)

V0(e) is proven to be the control Lyapunov function in the

input-affine system of Eq. 8 because it satisfies LgV0(e) �

FIGURE 4
Determination method of velocity direction angle (β).

FIGURE 5
Definition of the Path-following error model (Kurashiki et al.,
2008).
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00LfV0(e)< 0 when e ≠ 0 (Fukao, 2004). Therefore, it can be

shown that the control input in Eq. 11 asymptotically stabilizes the

error e � [e2, e3]T to zero (Fukao, 2004; Kurashiki et al., 2008).

u � −p e( )b e( ) (11)
a e( ) ≔ LfV0 e( ), b e( ) ≔ LgV0 e( )( )T (12)

p e( ) ≔ c0 +
a e( ) +

�����������������
a e( )2 + b e( )Tb e( )( )2√
b e( )Tb e( ) b e( ) ≠ 0( )

c0 b e( ) � 0( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ,

(13)
where, c0 is a constant and,

LfV0 e( ) � zV0 e( )
ze

f e( ), LgV0 e( ) � zV0 e( )
ze

g e( ). (14)

It should be noted that the controller can be temporarily turned

off by setting the errors (e2, e3) to zero when the system determines

that it does not recognize the path to be followed for any reason. In

such a case, β in Eq. 1 and u in Eq. 11 are zero, and the assistance by

the system does not work. In addition, the operator allows the

assistance to be turned off by pushing a button when the operator

recognizes that the system is silent in failure.

The following equations convert the joystick tilt angle ϕx and
roll angle ϕy to speed V and angular velocity ωd of an underwater

robot, respectively:

V � KVϕx (15)

ωd � Kωϕy. (16)

Using the relationship in Eq. 16, the joystick target roll angle

ϕdy is calculated as follows:

ϕd
y � u/Kω (17)

The haptic controller provides PD feedback control for the

joystick roll angle. Here, the output voltage to the motor

attached to the joystick is determined as

v � Kp(ϕdy − ϕy) +Kd
_ϕy, which determines the force F that

the joystick generates. In addition to the force F by the haptic

shared controller, the operator can also apply the force Fhuman

to the joystick, and the combined force determines the joystick

roll angle ϕy. Thereafter, using this angle, the desired angular

velocity ωd of the underwater robot is calculated using Eq. 16,

which is applied to the velocity controller of the robot.

In this study, the gain Kp, Kd, which determines the

magnitude of the haptic feedback, is set such that it can be

easily reversed by the operator; hence, the robot rotates to the

ideal posture even if the operator does not apply any force to

change the joystick roll angle.

3 Experiment

The proposed method would achieve tracking performance

improvement in terms of tracking accuracy and required time, as

well as workload reduction.

3.1 Scenario

In this study, we considered the case of the recognition of

some objects while following a path.

The objects depicted in Figure 6 were placed on the water

surface with a path to be followed, and several visual targets

were placed around the path for the recognition task of the

objects. The tracking error from the path was calculated

using the images obtained from the camera attached to the

top of the underwater robot. To reproduce the situation,

where it is difficult for AUVs to follow the path, the path is

cut off at three points, which is depicted by Gaps A–C in

Figure 6A. For simplicity, we attached an Augmented Reality

marker at the start and end of each curve to determine the

path curvature. As shown in Figure 6A, the path starts from

the bottom-right corner, continues straight to the right, and

then goes straight again after the two curves. Because the

control in the horizontal plane was the main target in the

present study, motion in the roll-pitch direction and depth

were controlled to maintain the initial values by the inertial

FIGURE 6
Path and objects used in the experiments. (A) Path to be
followed (B) Objects to be recognized.
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measurement unit and depth gauge built into the underwater

robot.

3.2 Design

The control method was treated as a within-subject factor,

and manual control (MC) without the assistance of the system

was prepared as a comparison target for cooperative control (CC)

using the proposedmethod. In theMC condition, the underwater

robot was moved forward and backward by varying the tilt angle

of the joystick and turned by varying the roll angle, as follows:

vξ � KVϕx (18)
ω � Kωϕy (19)

In MC, because there is no assistance, the translational angle

β shown in Figure 4 is zero, that is, the lateral velocity is zero. In

both MC and CC, the maximum joystick tilt angle was 25 [deg]

and the maximum roll angle was 20 [deg]. The HSC maximum

torque in the CC was approximately 0.6 [N· m].

