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Proportional–integral–derivative (PID) control is a durable control technology that
has been widely applied in the process control industry. However, PID controllers
cannot achieve satisfactory performance for oscillatory systems with long time
delays; thus, high-order controllers like the proportional–integral–double
derivative (PIDD2) can be adopted to enhance the control performance. In this
paper, we propose a tuning formula for the PIDD2 controller for oscillatory systems
with time delays and its practical implementation via an observer bandwidth-based
state-space PIDD2. Simulation results show that the state-space PIDD2 controller
tuned from the proposed formula trades-off among robustness, time domain
performance, and measurement noise attenuation and can arrive at a better
control effect than PID for oscillatory systems.
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1 Introduction

Proportional–integral–derivative (PID) control is a durable control technology that has been
widely applied in the process control industry (Kim and Lee, 2021). The principal reason is its
relatively simple structure, which can be easily implemented, understood, and maintained in
practical industry production processes. PID is sowildly used in process control system applications,
and it is one of the important factors in the development of the industry (Borase et al., 2021). Hence,
most studies in the field of process control have only focused on PID control, which includes
intelligent PID (Chan et al., 2007; Gundes and Ozguler, 2007), fuzzy PID (Tzafestas and
Papanikolopoulos, 1990; Jin et al., 2017), optimal PID (Halikias and Zolotas, 1999; Chao et al.,
2019; Memon and Shao, 2020; Memon and Shao, 2021), adaptive PID control (Radke and
Isermannt, 1987; Pan et al., 2007), and fractional-order PID (Zhao et al., 2005; Chevalier et al., 2019).

It is well-known that the oscillatory dynamics of the process have various features, and
parameter tuning is complicated and difficult. To facilitate research, the oscillatory dynamics of
the process can bemodeled as the standard second-order process with a dead-time (SOPDT)model.
Up to now, research on the tuning of the SOPDT system has been mostly restricted to PID. Weng
et al. (1997) derived the tuning formula of the PID controller based on the gain and phasemargin for
the underdamped oscillatory system. The user-specified gain and phase margins can be adaptively
achieved, but the trade-off optimization between stability and tracking performance is not designed.
Wang et al. (1999) proposed a PID controller parameter tuning method based on the closed-loop
pole assignment strategy of the root locus for the oscillatory system; the parameter design process is
more complicated. Huang et al. (2000) proposed an inverse-based synthesis PID controller for the
oscillatory system and analyzed its robustness by the gain and phase margins. However, the effect of
noise was not considered. Basilio and Matos (2002) designed the PID controller for the
underdamping system, but the controlled plant did not account for dead time. Oliveira and
Vrančić (2012) addressed the problem of decreasing the overshoot by switching controllers for
underdamped second-order systems, which is not convenient for practical engineering applications.
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Kurokawa et al. (2020) proposed an optimal trade-off PID control system
for a SOPDT system, which does not consider the impact ofmeasurement
noise. The aforementioned literature reports are devoted to the study of
the controller from the perspective of the frequency domain. Although
some research has been carried out on PID controllers, it is still unclear
whether or not PID can effectively handle oscillatory process uncertainties

like disturbance and measurement noise. Furthermore, it may be
necessary to manually adjust the PID controller for the step response
of the oscillatory process through trial and error, which may inevitably
result in inaccuracies. More importantly, it is difficult for the conventional
PID controller to guarantee the stability of the oscillatory process with a
time delay. The scenario is quite different from the step response of the
non-oscillatory plant, where numerous well-known formulas exist (Lee
et al., 1998; Skogestad and Grimholt, 2012; Garpinger et al., 2014).
Therefore, it would be desirable if there are tuning criteria for the
oscillatory plant with time delays to improve the performance of systems.

As an example, consider the following oscillatory system with a
time delay (G(s)):

G s( ) � 1

s2 + 0.2s + 1
e−s . (1)

The dynamic response of SOPDT under the conventional PID
(Huang et al., 2000) is shown in Figure 1 when a unit step reference
signal (the amplitude is 1) is inserted at t � 0s and an input
disturbance signal (the amplitude is 5) is inserted at t � 50s.
Controller parameters are Kp � 0.1;Ki � 0.5;Kd � 0.5; from
Figure 1, we can see that although the tracking response of PID
is acceptable, the rejection–disturbance response is still oscillatory,
which is undesired.

To improve the performance of conventional PID, a new
conventional controller named the proportional−integral−double
derivative (PIDD2) is widely used (kalyan and Suresh, 2021; Koley
et al., 2020; Mokeddem and Mirjalili, 2020; Simanenkov et al., 2017;
Sonkar and Rahi, 2016). The PIDD2 controller is robust and capable of
controlling the automatic voltage regulator under load frequency control
system uncertainties (Mohanty, 2018; Chatterjee et al., 2019). So far, there
are only some literature studies about parameter tuning for PIDD2, e.g.,
CSA−PIDD2 (Koley et al., 2020), hFPA-PS−PIDD2 (Mohanty, 2020),
GWO−PIDD2 (Kalyan, 2021), and Fuzzy−PIDD2 (Farooq et al., 2021).
However, the PIDD2 controller is not discussed for oscillatory systems.
In reality, oscillatory systems are not subject to any special PIDD2 tuning
rules. To tune oscillatory SOPDT systems, this paper proposes the tuning
formula of PIDD2.

