
Optimization design of crude oil
distillation unit using bi-level
surrogate model

Yingjian Xiong, Xuhua Shi*, Yongjian Ma and Yifan Chen

Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, Zhejiang, China

Crude Oil Distillation Unit (CDU) is one of the most important separation
installations in the petroleum refinery industries. In this work, a Bi-level
Surrogate column model Aided Constrained Optimization Design (Bi-SACOD)
is proposed for time-consuming objectives and constraints in the evolutionary
optimization design of CDUs. Themain components of Bi-SACOD include bi-level
surrogate model construction (Bi-SMC), bi-level model management (Bi-MM),
and particle swarm optimization (PSO) mixed-integer constrained evolutionary
(PSO-MICE) search. Bi-SMC implements surrogate column model construction
and feasible domain identification. Bi-MM combines surrogate column models
with rigorous CDU simulations to perform model management, and PSO-MICE
implements optimum search works. The optimization results of the CDUs indicate
that Bi-SACOD outperforms the single-level surrogate column model
approaches, and are more consistent with the rigorous CDU model
optimization approach, whereas the evaluation numbers of the time-
consuming rigorous models are significantly reduced.
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Introduction

Crude oil distillation is the most widely used separation process in the petroleum refinery
industry. Recently, the optimal design of crude oil distillation units (CDUs) has attracted
considerable research interest, while the component structural units, such as the pump-
around flow system, side strippers, and a large number of equilibrium stages, incorporate the
overhead reflux drums make the design of CDUs a complex task (Ibrahim et al.,2021).
Combining CDU models and optimization-based design can determine the best
configuration of CDUs (Xin et al., 2020), moreover, evolutionary optimization
approaches provide probable ways for simultaneous optimization of structural and
operating parameters for CDUs, and can achieve better optimization results (Ibrahim
et al., 2021; Ibrahim et al., 2018). While optimizing the structural and operating
parameters of CDUs will face the problems of a large number of constraints, time-
consuming objectives and constraints, continuous and discrete decision variables, and
limited samples, these will make great challenges for traditional optimization methodologies.

Generally, three main categories of CDUmodels have been used to simulate the complex
distillation columns, namely, rigorous, simplified, and statistical models, and have recently
been incorporated in approaches considering structural and operational optimization
designs. Rigorous models provide more accurate predictions than simplified and
statistical models. However, implementing them in an optimization algorithm is more
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challenging because of the large number of non-linear equations and
the need to start the calculations from a perfect initial guess in order
to avoid convergence problems (Kunru et al., 2020). Besides,
simplified models have also been applied to the optimization of
CDUs (Alattas et al., 2011). Simplified models have the advantage of
being more robust and converging faster than rigorous models.
However, they may have large errors and often cannot predict the
behaviors of complex CDUs accurately, also, they are highly
sensitive to initial guesses. Further, some statistical models, such
as polynomial regression, support vector regression (SVM), and
artificial neural networks (ANNs), have become popular in the
optimization of CDUs (Lopez et al., 2013; Ibrahim et al., 2018;
Xin et al., 2021). In (Xin et al., 2021) and (Lopez et al., 2013), the
authors constructed SVM and polynomial regression models,
respectively, to search for the optimal conditions for economic
profit. Ibrahim et al. designed a distillation column configuration
and its operating conditions using a mixed-integer non-linear
program approach to maximize heat recovery (Ibrahim et al.,
2018). Statistical models are more robust and more
straightforward than rigorous and simplified distillation models,
however, one of the main problems of this modeling is sampling,
since the quality of the model depends on the quality of the data
used, poor-quality sampling models will cause large model errors
and affect the optimization results.

