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This contribution presents a Lyapunov-based controller and observer design method to
achieve an effective design process for more dedicated closed-loop dynamics, i.e., a
maximal flexibility in an observer-based controller design with a large consistency in
desired and achieved closed-loop system dynamics is intended. The proposed, pragmatic
approach enhances the scope for controller and observer design by using local instead of
global Lyapunov functions, beneficial for systems with widely spaced pole locations. Within
this contribution, the proposed design approach is applied to the complex control design
task of wind turbine control. As the mechanical loads that affect the wind turbine
components are very sensitive to the closed-loop system dynamic, a maximum
flexibility in the control design is necessary for an appropriate wind turbine controller
performance. Therefore, the implication of the local Lyapunov approach for an effective
control design in the Takagi-Sugeno framework is discussed based on the sensitivity of the
closed-loop pole locations and resulting mechanical loads to a variation of the design
parameters.

Keywords: global and local Lyapunov approach, Takagi–Sugeno framework, model-based controller and observer
design, feedforward-feedback control, linear-matrix-inequality and pole region-based controller design, wind
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1 INTRODUCTION

The mechanical loads, affecting a wind turbine (WT), are very sensitive to the closed-loop system
dynamics. Hence, for the design of an appropriateWT controller, a maximal flexibility is necessary to
mitigate the resulting, mechanical loads. For this purpose, model-based and automated controller
optimisation procedures are recommended. Until now, the authors achieved the intended flexibility
with decomposed, structural dynamic models of the wind turbine (e.g., (Pöschke et al., 2020)) and
with an observer-based controller structure (Gauterin et al. (2014), Pöschke et al. (2019)), whose
separately designed observer and controller are based on a common and global Lyapunov approach,
respectively. With the local Lyapunov approach, conceived in the outlook of (Pöschke et al., 2022)
and presented in this work the first time, the evolution of the design process with an increased
controller flexibility and improved consistency is proceeded by the implementation of a more
effective controller design procedure.

In control theory, the Lyapunov approach (Lyapunov, 1992) is utilised for controller synthesis, i.e., to
analyse the stability of closed-loop systems and simultaneously providing the related controller gains.
Within a model-based control design, the Lyapunov approach enables an automated design process.

As most real world systems are characterised by complex, nonlinear dynamics, techniques to
analyse stability and dynamical characteristics are needed. For this, the Takagi-Sugeno (TS)
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framework (Takagi and Sugeno, 1985) may be used, that
describes a nonlinear system as convexly blended linear
submodels (Ai, Bi) (Tanaka and Sano, 1994a). A thorough
discussion on the TS methodology is given in (Tanaka and
Wang, 2001) and with a focus on observer-based methods in
(Lendek et al., 2010). To form the TS model structure, the
individual linear submodels (Ai, Bi) may be gained with the
sector nonlinearity approach (Tanaka and Sano, 1994b), which
yields an exact representation of the nonlinear system, or by
linearisation (Johansen et al., 2000). As the identification and
analysis of numerically derived linearised models is an established
approach to investigate control properties in the wind turbine
application (Bossanyi, 2000), the linearisation approach is used
within this proceeding, too. To facilitate this, aero-elastic
simulation programs like NREL FAST (Jonkman and Buhl,
2005; Jonkman, 2016) provide a linearisation feature to easily
obtain the used matrices Ai, Bi as discussed in (Jonkman and
Jonkman, 2016). The resulting TS model allows for the analysis of
the dynamical properties and stability of both, the open- and
closed-loop system.

Using the inequality of the Lyapunov approach on these convexly
blended combinations of linear submodels in its matrix formulation,
linear matrix inequalities (LMI, (Boyd et al., 1994)) are derived that
describe the stability condition of the system dynamics (Tanaka and
Wang (1997), Tanaka and Wang (2001), Lendek et al. (2010)).
Additionally, performance constraints, in form of physically
interpretable pole regions, can be specified and formulated in
terms of LMIs (Chilali and Pascal, 1996). The combination of the
stability condition with the performance constraints forms a
collection of LMIs, which can be efficiently solved with numerical
LMI solvers (VanAntwerp and Braatz, 2000). The LMIs’ solution
space and thereby the solution’s conservativeness is restricted by the
stability condition and the number of performance constraints taken
into account. However, the conservativeness may be influenced, e.g.,

by the way the TS model is constructed and/or the use of relaxations
in the resulting LMI (Tanaka et al. (1998), Tanaka andWang (2001)).

For an observer-based controller, a separated controller and
observer design can be used. The corresponding separation
principle is also valid for observer-based TS controllers
(Yoneyama et al. (1998), Ma et al. (1998)), but does not
necessarily hold for parameter uncertainties or stochastic
noise. Therefore, design procedures are investigated, which
account for these restrictions (Zemouche et al., 2016), (Rauh
et al., 2021). As an overall observer and controller design often
results in conservative controller and control objective
performances, respectively, pragmatic design syntheses are
intended for real world application, rather than a guaranteed
overall stability of the observer-based controller. From
engineering point of view, a controller with guaranteed, overall
system stability does not ensure stability for the closed-loop real
world system dynamics, as the controller design model cannot
cover all uncertainties (e.g., resulting from unpredicted or non-
modelled environmental influences).

With the proposed local Lyapunov approach, a pragmatic
controller design procedure is introduced, that utilises a
separated controller and observer design and reduces the
stability conditions from global stability conditions (of the
nonlinear system within the defined operational range of the TS
description) to local stability conditions (at each considered
operating point, i.e., small-signal stability). With the resulting
reduction of the number of parallel to be solved LMIs, the
constraints for the solver are reduced and thereby the flexibility
in assigning desired pole locations of the closed-loop system is
increased, i.e., the pole region bound modifiability and flexibility,
respectively is significantly improved. The less conservative task for
the LMI solver enables the specification of tighter performance
constraints (e.g., smaller pole regions) and reaches an increased
consistency in desired and achieved closed-loop dynamics. The

FIGURE 1 | Illustrative example for pyramid-shapedmembership functions hi(z ) � hi(z1 , z2)with the two premise variables z � [z1 , z2]T (formed by the triangular-
shaped weighting functions w1,l (z1) and w2,l (z2), which are discretised in l (zk)∈[1, lmax (zk)] linearisation points; see Eq. 2 and exemplary visualisation of the eight direct
adjacent steady Operating Points (and linearisation points, respectively) OPi−1−lmax(z1 ) to OPi+1+lmax(z1) adjoining OPi with their membership functions (see the overlapping
parts of the nine coloured pyramids) hi−1−lmax(z1 )(zl−11 , zl−12 ) to hi+1+lmax(z1 )(zl+11 , zl+12 ) (with hi(z )≥ 0 within zl−21 ≤ z1 ≤ zl+21 and zl−22 ≤ z2 ≤ zl+22 for each of the nine steady
operating points, while hi(z ) � 0 holds for all the other steady operation points and z , respectively; with i =(l (z2)−1)lmax (z1)+ l (z1))
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increased consistency and increased flexibility, are hereinafter
denoted as the general objective of the local Lyapunov approach
(see Section 2.3). Hence, the pragmatic local Lyapunov approach
provides an enhanced design scope for real world applications and
results in a control design method, which is highly effective in
posing more dedicated closed-loop dynamics, especially beneficial
for systems with widely spaced pole locations.

Within this contribution the concept of a local Lyapunov
approach is described in detail the first time and applied for wind
turbine (WT) systems, characterised by widely spaced pole
locations of the open-loop system, due to the divergent
stiffness, damping and inertia of the main components, like
rotor blades and tower. Also for these challenging system
dynamics, WT controllers in a TS framework have

FIGURE 2 | Structural dynamical design model of a wind turbine (in side- and front-view) with the two degree of freedom:
• blade translation xB (in up- and downwind direction) and
• drive train dynamic, i.e., rotor and generator rotation (speed) ωR
for the rigid body model of the rotor and drive train.
The blue depicted ball bearings enable just the translation xB of the discrete rotor model in relation to the discrete drive train model (i.e., in wind direction), while the red
depicted bearings enable just the drive train rotation ωR along its horizontal axis and suspend any other coupling of drive train rotation and tower translation.
Linear, single headed arrows represent translations, forces or translatory spring- and damper-elements, while linear, double headed arrows represent rotations.
The parameters mK, cK and dK represent the discrete component masses, discrete spring coefficients and discrete damping coefficients of the discrete component
model K (with K � B(lade) or K � R(otation) of the drive train.)

FIGURE 3 | Block digram of the observer-based Takagi-Sugeno wind turbine controller.
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demonstrated to be capable for energy yield optimisation, load
mitigation and active power reduction (Pöschke et al., 2020) or
fault tolerant control (Georg (2015), Schulte and Gauterin
(2015)). The utilised TS WT system model is achieved by
linearising an elaborated WT simulation model (the NREL
FAST 5MW reference WT model (Jonkman et al., 2009)).
Thereby, all mechanical couplings between the WT main
components’ degree of freedom are neglected to increase the
flexibility for the controller design. That is, the overall,
decomposed TS model comprises decoupled TS WT main
component models (with each TS WT main component
model consisting of convexly blended linear submodels) that
are achieved from linearisation and afterwards combined to the
overall, decomposed TS WT model.—As a precise wind speed
measurement is hardly feasible with conventional, cost-effective
anemometers on WT (e.g., due to high turbulences induced by
the rotor (Ostergaard et al., 2007) and the significant variation
of the local wind speeds within the enormous size of the rotor
swept area), advanced, expensive sensors (like LiDaR systems
(Schlipf et al., 2010)) and observer techniques are investigated

for the WT application ((Ma et al. (1995), Ostergaard et al.
(2007), Jena and Rajendran (2015), Gauterin et al. (2015)).
Within this contribution, a TS disturbance observer is used for
an estimation of the unknown wind speed as premise variable,
enabling a premise variable scheduled feedforward actuation for
disturbance attenuation (Gauterin et al., 2014), while the—also
premise variable scheduled—feedback-controller just
compensates the control signal deviations resulting from
model-uncertainties. To evaluate the observer-based TS
feedforward-feedback controller achieved with the local
Lyapunov observer design approach, the NREL FAST 5 MW
reference WT model is used for WT operation simulation.

The paper is organised as follows: In Section 2Method, the TS
framework (Section 2.1), the global and local Lyapunov approach
(Section 2.2 and Section 2.3) and its application to WT control
(Section 2.4) with additional performance constraints (Section
2.5) is introduced. Section 3 Simulations and Results describes
the simulation design (Section 3.1) and the achieved results
(Section 3.2). Finally, in Section 4 Discussion the achieved
results are assessed and a Conclusion is drawn in Section 5.

FIGURE 4 | Pole locations of the error dynamics (achieved within the wind speed observer design) for an increasing upper bound αB,max (from left to right), applied
to the global Lyapunov approach (upper row) and local Lyapunov approach (lower row), restricted to the four submodels i ∈[15,18] that are relevant for the wind turbine
simulations with the prescribed wind speeds v(t) between 14 m/s and 16 m/s.
The Open-Loop, real-valued poles sOL,pP,i (with p = 1) of the wind model and the open-loop, conjugate complex-valued poles of the blade model sOL,pP,i (with p = 2 ∨
p = 3) are depicted in grey colour, while the closed-loop real-valued (p = 1, see Section 3.2 and Table 2) and closed-loop, conjugate complex-valued (p = 2 ∨ p = 3)
poles sw,pP,i of the global wind observers(withw ∈ [A, E]) and the local wind observers(withw ∈[F , J]) are depicted in green or orange colour and are distinguished by
the superscripted index w.
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2 METHOD: GLOBAL AND LOCAL
LYAPUNOV APPROACH

In this Section the Takagi-Sugeno (TS) framework (Section
2.1) and the global Lyapunov approach are presented (Section
2.2). In Section 2.3 the local Lyapunov approach is introduced
to system models described in the TS framework. Its
application for wind turbine control is presented in Section
2.4 and additional controller design constraints to define pole
regions with regard to wind turbine application are described
in Section 2.5.