FIGURE 1
Dynamic response of the SOPDT model under PID: (A) controller output responses and (B) system output responses.

FIGURE 2
Block diagram of the state-space PIDD2 controller.

FIGURE 3
Block diagram of TDF-IMC.
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For practical implementation issues, we will investigate a state-
space PIDD2 control structure. The state-space PIDD2 controller
estimates the derivative of the controlled plant output via an observer.
The second-order differentiation is utilized to reduce impacts of
fluctuation of the disturbance. The state-space PIDD2 controller
retains the plant-independent property of the traditional PID and
overcomes some of its disadvantages. For oscillatory systems with time
delays, a tuning formula based on the state-space PIDD2 controller is
proposed first, and then, the parameters of PIDD2 are obtained via the
well-known internal model control (IMC) framework for oscillatory
systems. The proposed tuning formula is tested for a wide variety of
simulation examples and the load frequency control system. It is
shown that the state-space PIDD2 controller outperforms the
traditional PID in oscillatory systems. The state-space PIDD2

controller trades-off among disturbance rejection performance,
robustness, and attenuation of the measurement noise.

The rest of the paper consists of four parts. In Section 2, PIDD2

and its state-space implementation is introduced; tuning of the state-
space PIDD2 controller based on IMC for the SOPDT system is
introduced in Section 3; Section 4 presents simulation and analysis
results. Finally, conclusions are given in Section 5.

2 PIDD2 and its state-space
implementation

APID controller has been frequently utilized in the industry due to
its simplicity and efficiency. The PIDD2 controller has been used to
enhance the performance of the conventional PID controller. The
structure of PIDD2 is similar to the conventional PID, in addition to
the extra second-order derivative gain. An ideal PIDD2 controller has
the following transfer function form:

CPIDD s( ) � Kp + Ki

s
+ Kds + Kdds

2 , (2)

where Kp, Ki, Kd, and Kdd are the proportional variable, integral
variable, derivative gain, and double derivative gain, respectively.
PIDD2 control can be written as a state-feedback control law,
given as follows:

u t( ) � Kdd €r t( ) − €y t( )( ) +Kd _r t( ) − _y t( )( )
+Kp r t( ) − y t( )( ) +Ki∫t

0
r τ( ) − y τ( )( )dτ

� : �Ko �r t( ) − x t( )( ). (3)
Here, y(t) is the controlled variable, u(t) is the manipulated variable,
and r(t) is the reference signal.

�r t( ) � €r t( ) _r t( ) r t( ) ∫t

0
r τ( )dτ[ ]T

. (4)

The state vector is as follows:

x t( ) � €y t( ) _y t( ) y t( ) ∫t

0
y τ( )dτ[ ]T

. (5)

The state-feedback gain is as follows:

�Ko � Kdd Kd Kp Ki[ ]. (6)
The state vector x(t) (5) contains the derivative of y(t), so it

cannot be measured directly. An observer can be adopted to estimate
it. Consider the following triple integral model:

y
...

t( ) � u t( ). (7)
Let

x1 � €y , x2 � _y, x3 � y. (8)
Then, Eq. 7 can be written in the following state-space form:

_x1

_x2

_x3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � �Ao

x1

x2

x3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + �Bou,

y � �Co

x1

x2

x3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(9)

where

�Ao �
0 0 0
1 0 0
0 1 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, �Bo �
1
0
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, �Co � 0 0 1[ ]. (10)

Thus, the following Luenberger observer can be used to
estimate [ €y _y y]T.

FIGURE 4
Flow chart of the derivation of the tuning formula.
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_�x1
_�x2
_�x3

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ � �Ao − �L�Co( ) �x1

�x2

�x3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + �Bou + �Ly, (11)

where �L is the observer gain, which is given as follows:

�L � �β1
�β2

�β3[ ]T. (12)

If �L is chosen such that �Ao − �L�Co is asymptotically stable, then
�̂x1 →€y, �̂x2 → _y, and �̂x3 → y. Furthermore, ∫t

0
y(τ)dτ can be

computed using another state �̂x4, where

_�x4 � �x3 � y. (13)

By combining Eq. 11 and Eq. 13, we have an estimation of the state
vector of Eq. 5 with the following observer:

_�x � �Ae − �Lo
�Ce( )�x + �Beu + �Loy, (14)

where �x � [ �x1 �x2 �x3 �x4 ]T and

�Ae �
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, �Be �

1
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, �Ce � 0 0 1 0[ ]. (15)

�Lo is the observer gain vector shown as follows:

�Lo � �β1
�β2

�β3 1[ ]T . (16)

When �Lo is chosen properly, �Ae − �Lo �Ce is asymptotically stable, and

�x1 t( ) →€y t( ), �x2 t( ) → _y t( ), �x3 t( ) → y t( ), �x4 t( ) → ∫t

0
y τ( )dτ. (17)