Recently, the studies on the surrogate models have shown
that local surrogate models cannot assist the algorithm escaping
from the local optimum, while bi-level models, i.e., global-local
models are expected to take advantages of the global and local
surrogate models, generally outperform most individual
surrogates in terms of accuracy and efficiency in complex
optimization problems (Zhou et al., 2007; Wang et al., 2017;
Zhong et al., 2019). Zhou et al. presented a global-local surrogate-
assisted evolutionary algorithm for expensive constrained
optimization problems (Zhou et al., 2007). Wang et al.
introduced the global-local model management to improve the
approximation quality of the surrogate model without increasing
the size of the training dataset (Wang et al., 2017). And Zhong
et al. proposed an adaptive step-size global and local search
strategy (GLSS) for operation optimization of hydrocracking
process (Zhong et al., 2019). Therefore, in this work, an
approach, termed as Bi-level Surrogate column model Aided
Constrained Optimization Design (Bi-SACOD), is proposed by
combining global-local surrogate column models and rigorous
CDU models for fitness evaluations. Since Gaussian process (also
known as the Kriging) has better global statistical characteristics
(Wang et al., 2017), in the global surrogate-aided phase, we
construct Kriging model to smooth out the local optima to
speed up the search, while in the local phase, RBF model is
often used to further approximate the fitness landscape (Zhou
et al., 2007). The global-local surrogate column model
management incorporated with the SVM feasibility learning
approach is implemented to search for the column structural
variables and operating conditions to maximize the total
economic profit in this work.

The remainder of this article is organized as follows. Section 2 is
the preliminary, which describes global and local surrogate models
and distillation MESH equations. In Section 3, a detailed
optimization formulation is presented including bi-level surrogate

column model construction, bi-level model management, and PSO
mixed-integer constraint evolutionary search methodology. Section
4 is the results and discussion. The conclusions of the future work
are finally presented in Section 5.

Preliminary

Kriging surrogate global model

The Kriging models based on the optimal linear unbiased
estimation method, which is composed of two parts: a
polynomial expression and a deviation from that polynomial:

F x( ) � β + z x( ) (1)
Where β is a polynomial expression which is to approximate to

the real function, z(x) is a stochastic process obeying normal
distribution N(0, δ2). The characteristics of z(x) are as follows:

E z x( )( ) � 0 (2)
cov z x( ), z x′( )[ ] � δ2R θ, x, x′( ) (3)
R θ, x, x′( ) � ∏n

j�1Rj θj, xj − x′j( ) (4)

Where σ2 is the variance of the response process; θ �
θ1, θ2,/, θn{ } is a set of parameters that determine the gradient
of R � θ, x, x′{ }; and σ is the dimension of variable x, and the
Gaussian correlation function is employed in this work. It is defined
as follows:

R(θj, xj, x′j) � exp (− θj xj − x′j
∣∣∣∣∣

∣∣∣∣∣2) (5)

RBF surrogate local model

LetD � xi, yi{ }, i � 1,/n , xi ∈ Rd and yi ∈ R are the input and
output, respectively, which denotes the training dataset. Then the
local surrogate models are interpolating radial basis function
networks (RBFNs) of the form:

F x( ) � ∑n

1
αiK x − xi‖ ‖( ) (6)

Where K(‖x − xi‖): Rd → R is a RBF and α �
α1, α2,/αn{ } ∈ Rn denotes the vector of weights. Typical choices
the kernel for RBFNs include linear splines, cubic splines, thin plate
splines, and Gaussian functions (Zhou et al., 2007). We use linear
splines, i.e., ‖x − ci‖ in our work since this kernel can provide models
with good generalization capability at a low computational cost.

Distillation MESH equations

As we know, distillation columns are chief devices for the CDU
processes. In the construction of rigorous distillation models, a series
of equations, such as the mass balance equations, enthalpy balance
equations, equilibrium, and the summation equations collectively
termed as MESH equations are applied by stage-by-stage modeling
considerations (Chen, 2008).The MESH equations which are
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comprised of a large number of equations are applied on each stage
in a column. For example, if a column has C components (if C � 10)
and N stages (if N � 60), the total number of equations will be
2 × C × N +N (=1,260) (Chen, 2008). Therefore, figuring out the
distillation production performance from these equations is a time-
consuming task.

BI-SACOD approach

Bi-SACODwhich is proposed in this paper integrates surrogates
and support vector machines to handle time-consuming objectives
and constraints, it consists of three parts: Bi-level Surrogate column
Model Construction (Bi-SMC), Bi-level Model Management (Bi-
MM), and PSO Mixed-Integer Constraint Evolutionary (PSO-
MICE) search. Bi-SMC mainly implements the constructing or
updating of the global-local surrogate model. Bi-MM combines
global and local surrogates with rigorous CDU simulations for
the model management, and global and local optimal samples
searching is performed using PSO-MICE strategy.