3.3 Underwater robot

The proposed method was implemented on an underwater

vehicle, as shown in Figure 7, with an upward facing camera

attached to a BlueROV2 Heavy (Blue Robotics Inc.). A path-

following experiment was conducted in an indoor pool

(W5.4×D2.7×H1.6 m) at Nara Institute of Science and

Technology, Japan. The underwater robot was equipped

with four thrusters for the vertical motion and roll–pitch,

and four thrusters for motion in the horizontal plane and yaw.

The gains and coefficients used in this study are presented in

Table 1. The gains and coefficients were determined

empirically to the extent that the camera image of the

underwater robot was stable and could feel the joystick

movement and it also could be inverted.

In addition, Figure 8 shows that the lateral error e2 was obtained

from the image as a pixel value. Therefore, it was converted to ameter

value using Eq. 20, so that it could be applied to inverse optimal

control. In this experiment, the underwater robot was assumed to

move only in the horizontal plane and to have a fixed depth; hence, it

can be linearly transformed to meter value as

e2 m[ ] � e2 pixel[ ]/780. (20)

3.4 Participants

Sixteen participants (13 males and 3 females), who provided

written informed consent, participated in the experiments. The

participants had no previous experience with remote control

systems. The participants’ age ranged from 22 to 45, averaging

25.06 years. The average time required for the experiment was

1 h, with a reward of 1,000 yen.

FIGURE 7
An underwater robot in an indoor pool.

TABLE 1 The gains and coefficients.

c0 K2 K3 KV Kω Kp Kd α

0 15.6 4.0 0.08 0.16 4.0 1.8 0.014
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FIGURE 8
Detection the lateral error obtained from the image.

FIGURE 9
Operator controlling the underwater robot and the view of the operator.
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3.5 Experimental procedure

Before the experiment, the participants practiced the

path-following task on straight and tortuous lines that

were prepared only for the practice trials in the MC and

CC conditions for 15–20 min each. In the practice trials, the

recognition tasks of the objects were not provided. After the

practice trials, the participants participated in the

measurement trials using the image in the monitor

(Figure 9), in which they were instructed to follow the

U-shaped path, as shown in Figure 6A while counting the

number of circular visual targets with a pre-specified number

of slits (Figure 6B). The participants were also instructed to

reach the goal as quickly as possible while giving the highest

priority to object recognition.

After each measurement trial, the participants were asked to

provide a subjective response to attention allocation and

workload using the visual analog scale (VAS) developed for

this study and the NASA-TLX scale (Haga and Mizukami,

1996), respectively.

This experiment was conducted with the approval of the

Research Ethics Committee of Nara Institute of Science and

Technology (No. 2021-I-29).

3.6 Evaluation index

The results of this experiment were evaluated using the

following evaluation methods:

(1) Object-recognition success rate (objective evaluation):

Operators were asked to count the number of objects of a

specific shape among several types in the figure and respond with

the answer after the experiment.

(2) Path-following performance (objective evaluation):

The path-following performance was evaluated using the

root mean square error (RMSE) of the lateral deviation e2 and

angular deviation e3 defined in Figure 5.

(3) Completion time (objective evaluation):

The time from the start of the path following until the goal

was reached was measured, and the mean of the manual control

and cooperative control averages was compared.

(4) Attention allocation (subjective evaluation):

To evaluate the attention allocation of the operator, the

participants were asked to answer the question “Which task

did you pay attention to,” by a VAS, which consisted of two

anchor words “path-following task” on the left and “object

recognition task” on the right.

(5) Workload (subjective evaluation):

The subjective workload during the task was evaluated using

the Japanese version of the NASA-TLX (Hart and Staveland,

1988; Haga and Mizukami, 1996). Weighted workload (WWL)

was evaluated as the weighted average of six subjective subscales:

mental demand, physical demand, temporal demand,

performance, frustration, and effort, ranging from 0 to 100; a

higher score indicated a higher workload.

4 Results

For the results, normality and equal variance were examined

using the Shapiro–Wilk (Python 2.7) and F-tests. Comparisons

were made using the t-test if normality and equal variance were

confirmed, and the Wilcoxon test if not. Table 2 shows the

p-value of normality and equal variance used in the analysis.

Here, significance level α = 0.05 was used. For the subsequent

significance test, superiority was also confirmed using α = 0.05.

4.1 Objection recognition

In this experiment, the mean correct response rate for the

recognition of objects by participants was 94% and 96% under

the MC and CC conditions, respectively, and no statistical

significance was found (p = 0.37).

4.2 Path-following task

Figures 10, 11 show an example of the time-series data of the

lateral error e2 and angular error e3, respectively, as defined in

Figure 5. In both the figures, the upper and lower graphs show the

MC and CC conditions, respectively.

A larger lateral error was found under theMC condition than

under the CC condition. In particular, the path was lost from the

camera image at approximately 20 s under the MC condition.