2.1 System Model, Controller and Observer
in Takagi-Sugeno Framework
2.1.1 System Model
In this proceeding, a nonlinear system _x � f(x , u ) is
described in the Takagi-Sugeno framework by convexly
blended linear submodels, based on Taylor linearisation of
the nonlinear system.

For the wind turbine (WT) application, the plant model is
generated by linearising the nonlinear system model at Nr steady
state operating points (piecewise equidistant regarding the
disturbing wind speed v), resulting in a set of Nr linear
submodels (Ai, Bi) (with i ∈ [1, imax] and imax ≡ Nr). These
submodels comprise the state matrices Ai and input matrices Bi
for the state vector x and input vector u and their steady state
values x c,i and u c,i. In wind turbine application the nonlinearity
mainly results from the aerodynamics of the rotor blades.

The linear submodels (Ai, Bi) are blended in a convex sum

_x � ∑Nr

i

hi z( ) Ai x − x c,i( ) + Bi u − u c,i( )( ) with

y � Cx and ∑Nr

i

hi z( ) � 1 with 0≤ hi z( )≤ 1( ) (1)

with the help of membership functions hi(z ), which depend on
the premise variable z . Within this proceeding, the membership
functions hi(z ) are defined by triangular-shaped weighting
functions wk,l (zk) (with the actual premise variable zk(t) and
zk, respectively between the discrete linearisation points OPi for
zl−1k , zlk and z

l+1
k , see Figure 1) for each of the k ∈ [1, kmax] premise

variables zk (discretised in l (zk) ∈ [1, lmax (zk)] linearisation points
with

wk,l zk( ) �

zk − zlk
zlk − zl−1k

if zl−1k < zk ≤ zlk

1 − zk − zlk
zl+1k − zlk

if zlk < zk ≤ zl+1k

0 else.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

The weighting functions wk,l (zk) are combined to form the
(imax ≡ )Nr � ∏kmax

k�1 lmax(zk) membership functions hi(z ) (with
i ∈ [1, Nr]):

∑Nr

i�1
hi z t( )( ) � ∏kmax

k�1
∑lmax zk( )

l�1
wk,l zk( ). (3)

In this contribution, the membership functions hi(z ) just blend
the i submodels, which are direct adjacent to the actual operation
point (with hi(z ) ≠ 0), while the membership functions of all other
models are set to zero (i.e., hi(z ) � 0), as described in e.g., (Pöschke
et al., 2020) and illustrated in Figure 1.

In WT application, it is advantageous to define the
reconstructed wind speed v̂ as the premise variable z ≡ v̂.

Within this contribution individual input-matrices Bi, e.g., depending
on thewind speeds v and rotor rotation speedωR, and a common output-
matrix Ci ≡C, just describing the measurable states y , are supposed.

2.1.2 Parallel-Distributed-Compensation-Controller
With Feedforward Actuation
In the TS framework, a state-space controller u � −K x with
convexly blended state-feedback gains Kj—so-called Parallel
Distributed Compensation (PDC) Controller (Wang et al.
(1995), Tanaka and Wang (1997))—is usually used:

u � −∑Nr

j

hj z( )Kj x − x c,j( ). (4)

In Eq. 4 and the following, it is assumed, that ẑ → z holds (as
explained in Section 2.4.4).

If the disturbance attenuation is realised with a feedforward
actuation, the PDC controller (Eq. 4) is extended to

u � −∑Nr

j

hj z( )Kj x − x c,j( )︸����������︷︷����������︸
u FB

+∑Nr

j

hj z( ) u c,j︸�����︷︷�����︸
u FF

� −∑Nr

j

hj z( ) Kj x − x c,j( ) − u c,j( ). (5)

With the feedforward signal u FF the disturbance is attenuated, while
the feedback signal u FB compensates control errors resulting from
design model uncertainties.With Eq. 5 and ∑Nr

i hi(z) � 1 in Eq. 1
the closed-loop dynamics (for i individual input matrices Bi, see
Section 2.1.1)1 is described by

_x � ∑Nr

i

hi z( ) Ai x − x c,i( ) + Bi −∑Nr

j

hj z( ) Kj x − x c,j( ) − u c,j( )⎛⎝ ⎞⎠ − u c,i
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� ∑Nr

i

∑Nr

j

hi z( )hj z( ) Ai − BiKj( ) x − x c,i( ). (6)

2.1.3 Takagi-Sugeno Observer
For nonlinear systems _x � f(x , u ) a weighted combination of linear
Luenberger observers (Luenberge, (1971), Luenberger (1964)) can be
used, which is denoted as Takagi-Sugeno Observer (TSO). The TS
observer is obtained from the TS system Eq. 1 by introducing the

1With individual input matrices Bi a weighted combination of the ith submodel
with all and the direct adjacent submodels (see Section 2.1.1), respectively, is
derived for the closed-loop dynamics, due to the individual weighting∑ihi(z )Bi of
the individual input matrices Bi for each submodel. Therefore, the double
summation ∑i ∑j is necessary in Eq. 6.
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output error-feedback term Li(y − ŷ ) (Tanaka and Sano, 1994a).
For a common output matrix Ci≡C (see Section 2.1.1) it holds2:

_̂x � ∑Nr

i

hi z( ) Ai x̂ − x c,i( ) + Bi u − u c,i( )( ) +∑Nr

i

hi z( ) Li y − ŷ( )( ) ∣∣∣∣∣∣∣∣∣ ŷ � Cx̂

� ∑Nr

i

hi z( ) Ai x̂ − x c,i( ) + Bi u − u c,i( ) + LiC x − x̂( )( )
(7)

with the reconstructed states x̂ , the reconstructed outputs ŷ and
the error-feedback gains Li.

For the error dynamics _e

e ≔ x − x̂0 _e � _x − _̂x (8)
it follows with Eqs 7, 1 in Eq. 8 (with the common output matrix
C, see Section 2.1.1 and Section 2.2.2)2:

_e � ∑Nr

i

hi z( ) Ai x − x̂( ) + LiC x − x̂( )( )
� ∑Nr

i

hi z( ) Ai + LiC( ) x − x̂( )︸���︷︷���︸
e

. (9)

Within this contribution (and the previously published works
in (Gauterin et al., 2014) and (Pöschke et al., 2020)) the TS-
observer is implemented to reconstruct the disturbing wind
speed v̂, that is used as the premise variable z , scheduling the
feedforward and feedback signal (see Eq. 5 and Figure 3 with
z � v̂). Therefore, the TS-observer does not represent a
typical disturbance observer for explicit disturbance
rejection, rather than a premise observer to reconstruct the
disturbance signal v̂ as premise variable z , that is used to
influence the controllable system inputs with the premise
variable governed control signal scheduling (see explanation
for Eq. 5 and Section 2.4.3). For the wind turbine
application, the premise variable z often comprises the
reconstructed, disturbing wind speed v̂ (within this
contribution, the premise variable consists just of the
reconstructed wind speed v̂, i.e. z � v̂ holds), therefore the
premise observer is also denoted as disturbance observer in
the following (see also the observer classification in
Section 2.4.3).

2.2 Global Lyapunov Approach Based
Takagi-Sugeno Controller and Observer
Design
The state-feedback gains Kj and error-feedback gains Li are
achieved from the stability condition, based on a Lyapunov
approach: Assigning a simple, quadratic Lyapunov function,
the following global stability condition yields

V ≔ X TPX > 0
5 _V � _X TPX + X TP _X < 0 with PT � P≻ 0

(10)

for the common and global, respectively, symmetric, positive
definite matrix P ≻ 0 and the system-states (X , _X ) ≡ (x , _x )
or error-states (X , _X ) ≡ (e , _e ). That is, if the common,
symmetric and positive definite matrix P exists, which
holds the stability condition for the common and global,
respectively, quadratic Lyapunov function V Eq. 10, the
system is globally asymptotically stable and the state- and
error-feedback-gain Kj and Li can be derived from P as shown
in the following two Subsection 2.2.1 and Subsection 2.2.2,
further information given e.g., in (Lendek et al., 2010), (Wang
et al., 1996) and (Tanaka and Sugeno, 1992).

Hereinafter, the Lyapunov approach Eq. 10 is denoted as the
global Lyapunov approach.

2.2.1 Global Controller
LMI derivation
With Eq. 6 in Eq. 10 (x ≡ X ) it follows (for the individual
input-matrices Bi)

1:

_V � x T ∑Nr

i

∑Nr

j

hihj AT
i P − KT

j B
T
i P + PAi − PBiKj( )⎛⎝ ⎞⎠x < 0.

(11)
With the pre- and postmultiplication P−1 · □ and □· P−1, the
thereby necessary substitution X ≔ P−1(0 �Eq. 10

X) and the
introduction of the slag parameter Mj = Kj X (to avoid the
bilinear term Kj X within the resulting inequality) the
following inequality for the Lyapunov function dynamics is
derived from Eq. 11:

_V � x T ∑Nr

i

∑Nr

j

hihj XAT
i −MT

j B
T
i + AiX − BiMj( )⎛⎝ ⎞⎠x < 0.

(12)
The inequality Eq. 12 is solvable with a LMI-solver, if a discrete
number of LMIs is derived from Eq. 12. Therefore, the convex
properties of the membership functions hi hj are exploited to
derive the following LMI set with the intended discrete number of
LMIs:

XAT
i −MT

j B
T
i + AiX − BiMj ≺ 0. (13)

If the LMI set Eq. 13 is solvable, i.e., a positive definite matrix
X(� P−1 with P ≻ 0, see Eq. 10) exists, the Lyapunov approach
Eq. 10 (and its derivative Eq. 12) is fulfilled and the closed-loop
system’s stability is guaranteed.

Controller design procedure
Once a common matrix P and the slag parameter Mj are found
with the LMI solver, the state-feedback gains Kj are defined by
Kj = Mj P. That is, for individual input matrices Bi the state-
feedback gain Kj of the jth submodel and subcontroller,
respectively, is designed in a way, that the subcontroller holds
the LMI Eq. 10 and LMI set Eq. 13, the latter combining1 the

2With a common output matrix Ci ≡ C the weighted combination of the ith
submodel with all and the direct adjacent submodels, respectively, is superfluous
for the reconstructed closed-loop dynamics, as ∑ihi(z )C � C∑ihi(z ) � C · 1 � C
holds for all submodel. Therefore, the single summation ∑i is sufficient in Eq. 7
and Eq. 9.
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closed-loop dynamic of the jth submodel with the dynamic of all
other or the direct adjacent submodels.

Number of LMIs
For the discrete number of combined1 LMIs in the LMI set Eq. 13
it holds: nLMI,Cntrl

global,all � jmax imax � Nr2 (with imax = jmax = Nr). This
number can be reduced to nLMI,Cntrl

global,adj. < nLMI,Cntrl
global,all , if just

submodels, that are direct adjacent to the jth submodel (see
Section 2.1.1), are blended. Additionally, the stability
condition Eq. 10 comprises a single LMI. That is, for the
controller design with individual input matrices Bi the total
LMI set consists of nLMI,Cntrl

global,all∕ adj. + 1 LMIs. For the global
Lyapunov approach with the global and single P-matrix,
respectively this total LMI set is solved with a single execution
of the LMI solver, i.e., the nLMI,Cntrl

global,all/adj. + 1 LMIs are solved
simultaneously.