Bi-SMC and Bi-MM

Data generation and sampling are critical points for online Bi-
SMC (Wang et al., 2017). For data generation, we use time-
consuming rigorous CDU simulations via a commercial
simulation platform Aspen Plus in this paper, three following
aspects are considered: selecting industrial input and output
variables, generating initial random samples, and infilling input
variables in the evolution process (Ibrahim et al., 2017). For each
input variable set, the corresponding outputs can be obtained by
simulating the rigorous CDU models. In this work, both structural
and operational input variables are selected and adjusted to improve
the performance of the crude distillation column, meanwhile, the
chosen output variables are related to the optimization objectives
and constraints.

Model management involves how to manipulate the surrogate
models to ensure that the designers acquire a reasonable solution
during the search process. Figure 1 illustrates the bi-level surrogate
model search diagram, where the solid line indicates the expensive
model to be optimized, in the top-level, global surrogate column
models are used to smooth out the local optima to speed up the
search, the hollow circles represent the potential samples from the
global dataset, whereas in the lower-level, the local surrogate column
models which are constructed from the best m% of the global dataset
are utilized to approximate the fitness landscape accurately, the solid
circles denote the potential samples from the local dataset.
Therefore, the search for the optimal expensive model can be
conducted by finding the optimal solution of the local surrogate
model.

PSO-MICE search

Here, we apply a PSO Mixed-Integer Constraint Evolutionary
(PSO-MICE) strategy to search for the CDU’s global and local
potential samples. The velocity and position updating for the
particles is described in Eqs 7–9. For all the continuous and
discrete decision variables, two ways are employed to deal with
the updating. If all the individuals satisfy the constrained feasible
domain, for discrete variables, the updating is shown in Eqs 7, 9
respectively, where �� is a rounding operator; and for continuous
variables, the updating refer to Eqs 8, 9, separately.

vg+1 � ⌊ωgv
g⌋ + ⌊c1r1 xpbest − xg( )⌋ + ⌊c2r2 xgbest − xg( )⌋ (7)

vg+1 � ωgv
g + c1r1 xpbest − xg( ) + c2r2 xgbest − xg( ) (8)

xg+1 � xg + vg+1 (9)
where ωg is the inertia weight described as Eq. 10 (Chatterjee and
Siarry, 2006) and gmax is the maximal number of generations.
Further, c1 and c2 are two positive constants, r1 and r2 are random
numbers in the range of [0, 1], and xpbest and xgbest represent the
personal best and the global best solutions individually.

FIGURE 1
Bi-level surrogate model search diagram.
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wg � 0.9 − 0.5
g

g max
(10)

Confronted with the distillation time-consuming MESH
equations, here, we adopt the SVM-feasibility approach to solve
constraint handling for both the global and the local searching
processes. New individuals generated by PSO-MICE are separated
into two families, i.e., feasible and infeasible solutions by SVM
classifier (Ibrahim et al., 2018). Only a winner individual is
eligible to update its velocity and position shown in Eqs 7–9.

Implementational description

The initial industrial CDU used in this study consists of a main
column with 60 stages, one condenser, three side strippers, and three
pump arounds (i.e., the top circulation reflux and two middle
circulation refluxes), as illustrated in Figure 2. The preheated
crude oil enters the column at the 52nd stage, numbered from
the top downwards, with the condenser as the first stage. In addition
to the two conventional products from the top and bottom of the
column, i.e., from unstabilized naphtha (UN) and long residue (LR),
the distillation unit processes 0.16 m3/s of crude into four products,
including light naphtha (LN), heavy naphtha (HN), light gas oil
(LGO), and heavy gas oil (HGO), and the residue. The main column
has five sections with 8, 12, 14, 10, and 8 sieve trays, respectively. The
HN, LGO, and HGO side strippers have 8, 7, and 8 trays in order.