However, under the CC condition, the error that occurred when

the underwater robot reached the curves was immediately

corrected by the operator. In addition, a smaller angular error

was found under the CC condition than under the MC condition,

and the operator could immediately correct the angular error

after the curves under the CC condition.

Figures 12A,B show the RMSE of the lateral and angular

deviations. For the lateral error, the Shapiro–Wilk test and

F-test revealed that the null hypotheses of normality (MC: p =

0.11, CC: p = 0.34) and equal variance (p = 0.29), respectively,

were not rejected. Thus, a paired t-test was used for the
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significant test. The result showed that the lateral error under

the MC condition was significantly larger than that under the

CC condition (p = 0.000).

For the angular error, the Shapiro-Wilk test and F-test

showed that the null hypotheses of normality (MC: p = 0.35,

CC: p = 0.89) and equal variance (p = 0.090), respectively, were

not rejected. Thus, a paired t-test was used for the significant

test. Its result showed that the angular error in the MC

condition was significantly larger than that in the CC

condition (p = 0.039).

TABLE 2 Normality and equal variance of results.

Normality Equal variance Average

MC CC MC CC

Rate of objects recognition 0.000011 0.0000082 0.064 94.49 [%] 96.13 [%]

Lateral error 0.11 0.34 0.29 0.15 [m] 0.088 [m]

Angular error 0.35 0.89 0.09 19.95 [deg] 17.17 [deg]

Completion time 0.058 0.19 0.012 44.03 [s] 41.28 [s]

Attention allocation 0.040 0.0034 0.48 59.07 [-] 67.07 [-]

WWL 0.74 0.53 0.12 59.27 [-] 49.40 [-]

FIGURE 10
An example result of tracking lateral error. (A) Manual control (B) Cooperative control.
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4.3 Completion time

The means of completion times required to follow the path

were 41 s and 44 s for the MC and CC conditions, respectively,

and no statistical significance was found (p = 0.35).

4.4 Attention allocation to objects
recognition

Figure 13A shows the results of the subjective responses of

the attention allocation of the participants to the object

recognition or path-following task. A higher value

indicates that more attention is allocated to the object-

recognition task than the path-following task of the robot.

The Shapiro–Wilk test showed that the null hypothesis of

normality was rejected (MC: p = 0.040, MC: p = 0.0034). The

Wilcoxon signed rank test showed that the attention

allocation of the participants was not significantly changed

among the method conditions (p = 0.13), although the

median under the CC condition tended toward object

recognition.

4.5 Total workload

Figure 13B shows the WWL scores of NASA-TLX. The null

hypotheses of normality (MC: p = 0.74, MC: p = 0.53) and equal

variance (p = 0.29) between the method conditions were not

rejected. The paired t-test showed thatWWL in the CC condition

was significantly smaller than that in the MC condition (p =

0.044).

FIGURE 11
An example result of tracking angular error. (A) Manual control (B) Cooperative control.
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FIGURE 12
Tracking errors (RMSE). (A) Lateral error (B) Angular error.

FIGURE 13
Subjective evaluation. (A) Attention allocation (B) Workload.
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5 Discussion

5.1 Interpretation of results

A cooperative path-following controller for object recognition

tasks while following a path using an underwater robot was

proposed. The results of the experiments indicated that the

proposed method significantly reduced the tracking error in the

lateral position, posture angle, and subjective workload compared

to the conventional method, even in a situation where the path was

interrupted in the middle of the path, and should be handled with

only manual control without any assistance from the automatic

control. The correct recognition rate of the object-recognition task

and task execution time did not change significantly under the

control-method condition. This result suggests that the support of

the proposed method facilitates path-following by the operator,

resulting in comparable task performance with less workload than

with manual control.

The improvement in the path-following performance under

the CC condition was more apparent in the lateral direction. This

is because of the proposed concept of the human–machine

collaboration method, in which the operator entrusts lateral

control as much as possible when the robot functions

correctly and humans are allowed to intervene in the posture

control of the robot, which is more important for the object

recognition task. Given the proposed method, the operator can

directly intervene in the robot posture by the lateral joystick input

and indirectly intervene in the longitudinal direction, which is

controlled by the translational velocity conversion through

posture control by controlling the joystick roll angle. It must

be noted that the application of the CC tends to make the

operator devote more attention to object recognition

(Figure 13A), although the difference is not statistically

significant. In the part where the path was not broken, the

operator was only required to operate the joystick to vary the

tilt angle, and the underwater robot could follow the path with

the assistance of the system, while in the part where the path was

broken, the operator was required to pay attention to the path-

following task as well. The workload was significantly reduced by

the proposed system; however, the workload increased under the

CC condition for three of the sixteen participants. One possible

explanation could be that the strength and timing of the system

assistance were different from what the operator expected,

although no clear explanation could be given. Understanding

and resolving such human–machine conflicts (Saito et al., 2018;

Okada et al., 2020) is an important issue that must be addressed

in the future.