2.2.2 Global Observer
LMI derivation
With Eq. 9 in Eq. 13 (e ≡ X ) it follows (for the common output-
matrix Ci ≡ C)2:

_V � e T ∑Nr

i

hi AT
i P − CTLT

i P + PAi − PLiC( )⎛⎝ ⎞⎠ e < 0. (14)

With the introduction of the slag parameterNi = P Li (to avoid the
bilinear term P Li within the resulting inequality) the following
inequality for the error dynamics is derived from Eq. 14:

_V � e T ∑Nr

i

hi AT
i P − CTNT

i + PAi −NiC( )⎛⎝ ⎞⎠ e < 0. (15)

Eq. 15 holds (as explained for Eq. 12), if the LMI set

AT
i P − CTNT

i + PAi −NiC ≺ 0 (16)
is satisfied, i.e., a positive definite matrix P ≻ 0 (see Eq. 10)
exists, so that the Lyapunov approach Eq. 10 (and its derivative
Eq. 15) is fulfilled and the error system’s stability is
guaranteed.

Observer design procedure
Once a common matrix P and the slag parameter Ni are found
with the LMI solver, the error-feedback gains Li are defined by
Li = P−1 Ni. That is, for a common output matrix Ci ≡ C the error-
feedback gain Li of the ith submodel and subobserver, respectively
is designed in a way, that the subobserver holds the LMI Eq. 10
and the LMI set Eq. 16, the latter just comprising the error
dynamics of each single submodel (Ai, Bi) in an individual and
single LMI, respectively (and not combining the dynamics of all
or direct adjacent submodels).

Number of LMIs
For the discrete number of individual LMIs in the LMI set Eq. 16
it holds: nLMI,Obs

global � imax � Nr. As Eq. 16 defines a single LMI for
each submodel and subobserver, respectively, there is no need
to consider direct adjacent submodels in the observer design

with a common output matrix C. Additionally, the stability
condition Eq. 10 comprises a single LMI. That is, for the
observer design with a common output matrix C the total LMI
set consists of nLMI,Obs

global + 1 LMIs. For the global Lyapunov
approach with the global and single P-matrix, respectively this
total LMI set is solved with a single execution of the LMI solver.
i.e., the nLMI,Obs

global + 1 LMIs are solved simultaneously.

2.3 Local Lyapunov Approach for
Takagi-Sugeno Controller and Observer
Design
For the proposed local Lyapunov approach the local stability
condition

Vi ≔ X TPi X > 0
5 _Vi � _X TPi X + X TPi

_X < 0 with PT
i � Pi ≻ 0

and i ∈ 1, Nr[ ] (17)
holds for the individual and local, respectively, symmetric,

positive definite matrix Pi ≻ 0 and the system-states
(X , _X ) ≡ (x , _x ) or error-states (X , _X ) ≡ (e , _e ). Compared
to the common and global Lyapunov-approach Eq. 10, a
number of Nr individual Lyapunov functions Vi (with i ∈
[1, Nr]) are used instead of one common Lyapunov function V
(in the global Lyapunov approach Eq. 10). That is, for each
submodel (Ai, Bi) an individual Lyapunov function Vi is
defined.

Accordingly, the LMI derived for the closed-loop dynamics
Eq. 13 and error dynamics Eq. 16 is simplified, as the convex
blending becomes obsolete, if the Lyapunov stability condition is
defined for each submodel individually (compare Eq. 18 with Eq.
12 and Eq. 20 with Eq. 15).

2.3.1 Local Controller LMI
For the local Lyapunov approach the inequality derived for the
closed-loop dynamics (with (X , _X ) ≡ (x , _x )) results in

_V � x T XiA
T
i −MT

i B
T
i + AiXi − BiMi( )x < 0

with Xi ≔ P−1
i and Mi � Ki Xi.

(18)

The inequality (Eq. 18) holds, if the LMI

XiA
T
i −MT

i B
T
i + AiXi − BiMi ≺ 0 (19)

is satisfied, i.e., individual and local, respectively positive definite
matrices Xi exist, which fulfill Eq. 19.

2.3.2 Local Observer LMI
The same simplification holds for the error dynamics, i.e. for the
local Lyapunov approach the inequality derived for the error
dynamics (with (X , _X ) ≡ (e , _e )) results in:

_V � e T AT
i Pi − CTNT

i + PiAi −NiC( ) e < 0
with Ni � Pi Li.

(20)

The inequality (Eq. 20) holds, if the LMI
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AT
i Pi − CTNT

i + PiAi −NiC ≺ 0 (21)
is satisfied, i.e. individual and local, respectively positive definite
matrices Pi exist, which fulfill Eq. 21.

2.3.3 Local Controller and Observer Design Procedure
Once the individualmatrix Pi and the slag parameterMi (for local
controller design) or Ni (for local observer design) is found with
the LMI solver, the state-feedback gain Ki or error-feedback gain
Li is defined by Ki = Mi Pi or Li � P−1

i Ni. That is, the state-
feedback gainKi or error-feedback gain Li of the ith submodel and
subcontroller or subobserver, respectively is designed in a way,
that the subcontroller or subobserver holds the LMI Eq. 17 and
the LMI set Eq. 19 or Eq. 21, the latter just comprising the state or
error dynamics of each single submodel (Ai, Bi) in an individual
and single LMI, respectively (and not combining the dynamics of
all or direct adjacent submodels).

2.3.4 Number of LMIs
As the local Lyapunov approach simplifies and reduces,
respectively the set of combined LMIs (for the local Lyapunov
approach the LMI set comprises just two LMIs: LMI Eq. 19 or
Eq. 21 and the LMI of the positive definite matrix Pi ≻ 0, see Eq.
17), the parallel and simultaneously, respectively to be solved
LMIs are reduced (from nLMI,Cntrl

global,all∕ adj. + 1> nLMI,Obs
global (� Nr + 1)

to nLMI,Cntrl∕ Obs
Local � 2 LMIs), too. Thereby, the LMI solver is

executed Nr times consecutively for the local Lyapunov
approach (due to the individual Pi-matrix in Eq. 17), while
the LMI solver for the global Lyapunov approach is executed
just once, because of the common Pmatrix in Eq. 10. Therefore,
the flexibility of the LMI solver in assigning desired pole
locations of the closed-loop system is increased for the local
Lyapunov approach. The less conservative task for the LMI
solver enables the specification of tighter performance
constraints for the local Lyapunov approach, e.g., smaller
pole regions (by implementing pole region constraints in
form of additional LMIs, see Section 2.5), and results in

more flexible and consistent specifications of the desired
closed-loop dynamics, denoted as the general objective of the
local Lyapunov approach.

2.3.5 Subsequent, Global Lyapunov Stability Analysis
Note: With the local Lyapunov approach and the resulting LMIs
Eq. 19 and Eq. 21, just the small signal stability is evaluated,
i.e., considering the operating point depicted in the linear
submodel, if a positive definite matrix Pi exists. To ensure the
global stability of the convexly blended submodels, a final stability
analysis has to be performed, enveloping all combined closed-
loop submodels. This final stability analysis is executed in the
subsequent, global Lyapunov stability analysis described in
Section 2.4.4.

2.4 Local Lyapunov Approach in Wind
Turbine Control Application
2.4.1 Structural Dynamical Design Model
For the wind turbine (WT) controller design, the authors use
simplified structural dynamical models, based on lumped-masses
and joined with discrete spring- and damper-elements (e.g.,
(Bianchi et al., 2007), (Georg, 2015) or (Pöschke et al., 2020)).
These models comprise just the essential and costly wind turbine
components rotor, drive train and tower. Within this
contribution, the rotor blade dynamic is represented, while the
tower dynamic is neglected (see Figure 2). The rotor model is
composed of the rotor Blades, rotating as one rigid body in the
rotor plane (denoted with rotor rotation (speed) ωR in Figure 2)
and translating with xB in and against the wind direction
(denoted by the subscripted index B). The drive train is
represented by its rigid body Rotation (denoted by the
subscripted index R).

After linearising an elaborated WT simulation model for i
stationary operating points OPi (with i ∈ [1, Nr]), the controller
design submodels (Ai B/R, Bi B/R) are composed with the

FIGURE 5 | Exemplarily time series of the membership functions hi for the global wind speed observer A (with i ∈[15,18]) for the step-shaped wind time series
depicted in Figure 6.
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linearisation coefficients. Thereby, mechanical couplings between
those components are specified or neglected, as explained in
Section 2.4.4. The specification of the design submodels
(Ai B/R, Bi B/R) are given in Tables A2, A3 in the appendix.

2.4.2 Wind Turbine Control Objectives, Loading and
Operation Concept
In wind turbine (WT) application the controller intends—besides
energy yield optimisation—for mechanical load mitigation, due
to vast environmental loads acting on the completeWT structure.
Besides the ultimate, mechanical loads (that occur for single
moments and the corresponding ultimate stress must not
exceed the material strength), fatigue, mechanical loads have
to be examined. Those fatigue loads, also denoted as Damage
Equivalent Loads (DEL, i.e., a mean amplitude with the
equivalent damaging effect like constantly or stochastically
changing amplitudes, e.g., resulting from turbulent wind time
series), characterise the damaging effect resulting from load
cycles, occurring all over the components’ lifetime (Clem ens
et al., 2020).

Ascribed to the generator characteristics, two operating
modes have to be distinguished: In the partial load range,
the generator is operated below rated power and the energy
yield is optimised by generator torque TG control, i.e., the

generator torque TG is one of the two actuating signals. In full
load range, the generator is operated at rated power. Therefore,
the energy extraction from the inflow with the WT rotor is
restricted to rated generator power by the pitch angle β
control, influencing the blade aerodynamics and mechanical
torque TR generation of the rotor by rotating the complete
rotor blade along its longitudinal axis (see Figure 2). Hence,
the pitch angle β is the second actuating signal of a wind
turbine controller, i.e., u � [β, TG]T holds. In this
contribution, a collective pitch control algorithm is utilised,
i.e., all blades are actuated with the same pitch angle. In
Appendix Table A1, the control signals u c,i � [βc,i, TG,c,i]T
for all 27 stationary operating points in partial and full load
range are listed.

2.4.3 Implemented Wind Turbine Controller Structure
Within this contribution an observer-based feedforward-
feedback controller in TS framework is utilised and applied to
wind turbine control.

For the feedforward-feedback controller the extended parallel
distributed compensation (PDC) controller Eq. 5 is used.

To attenuate the effect of the disturbing wind speed, a
disturbance-observer is used (see Section 2.1.3 and Figure 3)

FIGURE 6 | Time series segment of wind speed reconstruction v̂ (left column), feedforward pitch actuation βFF (mid column) and feedback pitch actuation βFB (right
column), with the observer-based controller and step disturbance signals for an increasing upper bound αB,max resulting in shrinking pole regions, applied to the
global Lyapunov approach (with w ∈ [A, E], see upper subplots) and local Lyapunov approach (with w ∈ [F, J], see lower subplots).
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to determine the rotor effective wind speed veff. For the
disturbance observer, the WT main component model (see
Section 2.4.1 and Section 2.4.4) with the highest disturbance
sensitivity is used, i.e., for wind turbine systems the downwind
and upwind blade deflection xB3 is most sensitive to disturbances
caused by wind speed fluctuations, due to the very low bending
stiffness of the blades (in normal direction to its profile chord).
Therefore, the disturbance observer reconstructs the disturbing,
effective wind speed v̂ ≡ veff and blade translation speed _̂xB from
the blade translation error exB determined from the measured and
reconstructed blade translation exB � xB − x̂B . For this purpose, the
disturbance observer design model is augmented by a simple wind
model (Ekelund, 1994), expanding the state vector x̂ B with the
reconstructed wind speed v̂ (and disturbance signal d ≡ v̂,
respectively) ~̂x B � [x̂ B , v̂]T and augmenting the state space
model Eq. 7 and Eq. 9 accordingly (with ~Ai, ~Bi and ~C; see also
(Pöschke et al., 2020)). Therefore, the used TS disturbance observer,
resulting from the integration of a disturbing model in the plant
model and augmenting the state vector x̂ B with the disturbing wind
state v̂, is classified as an Extended State Observer (see (Li et al.,
2014)), that is represented in the Takagi-Sugeno framework.