Hence, the third-order state-space PID is the implementation
of PIDD2, and an ideal PIDD2 controller can be approximated
with the following third-order state-space PID (SS-PIDD2)
controller:

{ _�x1 � �Ae − �Lo
�Ce( )�x + �Beu + �Loy,

u � �Ko �r − �x( ). (18)

So the feedback controller from y to u is as follows:

Kc s( ) � �Ko sI − �Ae + �Be
�Ko + �Lo

�Ce( )−1 �Lo

� Kdd
�β1 +Kd

�β2 +Kp
�β3 +Ki( )s3 + Kd

�β1 +Kp
�β2 + Ki

�β3( )s2 + Kp
�β1 +Ki

�β2( )s + Ki
�β1

s s3 + Kdd + �β3( )s2 + Kdd
�β3 +Kd + �β2( )s + �β1 + Kdd

�β2 +Kd
�β3 +Kp[ ]

.

(19)

�Ko is the controller gain vector, as shown in Eq. 6.
Figure 2 shows the structural block diagram of the third-order

state-space PID (SS-PIDD2). α is the set-point weight, which is used to
reduce the overshoot. By default, α � 1.

FIGURE 5
Fitting curves of parameters of SS-PIDD2.
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3 Tuning of the state-space PIDD2

controller based on IMC for the SOPDT
system

The dynamics of the oscillatory SOPDT system is relatively
complicated, and the controller parameter design process faces
severe challenges. In general, the low-order controller often
neglects the higher-order dynamics of oscillatory systems. Thus,
the result of the control effect is not accurate (Wang et al., 2021).
The well-known internal model control has the advantage of using one
or two tuning parameters to achieve good control performance to
model inaccuracies (Shamsuzzoha and Lee, 2007, p.). Therefore, in
this section, we will discuss in detail how the parameters of the SS-
PIDD2 controller are obtained using IMC.

3.1 Description of the internal model
control (IMC)

Figure 3 shows the structural block diagram of the two-degree-of-
freedom IMC (TDF-IMC) controller. P(s) is the plant to be
controlled, and PM(s) is the plant model; Q(s) is the set-point
tracking controller, and Qd(s) is the disturbance rejection controller.

We can divide the design process of the TDF-IMC controller into
the following steps (Tan and Fu, 2015):

1) Factor the plant model PM(s) into two parts:

PM s( ) � PM+ s( )PM− s( ), (20)
wherePM+(s) is the portion of themodel inverted (minimum-phase) and
PM−(s) is the portion of the model not inverted (non-minimum-phase).

2) Design the set-point tracking controller Q(s) as follows:
Q s( ) � P−1

M+ s( )f s( ), (21)
where f(s) is a low-pass filter and its expression is given as follows:

f s( ) � 1
λs + 1( )n . (22)

Here, λ is the filter parameter, and n is the relative degree
of PM+(s).

3) The disturbance rejection controller Qd(s) is designed as follows:

Qd s( ) � αms
m +/ + α1s + 1
λds + 1( )rd , (23)

where m is the number of poles of PM(s) such that Qd(s) needs to
cancel the disturbance rejection filter 1

(λds+1)rd with order rd ≥m, and λd
is a tuning parameter for obtaining a better disturbance-rejecting
performance. The poles p1/pm of PM(s) can be canceled by the zeros
α1/αm of Qd(s), i.e., α1/αm should satisfy the following:

1 − PM s( )Q s( )Qd s( )( )|s�p1/pm � 0. (24)

The corresponding transfer function of the IMC controller is as follows:

FIGURE 6
Fitting curves of Kp , Ki , Kd , Kdd , ωo, and ξ.
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KIMC s( ) � Q s( )Qd s( )
1 − PM s( )Q s( )Qd s( ) . (25)

3.2 The IMC controller design for the SOPDT
system

By designing the IMC controller, we can get the controller gain
of SS-PIDD2. So consider the general form of SOPDT systems as
follows:

PM s( ) � k

T2s2 + 2Tξs + 1
e−τs (26)

The controllers Q(s) and Qd(s) for Eq. 26 are as follows:

Q s( ) � T2s2 + 2Tξs + 1

k λs + 1( )2 (27)

Qd s( ) � α2s
2 + α1s + 1

λds + 1( )3 (28)

Here, the order of the disturbance rejection filter rd is chosen as 3,
and α1 and α2 meet Eq. 24.

From the aforementioned derivation, the final form of Eq. 25 is
given as follows:

KIMC s( ) � 1
k

(T2s2 + 2Tξs + 1)(α2s2 + α1s + 1)
λs + 1( )2 λds + 1( )3 − α2s

2 + α1s + 1( )e−τs . (29)

From the aforementioned analysis, we can cancel the roots of
T2s2 + 2Tξs + 1. To obtain a finite-dimensional controller, we take the
first-order Pade approximation technique (Horn et al., 1996;
Shamsuzzoha and Lee, 2008) to approximate the pure delay.

e−τs �
1 − τ

2
s

1 + τ

2
s
. (30)