The distillation uses steam at 250°C as the stripping agent. The
column’s steam flow rate is approximately 220 kmol/h, the reflux
ratio is 3.2, and the operating pressure is 1.0 Mpa, respectively. The
optimization objective, in this case, is to maximize the profit.
Additionally, the constraints considered in the process include
the lower and upper bounds of the optimization variables, and
the T5% and T95% True Boiling Point (TBP) temperatures. The
problem of how to maximize the profit can be expressed as follows:

Pr max � maxf x( ), x � xd, xs, xo{ }, xd, xo ∈ R, xs ∈ N
f x( ) � ∑

s∈S
CsFvol

l − CcFvol
c , l � 1, 2,/, Nproduct

s.t.
Fvol
l � MESH x( ), l � 1, 2,/, Nproduct

m≤ xs ≤ n, m, n ∈ N
xl ≤ xo≤ xh
lal ≤T5l ≤ ual, l � 1, 2,/, Nproduct

lbl ≤T95l ≤ ubl, l � 1, 2,/, Nproduct

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(11)

where Cs and Cc represent the prices in United States dollars per
kilogram (USD/kg) for the products and the crude oil feed stock
individually, Nproduct denotes the number of CDU products; Fvol

l

and Fvol
c stand for the volumetric flow rates in cubic meters per

second of the final product and the crude oil, and T5l and T95l
define the boiling point temperatures of product l at 5% and 95%
separately. The volumetric flow rate of each product needs to satisfy
the MESH equations. Considering the problem of maximum
economic benefits, we select 15 decision variables, including the

FIGURE 2
Crude oil distillation column.
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CDU’s operating and structural variables. The operating variables
comprise the feed inlet temperature Tin, the pressure PT on the top
of the CDU, the CDU’s reflux ratio RT, the main stripping steam
flow Fs, three pump-around duties (PA1–PA3)Dpi, i � 1, 2, 3, three
pump-around temperature drops ΔTpi, i � 1, 2, 3. Meanwhile, the
structural variables contain the tray numbers in each section of the
column Si, i � 1, 2,/, 5. These variables must satisfy the bound
constraints, which are subject to the operational and structural
conditions’ upper and lower limits and the distillation product
quality expressed in terms of T5% and T95%.The 10%–90% TBP
curve, according to the ASTM-D86 standard of the crude oil, is
distributed at 245.0°C–797.2°C. Table 1 shows the base case values of
the selected decision variables.

For each product, three kinds of models are considered, the
definitions are as follows:

① Suri1:Global: F
vol
i � SFikri(Xs,Xo) ; Local: F

vol
i � SFirbf(xs,xo),

i � 1, 2, 3, 4;
② Suri2: T5i � ST5irbf(xs,xo), i � 1, 2, 3, 4;
③ Suri3: T95i � ST95irbf(xs,xo), i � 1, 2, 3, 4;

where Fvol
i is the flow rate of product i, and T5i and T95i

represent the boiling temperature of product i at 5% and 95%
vaporization, respectively. SFikri(xs,xo) and SFirbf(xs,xo) represent the
kriging (global) and RBF flow rate model (local model)
respectively. Thus, four initial Kriging global models for the
products’ flow rate and eight RBF networks for the products’
boiling temperatures at 5% and 95% are established for bi-SACOD.

Figure 3 illustrates the framework of the proposed approach.
First, the initial population P0 is generated by the Latin hypercube
design in the upper and lower bounds of the decision variables.
Subsequently, the functions of the objective and constraints are
evaluated by running the simulator of the CDU Aspen Plus at P0 to
create the initial samples, which are stored in the database Dt. And
then, the SVM classifier is constructed using all the samples inDt to
identify the convergent and non-convergent individuals. In the top
level phase, because it is not necessary to use all the data in Dt to
construct the global surrogate model, the samples size is adapted by
the current feasibility individuals in Dt, which size is:

max latindesign feasibility Dt( ), αNum Dt( )( ), Ng−min{ }
The individuals of the global database Dg are generated by the

Latin hypercube design of the feasibility individuals of Dt with
max(αNum(Dt), Ng−min) individuals, where, αNum(Dt)
represents the design numbers for Dg, α is a factor, and Ng−min

is the least number of Dg. At each generation, both the global and
local surrogate-aided searching phases should be performed. In the
global surrogate-aided phase, the kriging models functioning as the
global surrogates Skri are constructed from the global dataset Dg to
approximate the CDU original objective function, and two offspring:
Pg and Pg′ termed as the expectation improvement (EI) solution
and the best solution respectively are generated successively by
searching the Skri using PSO-MICE. Subsequently Pg and Pg′ are
reevaluated with the original CDU objective function and
constraints. If convergence is met, Pg and Pg′ are stored in the

TABLE 1 Base case values of the selected decision variables.