The reconstructed wind speed v̂ is defined as premise variable
z , scheduling the nonlinearity of the system and utilised for the
membership function hi(z ) of the feedforward signal u FF and
feedback signal u FB in Eq. 5. Therefore, the disturbance observer

does not intend for a disturbance rejection, rather than for an
observer-based controller scheme with disturbance
reconstruction, influencing the controllable system inputs (see
also Section 2.1.3).

Within this contribution, triangular-shaped4 membership
functions hi(z) are used, just blending directly adjacent
submodels (Ai, Bi) (see Figure 1 and the explanations in
Section 2.1.1). Because of the reduced number of (triangular)
membership functions (i.e., just the direct adjacent membership
functions are taken into account and not all membership
functions), also the number of submodels included in the
feedback controller and observer design—based on the global
Lyapunov approach—is reduced (see Section 2.3) (Note: For the
local Lyapunov approach an individual Lyapunov function Vi is
defined for each submodel (Ai, Bi), because of the local stability
condition Eq. 17. Therefore, the convex blending with the
membership functions hi(z ) is obsolete and the form of the
membership functions has no influence on the design, as just the
i th submodel is included in the observer design—see
Section 2.3.)

The augmented state, input and output matrices ~Ai, ~Bi and ~C,
as well as the augmented steady system states ~x c,i and steady
input states u c,i, used within this contribution, are given in Table
A2 to Table A6. Additionally, the state feedback gain matrices Ki

and error-feedback gain matrices LwiB are listed in Table A7 and
Table A8.

FIGURE 7 | Actuation speed and pitch angle deviations, respectively (so called pitch rate _β � dβ/dt), i.e. ultimate max( _βw) and mean mean( _βw) pitch rates for the
w ∈[A,E] global wind speed observers and w ∈[F , J] local wind speed observers (normalised to max( _βA) and mean( _βA); see left column of subplot A,B). Rotation
speed deviations Δωw (with Δωw � ωw−ωr

ωr
and the rated rotation speed ωr), i.e. ultimate max(Δωw) and standard std(Δωw) rotation speed deviations [normalised to

max(ΔωA) and std(ΔωA); see right column of subplot A,B]. The ultimate deviations max( _βw) and max(Δωw) (see subplot A) result from the ultimate load analysis and
the mean deviations mean( _βw) and standard deviations std(Δωw) (see subplot B) result from the fatigue load analyses of the step-shaped wind time series, depicted in
Figure 8.

3Note: Within this contribution just the blade tip translations xB,1/2/3 are assumed
to be measurable, whereat the mean value xB � (1/3)(xB,1 + xB,2 + xB,3) is utilised
for calculating the error eB � xB − x̂B , fed back and amplified with the error gains
Li to reconstruct the blade tip speed _̂xB , blade tip acceleration €̂xB and temporal
wind speed variations _̂vB .

4The triangular shape of the membership functions holds, if just one premise
variable zk = z (with k = kmax = 1) is defined. Because in this case, the membership
function hi(z) (Eq. 1) is identical to the triangular-shaped weighting function
wk,l(z), see Eq. 2.

Frontiers in Control Engineering | www.frontiersin.org February 2023 | Volume 3 | Article 78753010

Gauterin et al. Global Versus Local Lyapunov Approach

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles


2.4.4 Decomposed Wind Turbine System and
Subsequent Lyapunov Stability Analysis
Mechanical and mechatronic systems, like wind turbines (WT),
are characterised by the pole locations of the coupled mechanical
components. Due to the widely spaced, open-loop pole locations
of theWT system (see Figure 4 and Section 4), it is advantageous
for the controller and observer design models to decompose the

coupled, nonlinear system submodel (Ai, Bi) into decoupled
reduced submodels—denoted with component models—just
comprising the dynamics of the individual, mechanical main
components like the rotor blade submodels (AiB, BiB) and
drive train submodels (AiR, BiR) (also described in (Pöschke
et al., 2020), but now upgraded with the rotor blade
submodels (AiB , BiB)).

FIGURE 8 |Ultimate loadsmaxw (. . .) and fatigue loads Sw
eq(. . .) (also denoted withDamage Equivalent Loads orDamage Equivalent Amplitudes Seq) resulting from

the closed-loop dynamics of a step-shaped wind time series with a mean wind speed of �v � 14m/s (see Figure 6), for the w different global wind speed observers
(resulting from the global Lyapunov design approach with w ∈ A,E[ ]) and the w local wind speed observers(resulting from the local Lyapunov design approach withw
∈[F , J]), normalised to the ultimate loadmaxA (. . .) or fatigue loadSA

eq(. . .) of the globalwind speedobserverA. For the ultimate and fatigue loads, the tower bendingmoment
TwrBsMyt and TwrBsMxt (at the tower base—top row), the blade bendingmomentRootMyb1 andRootMxb1 (at the blade root section—mid row) and the drive train torqueΔTq
(bottom row) are depicted.
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Thereby, couplings between the components’ degree of
freedom are neglected within the component controller and
observer design models, like the missing axial coupling
between drive train and main frame/tower depicted in
Figure 2 (just plain ball bearings are defined). Despite this
substantial assumption, the component design models achieve
satisfying controller performance, while increasing the controller
design flexibility significantly.

The corresponding design models are derived from the
elaborated NREL FAST 5 MW reference wind turbine
(Jonkman, 2016; Jonkman and Buhl (2005) and Jonkman
et al. (2009)) simulation model, based on a convex sum of
27 linearised submodels (defined for piecewise equidistant,
steady and effective wind speeds from v ∈ [3m/s, 25m/s]; see
Table A1), received from the NREL FAST WT linearisation
(Jonkman and Jonkman, 2016). Within this linearisation, all
aerodynamic and structural dynamic characteristics defined in
the elaborated NREL FAST 5 MW reference wind turbine are
accounted (see also explanations given in (Pöschke et al.,
2020)).

Once the component controllers and observers are
designed, the corresponding state-feedback gains (KiR, KiB)
and observer gains (LiR, LiB) are superposed for the overall
controller gain Ki and observer gain Li. The stability of the
convexly blended i submodels is analysed with the superposed
gains Ki and Li in a subsequent, global Lyapunov stability
analysis (see Section 2.3.5), separately for the controller and
error dynamics (Yoneyama et al. (1998), Ma et al. (1998)).
Although, the separation principle and overall stability proof,
respectively of separately designed observer and controller is
just valid for measurable premise variables z (Yoneyama et al.
(1998), Ma et al. (1998)), it is shown in (Pöschke et al., 2022)
for a separated observer and controller design, that the overall
stability is also ensured for reconstructed premise variables ẑ ,
under the assumption of a maximum estimation error in the
premise variable with ẑ → z . Therefore, the stability proof
and separation principle, respectively holds for ẑ → z . Even
though the maximum error estimation is missing in this
contribution, it is assumed, that ẑ → z and the separation
principle holds. The missing error estimation and overall
stability proof corresponding to (Pöschke et al., 2022) has
to be given in future work. That is, within this contribution just
separated controller and observer syntheses are executed in
regard to a pragmatic design process that intends for less
conservative state and error state feedback gains Ki and Li,
like explained in Section 1. Thus, the design process is focused
on an automated controller and observer design, i.e., the
Lyapunov approach was selected to achieve the controller
and observer gains in a systematic and traceable procedure,
rather than to ensure the overall stability of the observer-based
system dynamics. Though, the stability condition of the
Lyapunov approach is exploited (separately in the controller
and observer design) to abbreviate the iterative design process,
i. e., all controller and observer design parameter
specifications, resulting in unstable dynamics, are
eliminated within the controller and observer synthesis to
expedite the design process.

2.5 LMI Constraints of the Pole Regions
With the linear matrix inequalities Eqs 13, 16, 19 and Eq 21 the
pole locations are just restricted to the left half of the complex
pole map. Additional constraints need to be defined to tighten the
pole location on smaller pole regions. As described in (Chilali and
Pascal, 1996), additional bounds specified in the complex pole
map can be transformed into LMI, which are applied to wind
turbine control e.g., in (Pöschke et al., 2019). Within this
contribution, just vertical upper and lower bounds
(representing the maximum and minimum decay rate αB,max

and αB,min) and a cone angle θ (representing the Damping ratio D
with D = cos(θ)) are used and described in the Appendix Section
A1.3. With these constraints, pole regions with symmetrical
trapezium shape are defined (see Figure 4).

3 SIMULATIONS AND RESULTS

With the local Lyapunov approach, the general objective of a more
flexible specification of the pole locations and increased consistency
in the desired and achieved closed-loop system dynamics is
intended (see Section 2.3.4). This general objective is analysed
within this contribution for a wind turbine specific, particular
objective—the decreased observer performance and feedforward
actuation—described in Section 3.1. The achieved results from
wind turbine simulations are presented in Section 3.2.

3.1 Simulation Design: Particular Objective
of the Local Lyapunov Approach Within this
Contribution
Within this contribution, the general objective of the local Lyapunov
approach (see Section 2.3.4) is assessed for a particular wind speed
observer performance, hereinafter denoted with the particular
objective, supposed to be beneficial regarding load mitigation: For
turbulent wind excitation, high mechanical loads (especially fatigue
loads) often result from brisk feedforward actuation5. Therefore, the
proposed local Lyapunov approach shall yield for a decreased
disturbance reconstruction v̂ performance—affecting the premise
variable v̂—to attenuate the premise variable v̂ driven feedforward
actuation u FF(hi(v̂)) (see Eq. 5) with z ≡ v̂) and to increase the
feedback compensation u FB(hi(v̂)) (see Section 2.1.2). That is for
this particular objective, the closed-loop dynamics is defined in such
a way, that the performance of the wind speed v̂ reconstruction and
the precision of the feedforward actuation u FF(hi(v̂)) is
intentionally lowered to achieve rising deviations, which are
compensated by increased feedback controller actuation
u FB(hi(v̂)). As the error-feedback gains Li govern the observer
performance and these gains are achieved from the observer design
according to the specified error-feedback pole regions, the pole
region specification is varied by shrinking its size. That is, a
significant modification of the pole regions is conducted with the

5These brisk feedforward-actuation result from feedforward specifications without
dynamics (i.e., without any damping influence, e.g., from the Ki gains), but simple
convex blending of the steady states u c,j (see u FF in Eq. 5).
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local Lyapunov approach to achieve the particular objective of a
decreased observer performance, resulting in mitigated mechanical
loads, especially mitigated fatigue loads. To lower the wind speed
observer performance and error dynamics (i.e., the wind speed v̂
depending error-feedback gains Li in∑Nr

i hi(v̂)LiC(x − x̂ ) � L(v̂)C e 6), the upper bound αB,max of the
error dynamics’ pole region is increased, i.e., shifted towards the
imaginary axis in the left half of the complex pole map, while the
lower bound αB,min (located close to the open-loop poles) is kept
constant (see Figure 4). It is expected, that the error-feedback
gains Li decrease with increasing upper bounds αB,max

(αB,maxb 0Lia), as the distances between open-loop poles
and closed-loop poles of the error dynamics Δsw,pP,i (αB,max)
decrease with increasing upper bounds αB,max and the
quantity of the error-feedback gain depends on this
distance |Li| � f(Δsw,pP,i )7.