Then, the simplified form of Eq. 29 becomes

KIMC s( ) � 1
k

1 + τ

2
s( ) α2s

2 + α1s + 1( )
s a3s

3 + a2s
2+a1s + 1( ) � p3s

3 + p2s
2 + p1s + p0

s q3s
3 + q2s

2 + q1s + q0( ) ,
(31)

where the expression of p0,/, p3 and q0,/, q3 can be obtained as
follows:

p0 � 1, p1 � τ

2
+ α1, p2 � τ

2
α1 + α2, p3 � τ

2
α2, (32)

q0 � 2λ + 3λd + α1 + τ,

q1 � α1
2
τ − α2 + 6λλd + 2λ + 3λd( ) τ

2
+ λ2 + 3λ2d − 2Tξq0,

FIGURE 7
Fitting curves of parameters of SS-PIDD2.
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q2 �
3λ2λ2d + 2λλ3d( )2

2
+ λ2λ3d − 2Tξq3

T2 , q3 � λ2λ3d
2T2 τ. (33)

3.3 Specific approximate processes with the
state-space PIDD2

This subsection focuses on how to attain the parameters of SS-
PIDD2 through IMC. For simplicity, the observer gain �Lo in Eq.
16 can be tuned via the bandwidth idea (Gao, 2003), i.e., the poles
of �Ae − �Lo �Ce in Eq. 14 are placed at the same location −�ωo, and
then,

�β1 � �ωo
3, �β2 � 3�ωo

2, �β3 � 3�ωo. (34)

According to the aforementioned Eq. 19, the transfer function
form of SS-PIDD2 is as follows:

Kc s( ) � �Ko sI − �Ae + �Be
�Ko + �Lo

�Ce( )−1�Lo

� c3s
3 + c2s

2 + c1s + c0
s e3s

3 + e2s
2 + e1s + e0( ),

(35)

where

c3
c2
c1
c0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

�β1
�β2

�β3 1
0 �β1

�β2
�β3

0 0 �β1
�β2

0 0 0 �β1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Kdd

Kd

Kp

Ki

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (36)

e3
e2
e1
e0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 0 0 0
�β3 1 0 0
�β2

�β3 1 0
�β1

�β2
�β3 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
Kdd

Kd

Kp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (37)

To make the SS-PIDD2 controller achieve the same control
performance as the IMC controller, suppose Eq. 31 and 35 have
the same zeros, i.e.,

c3
c2
c1
c0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � α

p3

p2

p1

p0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (38)

where α is an optional constant. According to Eq. 36, we have the
following:

c3
c2
c1
c0
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�β1
�β2

�β3 1
0 �β1

�β2
�β3

0 0 �β1
�β2

0 0 0 �β1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Kdd

Kd

Kp

Ki

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � α

p3

p2

p1

p0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (39)

Thus, the controller gain of SS-PIDD2 can be obtained as follows:

FIGURE 8
Fitting curves of Kp , Ki , Kd , Kdd , ωo, and ξ.
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The final parameters of SS-PIDD2 can be obtained by substituting
Eqs 32 and 34 into Eq. 40. The important thing to note here is to make
α as large as possible so that �ωo is a positive real-number.

3.4 Tuning rules for SOPDT systems

The performance of the IMC controller is decided by the
parameters λ and λd. Nevertheless, previous studies of the IMC
have not dealt with how to obtain the appropriate value of these two
parameters. In other words, there is no specific approach to choose
the value of λ and λd. Hence, the core idea of this subsection is to get
optimized values of λ and λd. The optimal values of λ and λd are
those that give the minimum (integral of the time squared error)
ITSE with certain robustness, and then, we can get the transfer
function of the equivalent IMC controller. Thus, according to
Section 3.3, we can obtain the parameters (Kp; Ki; Kd; Kdd; ωo)
of the SS-PIDD2 controller. The specific flow chart of the
derivation process is shown in Figure 4.

In the process of calculating the parameters of SS-PIDD2,
as mentioned in Figure 4, we notice that the parameters of the

FIGURE 9
Responses of the SOPDT systemwith ξ = .2 under different controllers: controller output responses without noise [the top left of (A–D)]; system output responses
withoutnoise [the top rightof (A–D)]; controlleroutput responseswithnoise [thebottom leftof (A–D)]; (B) systemoutput responseswithnoise [thebottom rightof (A–D)].
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SS-PIDD2 controller exhibit different properties for τ/T≤ 2.5 and
τ/T > 2.5; consequently, we set the parameters in the two cases,
respectively.

To describe the detailed derivation process of the tuning
formula, suppose τ/T≤ 2.5 and consider a normalized SOPDT
system, then

G s( ) � 1

s2 + 2 × 0.2 × s + 1
e−�τs , (41)

where �τ varies from .5 to 2.5 with an appropriate step. A set of
parameters of SS-PIDD2 Kp, Ki, Kd, Kdd, and ωo can be obtained
through the process in Figure 4. The fitting curves of parameters of the
SS-PIDD2 are shown in Figure 5.