5.2 Contributions

Several studies have demonstrated that HSC can improve the

performance of vehicle motion control through human–machine

cooperation and reduce the workload. The results of the present

study illustrate the same trend. For example, the introduction of

HSC to the lane-keeping control of a surface vehicle has been

shown to improve lane-following performance and overall

performance by reducing the workload (Mulder et al., 2012;

Nishimura et al., 2015). In addition, in controlling the movement

of deep-sea vehicles to avoid obstacles, the path-following

performance between obstacles has been improved (Wang,

2014). We studied the cooperative control of human and

underwater robots using HSC. For example, a cooperative

control method based on a simple proportional–derivative

(PD) control law that performed object-recognition tasks

while maintaining a stationary position and confirmed that it

was effective in reducing the operator workload, has been

proposed (Sakagami et al., 2022). In addition, in (Konishi

et al., 2020), we conducted a study on a task similar to that

presented in the current study. In the previous study (Konishi

et al., 2020), a non-holonomic underwater robot that did not

move directly in the lateral direction was considered, and the

longitudinal and rotational motions of the robot were assigned to

two-dimensional joystick motion; HSC was introduced in the

lateral direction to reduce the operator workload in the path-

following task. However, a simple control method using preview

control, in which PD feedback for the predicted error in the

future path was used, was applied; however, the convergence of

the tracking error could not be theoretically guaranteed. Based on

the results of this preliminary study (Konishi et al., 2020), the

present study proposes a new cooperative path-following control

method suitable for human–machine cooperation by designing

an inverse optimal control for a holonomic underwater mobile

robot. Using the proposed method, we demonstrated an

improvement in the path-following performance and a

reduction in the workload of the operator. The fact that the

improvement in path-following performance is confirmed in the

present study, which is not observed in the previous study

(Konishi et al., 2020), can be regarded as the effectiveness of

the proposed control law, although it is difficult to directly

compare the results of the preliminary study and those of the

present study owing to the differences in mechanisms, including

the degrees of freedom. Furthermore, it must be noted that the

control law proposed in this study can be easily applied to

stationary control, as reported in (Sakagami et al., 2022), to

achieve better control.

5.3 Limitations

When something is mistakenly recognized as a path, the

proposed method may provide incorrect guidance. The

direction angle β used for the translational velocity

conversion cannot be directly changed by the operator, but

the arbitrary motion of the robot can be achieved through

posture change by the lateral joystick input. If the operator
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notices a misrecognition of the robot, the guidance can be

temporarily stopped by the pressing of a button. In the present

study, we demonstrate that the system can switch off the

guidance control by setting e2 and e3 to zero when the system

judges that the path detection has failed; thus, the robot can

transfer the control to manual control and continue the task

without any problem. It must be noted that a control

discontinuity may occur when the assistance once turned

off is turned back on, which may lead to an unstable

phenomenon. A smooth control transition method using

HSC has been proposed to eliminate control discontinuities

in the control transition between the automated driving of

automobiles and manual driving (Saito et al., 2018; Okada

et al., 2020), which is expected to be applied to the problem.

6 Conclusion

6.1 Summary

In this study, we proposed a new cooperative path-following

control method for underwater robots for visual object-

recognition tasks while following a path to reduce the operator

workload. In the proposed method, the design concept of the

human—machine interface, including translational velocity

conversion and haptic guidance for rotational motion, is

combined with a path-following controller based on inverse

optimal control. An experiment verified the effectiveness of the

proposed method from the perspective of task performance and

operator workload; the path-following performance was

significantly improved, and the subjective workload was

significantly reduced under the effect of the proposed method

in comparison to manual control, even though the robot

occasionally failed to detect the followed path.

6.2 Future research direction

In this study, the path-following problem was limited to a

two-dimensional plane. Expansion of the proposed method to

six-DoF motion in a three-dimensional space can be considered

in a future study.

The effectiveness of the proposed control law was verified in

an indoor pool without water flow. Therefore, conducting

experiments in the presence of external disturbances, such as

flow, especially in real environments, such as oceans and lakes, is

a potential future course of action in this field of study.

Moreover, path-detection instability at the edge of the path

was observed. Although the proposed method is effective

throughout the system, it is necessary to consider more stable

detectors in the future.
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