To distinguish the pole locations swP (see Figure 4), error-
feedback gains Lwi (see Table A8) or mechanical loads like Sweq
(see Figure 8), resulting from a number of w different error-
feedback pole region specifications, the superscript index w
(denoting the w different error-feedback pole regions and
corresponding wind speed observers) is introduced in the
following. To analyse the error-feedback gains LwiB of the
Blade model-based wind speed observer, the following
state space equation is relevant (see Eq. 7), describing the
reconstructed blade component dynamics:

_̂xB
€̂xB
_̂v

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦︸��︷︷��︸
_

~̂x

� ∑Nr

i

hi z( ) Ai ~̂x − ~x c,i( ) + Bi u − u c,i( )( )+

∑Nr

i

hi v̂( )
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iB
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⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦︸����︷︷����︸
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� ∑Nr

i

hi z( ) Ai ~̂x − ~x c,i( ) + Bi u − u c,i( )( )+
∑Nr

i

hi v̂( )
Lw,1
iB 0 0

Lw,2
iB 0 0

Lw,3
iB 0 0

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ xB − x̂B
_xB − _̂xB
v − v̂

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (22)

with the j components
_̂
~x
j

of the reconstructed and augmented

state vector
_̂
~x and with j matrix elements Lw,jiB of the error-

feedback gain LwiB.
Within this contribution, the general objective of an

increased flexibility in the observer-based controller

design and increased consistency of the desired and
achieved system dynamics (see Section 2.3.4) is analysed
with the particular objective of an decreased observer
performance and feedforward actuation, resulting from
shrinking pole regions. That is, for both Lyapunov
approaches identical upper bound variation and
shrinking pole regions are defined and the flexibility and
consistency of both approaches are compared with the help of
several metrics (like pole locations, error-feedback gains,
reconstructed wind speeds, pitch angles, pitch rate and
rotation speed deviations): Regarding the flexibility, the
minimum pole region dimension is determined. That is,
for all poles it is examined, if the poles are located inside
the imposed pole region after executing the error-feedback
gain Li design. The intended, particular objective of a
decreased observer performance of the local Lyapunov
approach is fulfilled, if this approach leads to a smaller,
minimum pole region than the global Lyapunov approach,
enabling the specification of tighter performance constraints
for the system dynamics. Regarding the consistency of desired
and achieved system dynamics, it is analysed, if the shrinking
poles regions result in decreased feedforward pitch angles βFF
and increased feedback pitch angles βFB with decreased pitch
rates _β and increased, resulting rotation speed deviations Δω.

In addition, the control objectives of mitigated ultimate and
fatigue loads are analysed for identical WT controller pole region
specifications, but related to both disturbance observer design
approaches.

3.2 Simulation Results: Disturbance
Observer Variation, Resulting System
Dynamics and Mechanical Loads
For each Lyapunov approach, five different disturbance
observers for the global Lyapunov approach (denoted in
the following with the superscripted index w in A, E[ ]) and
for the local Lyapunov approach (denoted with w ∈ F, J[ ]
are designed—based on five different pole regions with
shrinking size—and the resulting closed-loop dynamics as
well as the resulting mechanical loads on the WT
components are analysed.

Pole regions and submodels
In Table 1, the pole region specifications for both design
approaches are listed. For the analysed wind time series
excitation with prescribed wind speeds v(t) between 14 m/s
and 16m/s, just four of the i ∈ [1,27], from linearisation
achieved submodels (denoted with the subscripted index i)
are convexly blended. Therefore, just these four submodels (Ai,
Bi) with i ∈ [15,18] are taken into account in the results and
discussion.

Pole locations
Figure 4 shows the resulting p pole locations sOL/w,pP,i of the
corresponding open-loop dynamics (denoted with the
superscripted index OL), as well as the closed-loop dynamics

6with ∑Nr
i hi(v̂)LiC(x − x̂ ) � ∑Nr

i
hi(v̂)Li︸�����︷︷�����︸

�: L(v̂)
C e � L(v̂)C e , see Eq. 7 (with z ≡ v̂)

and Eq. 8.
7As the pole location distance Δsw,pP,i depends on the difference between sOL,pP,i and
sw,pP,i (i.e., Δsw,pP,i � f(sOL,pP,i − sw,pP,i ), see Section 3.2 with sOL,pP,i � eig(Ai) and
sw,pP,i � eig(Ai − Lwi C), i.e., Δsw,pP,i � f(eig(Ai) − eig(Ai − Lwi C))), this distance
Δsw,pP,i in-/decreases, if the error-feedback gain Lwi in-/decreases—and vice versa,
i.e., Lwi in-/decreases for in-/decreasing Δsw,pP,i .
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(denoted with the superscripted index w for the w in A,E[ ]) global
wind speed observers and w ∈ F, J[ ] local wind observers) and
error dynamics, respectively, achieved within the disturbance
observer design, in the complex pole map. As the disturbance
observer design model and wind speed observer design model,
respectively, consists of the vibrating Blade model (with its two
states x̂B , _̂xB see Eq. 22) and the non-vibrating wind model (with
the wind speed state v̂), the design model posses three poles
(i.e., p ∈ [1,3]): the conjugated-complex blade poles sOL/w,2∨3P,i

(inside the pole map, for p = 2 ∨ p = 3) and the real-valued
wind model pole sOL/w,1P,i (on the real axis of the pole map, for p =
1). In Table 2 the distances

Δsw,pP,i �
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Re sOL,pP,i( ) − Re sw,pP,i( )( )2 + Im sOL,pP,i( ) − Im sw,pP,i( )( )2√

(23)

between open-loop poles sOL,p
P,i and closed-loop poles sw,p

P,i in
the pole map are given for each of the p ∈ [1,3] poles of the
wind and blade model. Additionally, the related average
distance

Δsw,�pP,i � 1
3
∑3
p�1

Δsw,pP,i � 1
3

Δsw,1P,i + Δsw,2P,i + Δsw,3P,i( ) (24)

of the single submodel i and the average distance

Δsw,�pP,�i � 1
4
∑18
i�15

Δsw,�pP,i � 1
4

Δsw,�pP,15 + Δsw,�pP,16 + Δsw,�pP,17 + Δsw,�pP,18( ) (25)

of all four submodels are listed in Table 2.

Error feedback gains
The related error-feedback gain matrices Lw,jiB (with their j
elements Lw,jiB described in Eq. 22) are summarised in Table
A8. To assess the Lw,jiB deviations resulting from the shrinking
pole regions, two different mean Euclidian norms ‖Lw,�j�iB ‖2 and
‖Lw,�j3 / �j1,2�iB ‖2 are calculated as metrics of the error-feedback
gains Lw,j

i,B for each of the w ∈ A, E[ ] global wind speed
observers and w ∈ F, J[ ] local wind speed observers and
both metrics averaging all, four incorporated submodels

TABLE 1 |Description of the TS disturbance observers (i.e., wind speed observers) (for the wind speed observersw in A to E, based on the global Lyapunov − approach and
for the wind observers w in F to J, based on the local Lyapunov − approach, with the cone angle, and the lower and the upper bounds of the five pole regions (see
Figure 4), defined by the Blade error state damping DB and the Blade decay rates αB,min and αB,max).

A B C D E F G H I J

Lyapunov-approach global global global global global local local local local local
DB 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
αB,min 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
αB,max 6.0 5.0 4.0 3.0 2.0 6.0 5.0 4.0 3.0 2.0

TABLE 2 |Distances Δsw,pP,i between the open-loop pole location sOL,pP,i and closed-
loop pole locations sw,pP,i of each of the p ∈ [1,3] poles (with p = 1 for the real-
valued pole of the wind model and p = 2,3 for the complex-valued poles of the
blade model) of a single submodel i in the pole map for the wth wind speed
observer; average distance Δsw,�pP,i of the single submodel i; average distance
Δsw,�p

P,�i
of all four submodels.

A B C D E F G H J J

Δsw,1P,15
1.51 0.53 0.68 0.81 0.90 1.22 1.21 1.01 0.77 0.50

Δsw,2P,15
2.39 5.65 1.32 0.75 0.81 2.56 2.07 1.20 0.88 1.78

Δsw,3P,15
2.39 5.65 1.32 0.75 0.81 2.56 2.07 1.20 0.88 1.78

Δsw,1P,16
1.52 0.53 0.68 0.88 1.22 1.21 1.02 0.77 0.50

Δsw,2P,16
2.41 5.68 1.34 0.76 0.81 2.59 2.12 1.26 0.91 1.79

Δsw,3P,16
2.41 5.68 1.34 0.76 0.81 2.59 2.12 1.26 0.91 1.79

Δsw,1P,17
1.52 0.53 0.68 0.81 0.88 1.22 1.21 1.02 0.77 0.50

Δsw,2P,17
2.42 5.68 1.35 0.77 0.81 2.60 2.13 1.28 0.92 1.80

Δsw,3P,17
2.42 5.68 1.35 0.77 0.81 2.60 2.13 1.28 0.92 1.80

Δsw,1P,18
1.52 0.53 0.67 0.80 0.87 1.21 1.22 1.02 0.78 0.50

Δsw,2P,18
2.44 5.70 1.37 0.78 0.80 2.62 2.18 1.34 0.95 1.81

Δsw,3P,18
2.44 5.70 1.37 0.78 0.80 2.62 2.18 1.34 0.95 1.81

Δsw,�pP,15
2.10 3.94 1.11 0.77 0.84 2.11 1.78 1.14 0.85 1.36

Δsw,�pP,16
2.11 3.96 1.12 0.78 0.83 2.13 1.82 1.18 0.86 1.36

Δsw,�pP,17
2.12 3.97 1.12 0.78 0.83 2.14 1.83 1.19 0.87 1.37

Δsw,�pP,18
2.14 3.98 1.14 0.78 0.82 2.15 1.86 1.24 0.89 1.37

Δsw,�p
P,�i

2.12 3.96 1.12 0.78 0.83 2.13 1.82 1.19 0.87 1.36

TABLE 3 | Mean Euclidean norm ‖Lw,�jiB ‖2 and average, mean Euclidean norm
‖Lw,�j�iB ‖2 of the error-feedback gain matrices Li(vi) of the global wind speed
observers A to E (i.e., w ∈ [A, E]) and local wind speed observers F to J (i.e., w ∈
[F, J], see Table A8) for increasing upper bounds αB,max (with ‖Lw,3�iB ‖2 for the
average, mean Euclidean norm of the wind model error-feedback gains (j = 3)
and ‖Lw,(1,2)�iB ‖2 for the average, mean Euclidean norm of the Blade error-
feedback gains (j = 1,2))

A B C D E F G H I J

‖Lw,�j15B‖2 14.1 15.6 10.1 6.2 4.4 14.9 13.4 9.1 5.4 4.7

‖Lw,�j16B‖2 14.2 15.7 10.2 6.3 4.5 15.1 13.6 9.5 5.7 5.0

‖Lw,�j17B‖2 14.3 15.8 10.3 6.4 4.5 15.1 13.7 9.6 5.8 5.2

‖Lw,�j18B‖2 14.4 15.9 10.4 6.5 4.5 15.2 13.9 10.0 6.1 5.5

‖Lw,�j�iB ‖2 14.2 15.7 10.3 6.4 4.5 15.1 13.7 9.6 5.7 5.1

‖Lw,3�iB ‖2 2.6 0.9 1.2 1.4 1.3 2.3 1.9 1.6 1.1 0.4

‖Lw,(1,2)�iB ‖2 14.0 15.7 10.2 6.2 4.3 14.9 13.5 9.4 5.6 5.1
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i ∈ [15, 18]:

Themetric ‖Lw,�j�iB ‖2 cumulates all threeLw,jiB elements (with j∈ [1, 3])

‖Lw,�j
�iB ‖2 � 1

4
∑18
i�15

‖Lw,�j
iB ‖2

� 1
4

‖Lw,�j
15B‖2 + ‖Lw,�j

16B‖2 + ‖Lw,�j
17B‖2 + ‖Lw,�j

18B‖2( ) (26)

with ‖Lw,�jiB ‖2 �
!!!!!!!!!!!!!!!!!!!!!!
(Lw,1iB )2 + (Lw,2iB )2 + (Lw,3iB )2

√
. The metrics

‖Lw,�j3 / �j1,2�iB ‖2 are calculated separately for L
w,�j3
iB (to gain the

wind speed state _̂v, see Eq. 22) and L
w,�j1,2
iB (to gain the blade

states _̂xB and €̂xB):

‖Lw,�j3 / �j1,2
�iB ‖2 � 1

4
∑18
i�15

‖Lw,�j3 / �j1,2
iB ‖2

� 1
4

‖Lw,�j3 / �j1,2
15B ‖2 + ‖Lw,�j3 / �j1,2

16B ‖2 + ‖Lw,�j3 / �j1,2
17B ‖2 + ‖Lw,�j3 / �j1,2

18B ‖2( )
with ‖Lw,�j3

iB ‖2 �
!!!!!!
Lw,3
iB( )2√

and ‖Lw,�j1,2
iB ‖2 �

!!!!!!!!!!!!!
Lw,1
iB( )2 + Lw,2

iB( )2√
. (27)

The results are depicted in Table 3.

Membership functions
To visualise the convex blending of direct adjacent submodels (Ai,
Bi), the time series of the membership functions hi for a step-shaped
wind time series are depicted in Figure 5. Note: As the premise
variable in this contribution is defined by one parameter (z ≡ v̂),
the membership function hi(z) is identical to the weighting function
wk,l(z) (see Section 2.4.3, especially footnote4). Therefore, just two
submodels are blended at the same time (for all operating points
between two steady state operating points OPi; see also the
triangular-shaped hi(z) progression (with hi(z) ≡ wk,l (zk) for
zk = z1 = z with kmax = 1) in Figure 1).

Wind turbine simulations, actuation signals, pitch rate
deviations, rotation speed deviations and resulting
mechanical loads
To assess the closed-loop systemdynamics (seeFigure 6), a disturbing
step-shaped time series of 150 s duration is applied to the system,
visualising the effect of the particularwind speed observer design (with
decreased performance, see Section 3.1) on the actuation signals. The
resulting time series v̂w(t), βwFF(t) and βwFB(t) were achieved with
NREL FAST 5MW reference wind turbine simulations, embedded in
a Matlab Simulink model, using the wind speed observer-based PDC
controller Eq. 5 (i.e., for all simulations the same PDC feedback-
controller8 is utilised) with step-shaped wind time series as disturbing
excitation. For clarity, the simulations are restricted to the full load
range with pitch angle actuation, i.e., the generator torque is kept
constant (see Section 2.4.2 and Table A1).

The given wind speeds v and the reconstructed wind speeds v̂w of
the step-shaped wind time series are depicted in the left column of
Figure 6, the actuated feedforward and feedback pitch angles βwFF(t)
and βwFB(t) are depicted in the mid and right column of Figure 6.

The resulting ultimate andmean pitch angle deviations, i.e. the pitch
rates max( _β) and mean( _β) are depicted in the left column of
Figures 7A,B; the closed-loop system dynamics, i.e. the ultimate
and standard drive train rotation speed deviations max(Δω) �
max(ω−ωr

ωr
) and std(Δω) � std(ω−ωr

ωr
) (with the rated rotation

speed ωr), are depicted in the right column of Figures 7A,B.
In addition, the step-shaped wind time series – representing a

typical wind increase andwind decrease event (i.e. a disturbing step up
and step down signal) within a turbulent wind excitation time series –
is used to assess the ultimate and fatigue loads resulting from the
closed-loop system dynamics of both approaches. For this load
assessment, five different loads are analysed that are crucial or at
least very important for the wind turbine’smain component design of
tower, blades and the drive train:

• The tower bending moment in wind direction (also denoted
with the fore-aft bending moment, TwrBsMyt) and normal
to the wind direction (also denoted with the side-to-side
bending moment, TwrBsMxt), calculated for the tower base,

• the blade bending moment in wind direction
(i.e., resulting from blade bending out of the rotor
plane, also denoted with the flapwise or out-of-plane
bending moment, RootMyb1) and blade bending
moment inside the rotor plane (edgewise or in-plane
bending moment, RootMxb1), calculated for the blade
root (next to the hub body) of the first blade, and

• the torsional torque (ΔTq) along the drive train axis.

The ultimate and fatigue loads, resulting from the closed-loop
system dynamics, are depicted in Figure 8. To eliminate effects,
resulting from simulation initialisation, the time period 0s ≤ tCutOff≤
10s of all time series is not taken into account in the load evaluation.
(Note: If the fatigue loads in Figure 8 just differ even in the third or
fourth decimal place, these differences are of significance. Because,
the listed fatigue loads in Figure 8 result from a wind times series of
extremely short duration (of 150 s), while wind turbines typically
operate for 20 years with approximately 97% availability. That is,
also fourth decimal place differences in the fatigue loads, depicted in
Figure 8, do have an enormous impact on the expected wind
turbine lifetime, as all damages cumulate over the complete lifetime.
This cumulation does not apply to ultimate loads, as these loads
occur rarely in a wind turbine’s lifetime).

4 DISCUSSION

Both Lyapunov approaches fulfill the particular objective to decrease the
disturbance observer performance and feedforward actuation, while
increasing the feedback actuation for shrinking pole region dimensions,
resulting in mitigated mechanical loads (see Section 3.1). But the local
approach achieves significantly increased flexiblity and consistency of
the desired and resulting system dynamics than the global approach:

Pole locations
The open-loop poles of the wind turbine system, depicted with
gray symbols in Figure 4, are widely spaced, as significant
distances between the real-valued wind model poles sOL,1P,i (on8PDC feedback controller: ct1010001
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the real axis of the pole map) and the conjugated-complex blade
poles sOL, 2 ∨ 3

P,i (in the pole map) exist. With increasing upper
bounds αB,max, resulting in shrinking pole regions9, the closed-
loop pole locations sw,pP,i are shifted for both design approaches
inside the left half of the pole map in direction of the imaginary

axis and towards the open-loop poles sOL,pP,i . Thereby, the average

distances Δsw,�pP,�i in the complex pole map decrease (i.e.,

Δsw,�pP,�i >Δs
(w+1),�p
P,�i , e.g., ΔsB,�pP,�i >Δs

C,�p
P,�i , see Figure 4 and Table 2).

Just for the last global and local wind speed observers the

distances increase, i.e., ΔsD,�p
P,�i <ΔsE,�pP,�i and ΔsI,�pP,�i <Δs

J,�p
P,�i , as the

closed-loop poles (and their real-values Re(sw,pP,i ), respectively)
are shifted beyond the open-loop poles Re(sOL,pP,i ) in direction of
the imaginary axis. Therefore, those two wind speed observers E
and J are not accounted in the following evaluations, but they are
relevant for the local approach assessment, as described in the
following with regard to the pole region violation.—For the wind
speed observer poles, based on the local Lyapunov approach (see

w ∈ [F, I] in Table 2), the pole distances Δsw,�pP,�i decrease steadily,

while the distances Δsw,�pP,�i for the wind speed observer poles, based

on the global Lyapunov approach (see w ∈ [A, D]), show a local
maximum for the wind speed observer B (i.e.,

ΔsB,�pP,�i >Δs
A,�p
P,�i >Δs

C,�p
P,�i >Δs

D,�p
P,�i ). Thus, the local Lyapunov

approach is rated to be more coincident in regard to a desired
pole location specification. Additionally, it is obvious from the pole
locations depicted in Figure 4, that the local Lyapunov approach is
more effective and flexible, respectively, as all poles are located
inside the specified pole regions, while the global Lyapunov
approach is not able to satisfy the pole region specifications for
the smallest pole region, resulting in poles located outside the

specified pole regions (see the pole location sE,pP,i of the global wind
speed observer E in Figure 4E). That is, the local Lyapunov
approach is more flexible in assigning desired pole locations
than the global Lyapunov approach.

(Note, that the LMI solver is capable to find solutions, even if
the pole region LMIs are violated. However, the resulting poles
are still located in the left half of the complex pole map and fulfill
the basic stability condition for the corresponding closed-loop or
error dynamics.)

Error-feedback gains
With the decreasing pole distances Δsw,�pP,�i , also the error-feedback

gains Lw,jiB —representing a measure or the effort of all error states
acting on the wth observer—are mitigated. For all10 local wind
speed observer designs these gains decrease expectedly with
increasing upper bound αB,max and with the reduced pole

distances Δsw,�pP,�i (i.e., ‖LF,�j�iB ‖2 > ‖LG,�j�iB ‖2 > ‖LH,�j
�iB ‖2 > ‖LI,�j�iB ‖2).

Corresponding to the pole distances Δsw,�pP,�i , the local wind

speed observer gains Lw,jiB are mitigated steadily (and yield lower

gains ‖LB,�j�iB ‖2 > ‖LG,�j�iB ‖2 , ‖LC,�j�iB ‖2 > ‖LH,�j
�iB ‖2 and ‖LD,�j

�iB ‖2 > ‖LI,�j�iB ‖2 ),
while the global wind speed observer gains show a local

maximum of ‖Lw,�j�iB ‖2 for the wind speed observer B

(i.e., ‖LB,�j�iB ‖2 > ‖LA,�j�iB ‖2 > ‖LC,�j�iB ‖2 > ‖LD,�j
�iB ‖2), demonstrating the

increased consistency of the desired and achieved error-

feedback gains Lw,jiB of the local Lyapunov approach.