The corresponding function expressions are given in Eq. 42:

�Kp � 0.0924�τ2 − 0.1599�τ − 0.1176,
�Ki � 0.0099�τ2 − 0.0502�τ + 0.2201,
�Kd � 0.1027�τ2 − 0.6332�τ + 0.8056,
�Kdd � −0.1334�τ2 + 0.5169�τ − 0.4112,
�ωo � 0.1125�τ2 − 0.3707�τ + 4.8762. (42)

So we can rewrite Eq. 42 as follows:

�Kp � A1�τ
2 + A2�τ + A3,

�Ki � B1�τ
2 + B2�τ + B3,

�Kd � C1�τ
2 + C2�τ + C3,

�Kdd � D1�τ
2 +D2�τ +D3,

�ωo � E1�τ
2 + E2�τ + E3.

(43)

When ξ � 0.1; 0.3; 0.4; 0.5; 0.6; 0.7, the corresponding fitting curves
ofKp,Ki,Kd,Kdd,ωo, and ξ are obtained, as shown in Figure 6. Thefitting
formulae are given in Eq. 44:3

A1 � 0.3ξ2 − 0.4434ξ + 0.1691,
A2 � −1.102ξ2 + 1.354ξ − 0.3866,
A3 � 0.7656ξ2 + 0.2038ξ − 0.189,
B1 � 0.02727ξ2 − 0.01403ξ + 0.01164,
B2 � −0.1443ξ2 + 0.02041ξ − 0.04854,
B3 � 0.313ξ + 0.1575,
C1 � −0.2909ξ2 + 0.06036ξ + 0.1023,
C2 � 1.258ξ − 0.8848,
C3 � −1.187ξ + 1.043,
D1 � −0.3103ξ2 + 0.4958ξ − 0.2201,
D2 � 0.8436ξ2 − 1.519ξ + 0.787,
D3 � −0.5418ξ2 + 0.9786ξ − 0.5852,
E1 � 0.4148ξ2 − 0.5456ξ + 0.205 ,
E2 � −3.695ξ−0.04876 + 3.626,
E3 � −56.83ξ0.00182 + 61.54,

(44)

FIGURE 10
Responses of the SOPDT systemwith ξ = 0.4 under different controllers: controller output responses without noise [the top left of (A–D)]; system output
responses without noise [the top right of (A–D)]; controller output responses with noise [the bottom left of (A–D)]; (B) systemoutput responseswith noise [the
bottom right of (A–D)].
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FIGURE 11
Responses of the SOPDT systemwith ξ = 0.6 under different controllers: controller output responses without noise [the top left of (A–D)]; system output
responses without noise [the top right of (A–D)]; controller output responses with noise [the bottom left of (A–D)]; (B) systemoutput responseswith noise [the
bottom right of (A–D)].

TABLE 1 Parameters of the SS-PIDD2 and PID controllers for ξ � 0.2.

System
parameters

Method Controller parameters ITSE index Robustness index Total variation

Kp Ki Kd Kdd ITSE ε TV

ξ � 0.2 τ/T � 1 SS-PIDD2 −0.1851 −0.1798 0.2751 −0.0276 653.5863 2.2285 7.4161

Huang_PID 0.2 0.5 0.5 544.8031 2.5540 60.9785

Ho_PID 0.1798 0.3840 0.3840 453.6361 2.1748 810.5307

τ/T � 2 SS-PIDD2 −0.0677 0.1593 −0.0499 0.0893 992.6308 2.5074 2.8541

Huang_PID 0.1 0.25 0.25 781.9585 2.4548 30.5162

Ho_PID 0.0833 0.1920 0.1920 788.3334 1.9964 390.8009

τ/T � 3 SS-PIDD2 0.1734 0.1701 −0.0484 0.0348 1.143e+03 2.9843 1.9509

Huang_PID 0.0667 0.1667 0.1667 1.118e+03 2.4211 20.3436

Ho_PID 0.0541 0.1280 0.1280 1.267e+03 2.0051 272.0857

τ/T � 4 SS-PIDD2 0.3761 0.1702 0.1539 0.0540 1.503e+03 3.4939 19.4144

Huang_PID 0.05 0.125 0.125 1.761e+03 2.4038 24.9336

Ho_PID 0.04 0.096 0.096 2.06e+03 2.0079 328.9098
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FIGURE 12
Responses of G1(s): controller output responses without noise (the top left); system output responses without noise (the top right); controller output
responses with noise (the bottom left); system output responses with noise (the bottom right).

FIGURE 13
Responses of G2(s): controller output responses without noise (the top left); system output responses without noise (the top right); controller output
responses with noise (the bottom left); system output responses with noise (the bottom right).
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where �τ varies from 2.5 to 5 with an appropriate step. A set of
parameters of SS-PIDD2 Kp, Ki, Kd, Kdd, and ωo can be obtained
through the process in Figure 4. The fitting curves of parameters
of SS-PIDD2 are shown in Figures 7, 9.

The corresponding function expressions are given in Eq. 45:

�Kp � −0.0452�τ2 + 0.5190�τ − 0.9770,
�Ki � 0.0016�τ2 − 0.0111�τ + 0.2372,
�Kd � −0.0059�τ2 + 0.2437�τ − 0.7264,
�Kdd � 0.0878�τ2 − 0.5952�τ + 1.0306,
�ωo � −0.0800�τ2 + 0.4963�τ + 3.8536.

(45)

Similar to Eq. 44, we can obtain the following:

A1 � −0.0909ξ2 + 0.1645ξ − 0.07444,
A2 � 1.405ξ2 − 2.175ξ + 0.8978,
A3 � −3.166ξ2 + 5.363ξ − 1.923,
B1 � 0.02167ξ2 − 0.01522ξ + 0.003777,
B2 � −0.09188ξ2 − 0.001259ξ − 0.007188,
B3 � 0.3004ξ2 + 0.007393ξ + 0.1756,
C1 � 7.843e − 09ξ−6.822 − 0.006375,
C2 � 0.6736ξ2 − 1.011ξ + 0.419,
C3 � 2.95ξ2 + 4.443ξ − 1.497,
D1 � 0.04845ξ−0.7432 − 0.07248,
D2 � −0.286ξ−0.8213 + 0.4774,
D3 � 0.4976ξ−0.8112 − 0.8055,
E1 � −0.02299ξ−1.035 + 0.04166,
E2 � 0.1223ξ−1.143 − 0.2734,
E3 � −0.1418ξ−1.264 + 4.938. (46)

TABLE 2 Parameters of the SS-PIDD2 and PID controllers for ξ � 0.4.

System
parameters

Method Controller parameters ITSE index Robustness index Total variation

Kp Ki Kd Kdd ITSE ε TV

ξ � 0.4 τ/T � 1 SS-PIDD2 0.0334 0.2296 0.2665 −0.0375 407.3708 1.9260 8.3491

Huang_PID 0.4 0.5 0.5 239.4808 2.4527 143.7389

Ho_PID 0.3334 0.3840 0.3840 245.4935 2.0665 781.3864

τ/T � 2 SS-PIDD2 0.1313 0.1973 0.1246 0.0626 658.5166 2.1135 9.1303

Huang_PID 0.2 0.25 0.25 565.4083 2.4028 71.8414

Ho_PID 0.1601 0.1920 0.1920 618.3568 2.0001 397.009

τ/T � 3 SS-PIDD2 0.2648 0.1698 0.1180 0.0613 989.0638 2.2598 16.3053

Huang_PID 0.1333 0.1667 0.1667 1.064e+03 2.3872 78.2354

Ho_PID 0.1053 0.1280 0.1280 1.238e+03 2.0061 445.3830

τ/T � 4 SS-PIDD2 0.3551 0.1556 0.1958 0.0944 1.2933+03 2.4294 24.6455

Huang_PID 0.1000 0.1250 0.1250 1.668e+03 2.3785 58.6884

Ho_PID 0.0784 0.0960 0.0960 1.996e+03 2.0083 336.0283

TABLE 3 Parameters of the SS-PIDD2 and PID controllers for ξ � 0.6.

System
parameters

Method Controller parameters ITSE index Robustness index Total variation

Kp Ki Kd Kdd ITSE ε TV

ξ � 0.6 τ/T � 1 SS-PIDD2 0.2490 0.2701 0.2346 −0.0481 291.8792 1.8584 8.4226

Huang_PID 0.6 0.5 0.5 170.1537 2.4198 233.3799

Ho_PID 0.4870 0.3840 0.3840 195.1879 2.0467 782.5537

τ/T � 2 SS-PIDD2 0.3113 0.2210 0.2060 0.0282 508.1148 2.0735 11.7401

Huang_PID 0.3 .25 0.25 483.9737 2.3854 116.6628

Ho_PID 0.2369 0.1920 0.1920 567.9483 2.0036 413.0732

τ/T � 3 SS-PIDD2 0.3747 0.1871 0.2141 0.0596 858.4619 2.3263 23.2255

Huang_PID 0.2 0.1667 0.1667 1.009e+03 2.3758 126.8926

Ho_PID 0.1565 0.1280 0.1280 1.206e+03 2.0071 430.8983

τ/T � 4 SS-PIDD2 0.4140 0.1632 0.2244 0.0903 1.212e+03 2.5511 26.6605

Huang_PID 0.1500 0.1250 0.1250 1.611e+03 2.3700 90.2657

Ho_PID 0.1168 0.0960 0.0960 1.971e+03 2.0087 283.7364
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When ξ � 0.1; 0.3; 0.4; 0.5; 0.6; 0.7, the corresponding fitting
curves of Kp, Ki, Kd, Kdd, ωo, and ξ are obtained, as shown in
Figures 8, 10.

In practice, the relationship between �Kp, �Ki, �Kd, �Kdd, and �ωo of
SS-PIDD2 for the normalized SOPDT model in Eq. 41 and Kp, Ki,

Kd, Kdd, and ωo of SS-PIDD2 for the general SOPDT model in Eq.
26is described in the following (Zhang et al., 2019):

Kp � �Kp

k
, Ki �

�Ki

Tk
, Kd �

�KdT

k
, Kdd �

�KddT
2

k
, ωo � �ωo

T
. (47)

FIGURE 14
Responses of G3(s): controller output responses without noise (the top left); system output responses without noise (the top right); controller output
responses with noise (the bottom left); system output responses with noise (the bottom right).