Wind speed reconstruction and actuation
signals
With the mitigated error-feedback gains Lw,jiB , the reconstructed
states x̂ , especially the reconstructed wind speeds v̂, are
mitigated, too (see Eq. 711): While the reconstructed wind speed
v̂w(t1) of a single and arbitrary time point t = t1 decreases steadily for
the wind speed observer design with local Lyapunov approach
(i.e., v̂F(t1) ≈ v̂G(t1)> v̂H(t1)> v̂I(t1)[> v̂J(t1)]10, see left
column in Figure 6), the reconstructed wind speed v̂w(t1) for the
wind speed observer design with global Lyapunov approach decreases
unsteadily (i.e., v̂A(t1)> v̂D(t1)[> v̂E(t1)]> v̂C(t1)> v̂B(t1),
corresponding to the unsteady decrease of the mean Euclidean

norm of the wind error state gains ‖Lw,3�iB ‖2 of the global wind
speed observers (with w [A, E], see Table 3; i.e.,

‖LA,3�iB ‖2 > ‖LD,3�iB ‖2 > ‖LC,3�iB ‖2 > ‖LB,3�iB ‖2)10.
The mitigated, reconstructed wind speeds v̂w of both

approaches result in the following actuation signals: The
mitigated wind speeds v̂w lead to less dominant feedforward
pitch actuation βFF—just governed by the wind speed driven
feedforward actuation u FF(hj(z )) (with uFF ≡ βFF and z ≡ v̂w)
according to Eq. 5 and the steady state pitch angles βc,i (listed in
Table A1)—and increase the feedback pitch angles βFB (see mid
and right column in Figure 6). That is, corresponding to the
decreased, reconstructed wind speeds v̂w (and mean wind state

feedback gains ‖Lw,3�iB ‖2), the feedforward pitch angles of the local
wind speed observers βwFF (withw ∈ [F, I]10) are mitigated steadily

(i.e., βFFF ≈ βGFF > βHFF > βIFF[> βJFF], see mid column in Figure 6)

and yield steadily increased feedback pitch angles

(i.e., βFFB < . . . < βIFF[< βJFB], see right column in Figure 6),

while the feedforward pitch angles of the global wind speed

observers βwFF (with w ∈ [A, D]) decrease unsteadily

(i.e., βAFF < βDFF < βCFF < βBFF) and yield correspondingly

increasing feedback pitch angles βwFB (with w ∈ [A, D]). Thus,
the intended particular objective of a steadily decreasing
feedforward-actuation with increasing feedback-compensation

9to realise the shrinking pole region size, compare the pole regions’ size (and
location) in Figure 4 for the wind speed observer design A and F with E and J
10The global and local wind speed observers E and J are not taken into account,
because of their (closed-loop) pole locations, which are moved beyond the
open-loop pole locations, as explained before in the subsection Pole locations.

11If Eq. 7 is evaluated for a single and arbitrary time point, it is obvious, that _̂x
(and x̂ ) decreases, if Lw,jiB is mitigated, while all other parameters and states do not
change.
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(see Section 3.1) is achieved with the local, not with the global
Lyapunov wind speed observer design approach.

Pitch rate deviations and rotation speed
deviations
The pitch angle deviations result in corresponding pitch and
rotation speed metrics: With the steadily mitigated premise
variable v̂F > v̂G > v̂H > v̂I of the local wind speed observer F to I,

the ultimate pitch rates max( _β)(� max( _βFF + _βFB)with
max( _βF) ≈ max( _βG)>max( _βH)>max( _βI)) and mean pitch rates

mean( _β) (with mean( _βF) ≈ mean( _βG)>mean( _βH)>mean( _βI))
decrease steadily, too (see left column in Figures 7A,B), while the
unsteadily decreasing wind speeds v̂A > v̂D > v̂C > v̂B of the global
wind speed observers A to D lead to unsteadily decreasing ultimate

pitch rates max( _βA)>max( _βD)>max( _βC)>max( _βB) and mean

pitch rates mean( _βA)>mean( _βD)>mean( _βC)>mean( _βB). As the
pitch rates _β decrease, increasing system dynamic deviations appear,
e.g. represented by the metric of the drive train rotation speed
deviations max(Δω) and std(Δω), that increase steadily for the local
wind speed observers (with max(ΔωF) ≈max(ΔωG) and std(ΔωF) ≈
std(ΔωG)) and unsteadily for the global wind speed observers (see
right column in Figure 7 A,B). Thus, the local Lyapunov approach
achieves the expected system dynamics with increased consistency
between the desired and achieved pitch rate deviations and rotation
speed deviations, compared to the global Lyapunov approach.

Load mitigation
The ultimate and fatigue loads resulting from closed-loop
dynamics with the step-shaped wind excitation (depicted in
Figure 8) are satisfying for both approaches, but especially for
the local Lyapunov approach. In the following, the ultimate and
fatigue loads are first evaluated separately for each of the two
Lyapunov approaches (see Table A9), then the loads from both
approaches are compared with each other (see Table A10).

• Ultimate Loads (see Figure 8A): The ultimate tower bending
moments max(TwrBsMyt) and max(TwrBsMxt), as well as
the ultimate in-plane blade bending moments
max(RootMxb1) are mitigated for both Lyapunov
approaches, and for the local Lyapunov approach these
ultimate loads decrease even steadily (see lines 1 to 3 in
Table A9; with one marginal exception for maxF(TwrBsMxt)
< maxG(TwrBsMxt)). The ultimate out-of-plane blade
bending moments max(RootMyb1) and the ultimate drive
train torque max(ΔTq) increase slightly, but not significantly
(see Figure 8A and lines 4 to 5 in Table A9). – Comparing
both approaches with each other, for most pole regions lower
ultimate loads are achieved with the local Lyapunov design
approach (see Figure 8B and lines 1 to 5 in Table A10).
If a controller variation yields comparable or even lower
ultimate loads, the controller (design approach) assessment
depends on the fatigue loads.

• Fatigue Loads (see Figure 8B): The fatigue tower bending
moments Seq(TwrBsMyt) and Seq(TwrBsMxt), as well as

the fatigue drive train torque Seq(ΔT) are mitigated for
both Lyapunov approaches, and for the local Lyapunov
approach these fatigue loads decrease steadily (see lines 6 to
8 in Table A9; with one exception for
SFeq(TwrBsMxt)< SGeq(TwrBsMxt)). The fatigue out-of-
plane blade bending moments Seq(RootMyb1) and in-
plane blade bending moments Seq(RootMxb1) increase
slightly, but for the local Lyapunov approach the out-of-
plane blade bending fatigue loads Sweq(RootMyb1) decrease
steadily (see Figure 8B and lines 9 to 10 in Table A9). –
Comparing both approaches with each other, for most pole
regions lower fatigue loads are achieved with the local
Lyapunov design approach, again (see Figure 8B and
lines 6 to 10 in Table A10).
Additionally, the local wind speed observer design approach
with the smallest pole region (see wind speed observer J)
achieves the lowest fatigue loads for those bending moments
and torsional torque compared to the fatigue loads, resulting
from the global wind speed observer design (compare the
fatigue loads of local wind speed observer J with the fatigue
loads of all global wind speed observers for Seq(TwrBsMyt),
Seq(TwrBsMxt)12, Seq(RootMyb1) and Seq(ΔTq) in Figure 8). –
Just the in-plane blade fatigue bending moments
Seq(RootMxb1) increase for the local wind speed observer
design approach (as well as for the global approach). This
fatigue load increase might result from the increasing rotation
speed deviations max(Δω) and std(Δω). Because, for identical
wind times series and system excitations, respectively,
increasing fatigue loads result from increasing amplitude
and/ or increasing load cycles. As the rotation speed
deviations max(Δω) and std(Δω) increase with the
shrinking pole region dimension (see max(Δω) and
std(Δω) for WindObs w with w ∈ [G, J] in the right
column of Figures 7A,B), it seems reasonable, that the
fatigue load increase results from the increasing rotation
speed, rather than from an amplitude increase. This
assumption is also confirmed by the ultimate loads that
decrease with the shrinking pole region size (see
max(RootMxb1) for WindObs w with w ∈ [F, J] in
Figure 8), i.e. not the amplitudes of ultimate and fatigue
loads, but the load cycles of the fatigue loads increase.
Additionally, with the increasing rotor speed deviations,
the number of blade passages through the tower
shadow13 increases, resulting in increasing load cycles and
leading to increased fatigue loads.

Therefore, it seems promising as a subject of future work, to
split the wind speed observer, based on a local Lyapunov
approach, into two, separated wind speed observers: A

12with two exceptions for the tower side-to-side-bending moments
SBeq(TwrBsMxt)< SJeq(TwrBsMxt) and SCeq(TwrBsMxt)< SJeq(TwrBsMxt) (see
Figure 8B and line 7 in Table A9 as well as line 7 in Table A10.
13Tower shadow (effect): The tower poses as an obstacle in the inflow that increases
the dynamic pressure and decreases the wind speed in front, i.e. in upwind
direction of the tower.
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feedforward wind speed observer—specified with a similar pole
region (like wind speed observer I, used within this
contribution)—with decreased reconstruction performance to
assign the premise variable v̂FF to the feedforward actuation
u FF(h(v̂FF)). To compensate the decreased feedforward pitch
rates _βFF, an additional feedback wind speed observer with
increased performance will be implemented, to assign its
reconstructed wind speed v̂FB to the feedback actuation. For
this feedback wind speed observer, a tight pole region will be
specified, located left from the open-loop poles, resulting in
significantly increased error-feedback gains Li,FB and
reconstructed wind speeds v̂FB, so that the feedback pitch rates
_βFB increase, resulting in mitigated rotation speed deviations and
fatigue loads. Summing up the load evaluation, the local Lyapunov
approach is rated to gain an increased consistency between
intended and achieved load mitigation compared to the global
approach. While the ultimate loads, achieved with the global and
local wind speed observer approach are comparable, the local
approach achieves an increased fatigue load mitigation. Because,
for steadily shrinking pole regions with steadily decreasing
feedforward actuation, the fatigue loads decrease steadily, too.

5 CONCLUSION

With this contribution a local Lyapunov approach is introduced
for controller and observer design in the Takagi-Sugeno
framework. Compared to the common global Lyapunov
approach, a more dedicated closed-loop dynamic is intended
with the local Lyapunov approach, i.e., an increased flexibility in
the design process and increased consistency between desired and
achieved system dynamics is aspired.

The applicability and effectiveness of the local Lyapunov
approach to wind turbine control is analysed with wind
turbine simulations. The simulation results show, that the
local Lyapunov approach makes it possible to influence the
pole locations, the resulting error-feedback gains and closed-
loop system dynamics more flexible and with an increased
consistency between desired and achieved system dynamics

than the global Lypunov approach. That is, with the local
Lyapunov approach, the assignment of smaller pole regions is
possible, enabling a higher flexibility in assigning desired system
dynamics. Additionally, the local Lyapunov approach reaches an
improved similarity between the desired and achieved closed-
loop system dynamics, indicating the increased consistency of the
local Lyapunov approach. As the local Lyapunov approach is less
conservative, but more dedicated to the desired system dynamics,
i.e., the design process achieves an increased flexibility and
increased consistency, it is rated to have a higher potential in
fulfilling primary and secondary control objectives, like energy
yield optimisation and load mitigation in wind turbine
application.

The evaluation of the local Lyapunov approach will be
continued in oncoming studies, with the controller structure
adapted to the new possibilities arising from the local design
approach, like the separated reconstruction of the feedforward
and the feedback premise variable in a split wind speed observer.
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APPENDIX

Specification of all steady operation
points OPi
In Table A1 all steady Operation Points OPi of this work are
listed.

Specification of the component submodels
In Tables A2–A8, all matrices and steady states are listed, necessary
to replicate the achieved results of this work with the help of NREL
FAST 5MW reference wind turbine simulation software (see NREL
(XXXX), Jonkman and Buhl (2005) and Jonkman et al. (2009)).
Note: As the disturbing wind time series and excitation, respectively
is restricted to wind speeds from v = 14m/s to v = 16m/s, the
corresponding i submodels are restricted to i ∈ (Lendek et al., 2010;
Jonkman and Jonkman, 2016) (see also explanation in Section 3.2).

All states and parameters are expressed in SI units, despite the
generator torque TG (that is expressd in kNm), pitch angles (that
are expressed in (angular) degree) and the rotation speed
(expressed in revolution per minute).

Specification of the LMI constraints
Restrictions for the decay rates αmin / max and natural
frequencies of the system response (characterised by the
real part and imaginary part of the closed-loop poles
Re(sP,i) and Im(sP,i)) can be specified with bounds, e.g. with
horizontal lines (with αmax < Re(sP,i) < αmin)) and diagonal
origin lines (with tan(θ)< Im(sP,i)

Re(sP,i)5θ < arctan Im(sP,i)
Re(sP,i), also

denoted as cone angle) in the complex pole map, resulting
in bounded pole map segments and pole regions, respectively
(Pöschke et al., 2019).