TABLE 4 Parameters of the SS-PIDD2 and PID controllers for (50)–(52).

System parameters Method Controller parameters ITSE index Robustness index Total variation

ξ τ T Kp Ki Kd Kdd ωo ITSE ε TV

G1 0.4154 2.3000 3.2024 SS-PIDD2 0.0364 0.0769 1.0554 −0.928 1.4554 1.99e+03 2.4288 0.6661

Huang_PID 0.5784 0.2174 2.2294 1.14e+03 3.0657 0.7360

Ho_PID 0.4950 0.1669 1.7121 1.21e+03 2.4928 0.5826

Wang_LADRC 4.7154 929.7305 4.01 1.0383

G2 0.5704 0.5230 0.6321 SS-PIDD2 1.9936 4.1681 1.5514 −0.260 7.3497 1.0107 1.8594 0.5117

Huang_PID 6.5994 9.1520 3.6568 0.3753 2.4264 0.5814

Ho_PID 5.4345 7.0282 2.8082 0.4661 2.0704 0.5084

G3 0.4911 0.8370 1.1207 SS-PIDD2 0.5322 1.0544 1.4873 −0.459 4.1540 15.5827 1.9197 0.5407

Wang_LADRC 13.323 4.5426 2.7579 0.6918

Wang_PID 1.5030 1.3660 1.7150 10.3836 1.7707 0.5069

Frontiers in Control Engineering frontiersin.org13

Xingqi et al. 10.3389/fcteg.2022.1083419

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2022.1083419


As a result, combining Eqs 43−47, we can obtain the following
tuning formula of SS-PIDD2 for the SOPDT system:

Kp � 0.3ξ2 − 0.4434ξ + 0.1691( )τ2
kT2 + −1.102ξ2 + 1.354ξ − 0.3866( )τ

kT

+0.7656ξ
2 + 0.2038ξ − 0.189

k
,

Ki �
0.02727ξ2 − 0.01403ξ + 0.01164( )τ2

kT3 + −0.1443ξ2 + 0.02041ξ − 0.04854( )τ
kT2

+ 0.313ξ + 0.1575
kT

,

Kd � −0.2909ξ2 + 0.06036ξ + 0.1023( )τ2
kT

+ 1.258ξ − 0.8848( )τ
k

+ −1.187ξ + 1.043( )T
k

,

Kdd �
−0.3103ξ2 + 0.4958ξ − 0.2201( )τ2

k
+ 0.8436ξ2 − 1.519ξ + 0.787( )τT

k

+ −0.5418ξ2 + 0.9786ξ − 0.5852( )T2

k
,

ωo �
0.4148ξ2 − 0.5456ξ + 0.205( )τ2

T3 + −3.695ξ−0.04876 + 3.626( )τ
T2

+−56.83ξ
0.00182 + 61.54
T

. (48)

Similarly, using the same process, we can obtain the tuning
formula when τ/T > 2.5 as follows:

Kp � −0.0909ξ2 + 0.1645ξ − 0.07444( )τ2
kT2 + 1.405ξ2 − 2.175ξ + 0.8978( )τ

kT

+−3.166ξ
2 + 5.363ξ − 1.923

k
,

Ki �
0.02167ξ2 − 0.01522ξ + 0.003777( )τ2

kT3 + −0.09188ξ2 − 0.001259ξ − 0.007188( )τ
kT2

+0.3004ξ
2 + 0.007393ξ + 0.1756

kT
,

Kd �
7.843e − 09ξ−6.822 − 0.006375( )τ2

kT
+ 0.6736ξ2 − 1.011ξ + 0.419( )τ

k

+ −2.95ξ2 + 4.443ξ − 1.497( )T
k

,

Kdd � 0.04845ξ−0.7432 − 0.07248( )τ2
k

+ −0.286ξ−0.8213 + 0.4774( )τT
k

+ 0.4976ξ−0.8112 − 0.8055( )T2

k
,

ωo �
−0.02299ξ−1.035 + 0.04166( )τ2

T3 + 0.1223ξ−1.143 − 0.2734( )τ
T2

+−0.1418ξ
−1.264 + 4.938
T

.. (49)

4 Simulation and analyses

This section demonstrates the tuning formula for several
examples. In every simulation example, a different control effect
has been analyzed and compared with existing methods.

4.1 Simple simulation examples

Simple second-order oscillatory plants with damping ratios (ξ �
0.2, ξ � 0.4, ξ � 0.6) and delay time (T � 1, τ/T � 1, 2, 3, 4) are
shown in Figures 7–11 (the figures show controller outputs u(t)
within the appropriate range; otherwise, u(t) for the disturbance
response will be too small to be visible in the figure). The parameters
and indexes ((ITSE � ∫∞

0
te2(t)dt; ε: � sup

ω
(‖S‖∞ + ‖T‖∞);

(TV � ∑∞
1 |ui+1(t) − ui(t)|)) are shown in Tables 1–3. The responses

for a step reference signal (the amplitude is 1) at t � 0s and a step input
disturbance signal (the amplitude is .5) are added to these systems at an
appropriate time to test the disturbance rejection performance and
robustness. Moreover, suppose there is a white noise signal with a
variance of 0.001 added to the output of the plant to test the
performance of measurement noise attenuation. From Figures 7–10,
we can see that the output responses of the system with ξ � 0.2; 0.4
show large oscillations, which is because the poles of the system are close
to the imaginary axis. The responses of the systemwith ξ � 0.6 are shown
in Figure 11. Compared with the PID controller, the SS-PIDD2 controller
has a faster tracking and disturbance rejection response.Moreover, the SS-
PIDD2 controller has smaller overshooting and fluctuation than the PID
controller. In particular, after adding noise, the SS-PIDD2 controller
output response is significantly better than the other two PID methods.
Combining figures and tables, we can see that the tuning in Eqs 48, 49 can
achieve a better response. Therefore, we can conclude that the proposed
formula of SS-PIDD2 has a better control effect for the SOPDT system.

Remark: 1) Robustness is the property that a control system
maintains for some other performance under certain (structure and
size) parameter perturbations.

Ms � S‖ ‖∞ � max
ω

1
1 + L jω( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣,
Mt � T‖ ‖∞ � max

ω

L jω( )
1 + L jω( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣,
ε: � sup

ω
S‖ ‖∞ + T‖ ‖∞( ),

FIGURE 15
Transfer function model of the load frequency control system.
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where L(s) is the open-loop transfer function of the system, Ms and
Mt are maximum sensitivities, S(s) and T(s) are sensitivity functions,
and ε represents the robustness of the system.

2) ITSE is the integral of the time squared error.
ITSE � ∫∞

0
te2(t)dt. e(t) � r(t) − y(t) is the difference between

the reference input signal and output signal of the system.
3) TV is the total variation in the output of the controller. TV �∑∞

1 |ui+1(t) − ui(t)|.

4.2 Complex simulation examples

In this subsection, we use three relatively complex oscillatory
plants (G1 (Huang et al., 2005), G2, and G3 (Wang et al., 1999)) to
verify the applicability of the proposed Eqs 48 and 49. Dynamic
responses of plants are given in Figures 12–14. The controller
parameters, systems parameters, and controller performance index
are shown in Table 4. It is shown that SS-PIDD2 and PID have similar
disturbance rejection responses; SS-PIDD2 has a smaller overshoot in
the set-point for G1 and set-point tracking responses without the
overshoot for G2 and G3.Additionally, the influence of the
measurement noise on SS-PIDD2 is smaller than PID.
Significantly, SS-PIDD2 does not have a satisfactory disturbance
rejection performance, compared to the linear active disturbance
rejection controller (LADRC) for G3 but has a smaller robustness
and TV than LADRC. Generally speaking, the proposed tuning
approach has a better control effort and can trade-off between the
performance, robustness, and attenuation of the measurement noise.

G1 s( ) � 1

9s2 + 2.4s + 1( ) s + 1( )e
−2s, (50)

G2 s( ) � 1

s2 + 2s + 3( ) s + 3( )e
−0.3s, (51)

G3 s( ) � 1

s2 + s + 1( ) s + 2( )2 e
−0.1s. (52)

4.3 Practical system simulations

Consider the load frequency control system as a typical oscillatory
SOPDT system. Additionally, the system’s uncertainty and control
complexity will rise due to communication delays. Therefore, the
proposed SS-PIDD2 controller is applied to the LFC system with
communication delays in this section to test its effectiveness.

To illustrate the issue, we take the one-area non-reheat system as an
example (Fu and Tan, 2018). The transfer function model of the LFC
system is shown in Figure 15. The transfer function of each part is as follows:

Gg s( ) � 1
0.08s + 1

, Gt s( ) � 1
0.3s + 1

, Gp s( ) � 120
20s + 1

(53)
and

R � 2.4, τd + τh � 1.5. (54)
The system parameters are as follows (Fu and Tan, 2018):

k � 2.3568, ξ � 0.4665, T � 0.3700, τ � 1.5 . (55)
Suppose there is a disturbance of ΔPd � 0.01pu added to the

output of the controller. From Figure 16, we can conclude that the
proposed controller has a faster response speed and better disturbance
rejection performance.

5 Conclusion

The purpose of this paper was to provide a tuning formula of the
PIDD2 controller for oscillatory systems with time delays. The ideal
PIDD2 controller was implemented via the state-space form, which
takes a cascaded integral model to estimate the output of the controlled
plant and its derivatives; accordingly, it retains the plant-independence
property of the traditional PID. A total of two state-space PIDD2 tuning
formulas were attained for SOPDT systems with time delays, and the
parameters of PIDD2 can be determined by approximating an IMC

FIGURE 16
System responses under different controllers: (A) controller output responses and (B) system output responses.
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controller. The proposed formulas are applied to a wide range of plants. In
addition, further simulation analysis of PIDD2 was used to test the
effectiveness of the proposed tuning formula. Compared with the PID
controller, the state-space PIDD2 controller has roll-offs at high
frequencies; thus, it is more insensitive to measurement noises.

The empirical findings in this study provide a new understanding
of PIDD2 controllers. Future research will be devoted to the control of
PIDD2 oscillatory systems with zeros.
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