In (Chilali and Pascal, 1996), LMI representations for these
bounded pole map segments, i.e. the restricted location of the
poles and eigenvalues of a linear system, respectively, are derived.

For the upper vertical bound αB,max of the error dynamics,
based on the blade design model, the following LMI holds (with
Nw

i � Pw
i LwiB, defined in (20)):

AT
iB Pi − CT

B N
wT

i + Pi AiB −Nw
i CB ≻ − 2αB,max Pi, (23)

and for the lower vertical bound αB,min it holds:

AT
iB Pi − CT

B N
wT

i + Pi AiB −Nw
i CB ≺ − 2αB,min Pi. (24)

For the cone angle bound θ of the error dynamics, based on the
blade design model, the following LMI holds:

sin θ( ) −AT
iB Pi − CT

B N
wT

i + Pi AiB −Nw
i CB( )

cos θ( ) −AT
iB Pi + CT

B N
wT

i + Pi AiB −Nw
i CB( )

cos θ( ) −AT
iB Pi − CT

B N
wT

i − Pi AiB +Nw
i CB( )

sin θ( ) −AT
iB Pi − CT

B N
wT

i + Pi AiB −Nw
i CB( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≺ 0. (25)

The matrices used in (23) to (25) are listed in Tables A2,
A4, A8.

All simulations were executed with the controller ct1210013. The
following global Lyapunov approach based wind speed observers
were used: A ≡ ot1210027, B ≡ ot1210030, C ≡ ot1210033, D ≡
ot1210051, E ≡ ot1210049, F ≡ ot1210036, G ≡ ot1210039, H ≡
ot1210042, I ≡ ot1210043, J ≡ ot1210044.

The state observer ot1010001 was utilised.
For the wind excitation the Imp14.hh wind time series is used.
To calculate the mean Euclidian norm ‖Lw,�jiB ‖2 of the error-

feedback gains Lw,jiB [see (26)] and the average, mean Euclidian
norm ‖Lw,�j�iB ‖2 [see (27)] the worksheet
Uebersicht_L_Matrizen_Pitchwinkel-YYYY_MM_DD.xlsx is used.

LOAD ANALYSIS

For the ultimate loads maxw and fatigue loads Sweq, resulting from
five different wind speed observers (i.e. for the w ∈ A,E[ ] global
wind speed observers and w ∈ A,E[ ] local wind speed observers;
see Figure 8), the steady increase or decrease of the loads is
evaluated separately for each of the two observer approaches
(see Table A9) and in comparison to each other (see Table A10).
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TABLE A1 | States of the i steady state operations pointsOPi of the NREL FAST 5MW reference wind turbine with the wind speed vc,i, rotor rotational speed ωR,c,i , generator
torque TG,c,i and pitch angle βc,i.

i vc,i βc,i TG,c,i ωR,c,i

1 3 0 2.912 3.4
2 4 0 5.193 4.6
3 5 0 8.079 5.7
4 6 0 11.646 6.9
5 7 0 15.843 8.0
6 8 0 20.671 9.2
7 9 0 26.128 10.3
8 9.5 0 29.094 10.9
9 10 0 32.267 11.4
10 10.5 0 35.547 12.0
11 11 0 40.433 12.1
12 11.5 2.2 43.094 12.1
13 12 4.1 43.094 12.1
14 12.5 5.5 43.094 12.1
15 13 6.6 43.094 12.1
16 14 8.6 43.094 12.1
17 15 10.4 43.094 12.1
18 16 12.0 43.094 12.1
19 17 13.4 43.094 12.1
20 18 14.8 43.094 12.1
21 19 16.1 43.094 12.1
22 20 17.4 43.094 12.1
23 21 18.6 43.094 12.1
24 22 19.7 43.094 12.1
25 23 20.8 43.094 12.1
26 24 22.0 43.094 12.1
27 25 23.0 43.094 12.1

TABLE A2 | State matrices AiB and augmented state matrices ~AiB of the Blade model (for the submodels i ∈ [15,18]).

0 1 0 1 0
A15B -21.82 -5.41 ~A15B -21.82 -5.41 9.58

- - 0 0 -0.25

0 1 0 1 0
A16B -21.88 -5.36 ~A16B -21.88 -5.36 9.51

- - 0 0 -0.25

0 1 0 1 0
A17B -21.92 -5.35 ~A17B -21.92 -5.35 9.48

- - 0 0 -0.25

0 1 0 1 0
A18B -21.95 -5.30 ~A18B -21.95 -5.30 9.38

- - 0 0 -0.25

TABLE A3 | Input matrices BiB and augmented input matrices ~BiB of the Blade model (for the submodels i ∈ [15,18]).

0 0 0 0
B15B -563.53 0 ~B15B -563.53 0

- - 0 0

0 0 0 0
B16B -589.16 0 ~B16B -589.16 0

- - 0 0

0 0 0 0
B17B -606.41 0 ~B17B -606.41 0

- - 0 0

0 0 0 0
B18B -628.21 0 ~B18B -628.21 0

- - 0 0
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TABLE A4 | Common output matrix CB and augmented common output matrix ~CB of the Blade model (for all submodels).

CB 1 0 ~CB 1 0 0

TABLE A5 | Steady states x c,iB and augmented steady states ~x c,iB of the Blade model (for the submodels i ∈ [15,18]).

3.61 3.61
x c,15B 0 ~x c,15B 0

- 13

3.15 3.15
x c,16B 0 ~x c,16B 0

- 14

2.73 2.73
x c,17B 0 ~x c,17B 0

- 15

2.44 2.44
x c,18B 0 ~x c,18B 0

- 16

TABLE A6 | Steady state pitch angle βc,i and generator torque TG,i (for the submodels i ∈ [15,18]).

βc,15 6.6
TG,15 43.094

βc,16 8.6
TG,16 43.094

βc,17 10.4
TG,17 43.094

βc,18 12.0
TG,18 43.094

TABLE A7 | State feedback matrices KiR of the (rigid body) Rotion drive train model (for the submodels i ∈ [15,18]).

K15R -1.31
0

K16R -1.03
0

K17R -0.85
0

K18R -0.71
0
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TABLE A8 | Error state feedback gain matrices Lw,jiB of the blade model based wind speed observers B for:
- global Lyapunov approach with w ∈ A,E[ ]
- local Lyapunov approach with w ∈ F , J[ ]
- submodels i ∈ [15,18]
- matrix elements j ∈ [1,3].

A B C D E F G H I J

Lw,115B 3.87 2.81 2.04 1.28 0.30 4.06 3.02 1.79 0.38 -1.35

Lw,215B -13.31 -15.30 -9.80 -5.92 -4.22 -14.19 -12.90 -8.78 -5.23 -4.46

Lw,315B 2.56 0.88 1.21 1.43 1.31 2.27 1.90 1.61 1.11 0.39

Lw,116B 3.87 2.81 2.04 1.28 0.30 4.07 3.07 1.84 0.43 -1.30

Lw,216B -13.44 -15.45 -9.95 -6.05 -4.28 -14.33 -13.14 -9.18 -5.57 -4.85

Lw,316B 2.56 0.88 1.20 1.43 1.31 2.26 1.91 1.61 1.12 0.40

Lw,117B 3.88 2.81 2.04 1.28 0.30 4.07 3.08 1.85 0.44 -1.29

Lw,217B -13.49 -15.50 -10.01 -6.10 -4.31 -14.39 -13.22 -9.30 -5.68 -4.98

Lw,317B 2.56 0.88 1.20 1.43 1.31 2.26 1.92 1.61 1.12 0.40

Lw,118B 3.88 2.81 2.04 1.28 0.29 4.08 3.13 1.90 0.50 -1.23

Lw,218B -13.60 -15.62 -10.13 -6.19 -4.33 -14.51 -13.43 -9.70 -6.00 -5.39

Lw,318B 2.56 0.88 1.20 1.43 1.31 2.26 1.93 1.61 1.13 0.40

TABLE A9 | Analysis of the ultimate loads maxw and fatigue loads Sw
eq resulting from five different wind speed observers regarding the steady increase or decrease of the

loads (evaluated separately for each of the two Lyapunov approaches with w ∈ A,E[ ] for the global wind speed observers and with w ∈ F , J[ ] for the
local wind speed observers; based on the loads depicted in Figure 8).

Loads Global Lyapunov approach Local Lyapunov approach

TwrBsMyt maxA > maxB > maxC > maxD > maxE maxF > maxG > maxH > maxI > maxJ

TwrBsMxt maxA > maxB < maxC < maxD < maxE maxF ≈ maxG > maxH > maxI > maxJ

RootMxb1 maxA > maxB < maxC < maxD < maxE maxF > maxG > maxH > maxI > maxJ

RootMyb1 maxA < maxB > maxC > maxD > maxE maxF > maxG < maxH < maxI > maxJ

ΔT maxA < maxB > maxC > maxD > maxE maxF > maxG > maxH > maxI ≈ maxJ

TwrBsMyt SA
eq >SB

eq <SC
eq <SD

eq <SE
eq SF

eq >SG
eq >SH

eq >SI
eq >SJ

eq

TwrBsMxt SA
eq >SB

eq <SC
eq <SD

eq <SE
eq SF

eq <SG
eq >SH

eq >SI
eq >SJ

eq

ΔT SA
eq >SB

eq ≈ SC
eq >SD

eq >SE
eq SF

eq >SG
eq >SH

eq >SI
eq >SJ

eq

RootMyb1 SA
eq >SB

eq <SC
eq <SD

eq >SE
eq SF

eq >SG
eq >SH

eq >SI
eq >SJ

eq

RootMxb1 SA
eq <SB

eq � SC
eq � SD

eq � SE
eq SF

eq ≈ SG
eq ≈ SH

eq <SI
eq <SJ

eq

TABLE A10 | Analysis of the ultimate loads maxw and fatigue loads Sw
eq resulting from five different wind speed observers regarding the steady increase or decrease of the

loads (comparing both Lyapunov approaches with each other with w ∈ A,E[ ] for the global wind speed observers and with w ∈ F , J[ ] for the
local wind speed observers; based on the loads depicted in Figure 8).

Loads A 5 F B 5 G C 5 H D 5 I E 5 J

TwrBsMyt maxA > maxF maxB < maxG maxC < maxH maxD > maxI maxE > maxJ

TwrBsMxt maxA > maxF maxB < maxG maxC < maxH maxD > maxI maxE > maxJ

RootMyb1 maxA < maxF maxB > maxG maxC > maxH maxD > maxI maxE > maxJ

RootMxb1 maxA > maxF maxB < maxG maxC < maxH maxD > maxI maxE > maxJ

ΔT maxA < maxF maxB > maxG maxC > maxH maxD > maxI maxE < maxJ

TwrBsMyt SA
eq >SF

eq SB
eq <SG

eq SC
eq <SH

eq SD
eq >SI

eq SE
eq >SJ

eq

TwrBsMxt SA
eq >SF

eq SB
eq <SG

eq SC
eq <SH

eq SD
eq >SI

eq SE
eq >SJ

eq

RootMyb1 SA
eq <SF

eq SB
eq <SG

eq SC
eq >SH

eq SD
eq >SI

eq SE
eq >SJ

eq

RootMxb1 SA
eq >SF

eq SB
eq >SG

eq SC
eq >SH

eq SD
eq <SI

eq SE
eq <SJ

eq

ΔT SA
eq >SF

eq SB
eq <SG

eq SC
eq >SH

eq SD
eq >SI

eq SE
eq >SJ

eq
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