Item Lower bound Upper bound Base case

Operating condition

Feed inlet temperature (°C) (FIT) 330 480 365

Pressure (MPa) (P) 0.5 1.5 1.0

Reflux ratio (RR) 2.0 6.0 3.2

Stripping steam flow (kmol·h−1) (SSF) 610 1,460 1,120

PA1 duty (MW) (PAD1) 6.3 13.8 10.2

PA2 duty (MW) (PAD2) 10.2 21.3 16.3

PA3 duty (MW) (PAD3) 8.5 14.8 11.6

PA1 temperature drop (°C) (PAT1) 8 26 16

PA2 temperature drop (°C) (PAT2) 16 48 32

PA3 temperature drop (°C) (PAT3) 18 38 28

Number of trays

Number of trays S-1 (Ns-1) 5 20 10

Number of trays S-2 (Ns-2) 5 20 10

Number of trays S-3 (Ns-3) 5 20 10

Number of trays S-4 (Ns-4) 5 20 10

Number of trays S-5 (Ns-5) 5 20 10
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dataset Dt, otherwise, it should be deleted. When in the lower level,
the local RBF surrogate column model Srbf is constructed by
selecting the best 20% individuals from the dataset Dg, and Pl is
generated by searching the best individual of Srbf using PSO-MICE.
Pl is then reevaluated with the original CDU objective function and
constraints. If convergence is met, Pl is stored in Dt, otherwise, it
should be deleted. It should be noted that all the constraint
surrogates are constructed using the dataset Dt. The above
procedure is repeated until the termination criteria is met.

Results and discussion

To evaluate the effectiveness of the combination search
strategy of global and local surrogate column models in bi-
SACOD, we compare the proposed approach with the PSO-
Original-Only, PSO-Sur-Kriging, PSO-Sur-RBF, and SVM-

ANN (Ibrahim et al., 2018) algorithms. PSO-Original-Only is
a common CDU optimization approach with the rigorous CDU
model evaluation only, searching by the traditional PSO
algorithm. PSO-Sur-Kriging and PSO-Sur-RBF are approaches
only employing the Kriging and RBF surrogate column models
respectively. It should be noted that the Kriging and RBF
surrogate models used in this work are implemented using the
SURROGATES toolbox (Viana and Goel, 2010). SVM-ANN is an
ANN surrogate combined with the SVM feasibility penalty
constraint-handling method that is recently proposed (Ibrahim
et al., 2018). Besides, the parameters of bi-SACOD are set as
follows: NP = 80, c1 = c2 = 0.5, α � 0.2, and Ng−min � 100. SVM-
ANN parameters are from the paper (Ibrahim et al., 2018). The
maximum generation number of all comparative algorithms is
defined to 1,000. The PSO utilized in all comparative algorithms
shares the same parameter settings. It should be noted that the
constructing and updating of the global-local bi-level surrogate

FIGURE 3
The framework of the Bi-SACOD.
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CDU models utilize the rigorous distillation column simulations,
which are facilitated via an interface between the commercial
simulation platform Aspen Plus and MatLab R2012.

To further compare the proposed algorithm with other methods,
the following three performance metrics are implemented:

1) Success rate (SR): This represents the percentage of successful
runs that can find feasible solutions within the given maximum
number of generations.

2) Number of rigorous model evaluations (REs): This is an
important performance metric for the time-consuming
optimization system. It denotes the number of CDU rigorous
model evaluations to reach successful conditions.

3) Convergence speed (CS): This can be described as follows:

CS � 1 − fg − fg−1
fg − f0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (12)

wherefg andfg−1 define the objective values atg andg − 1 generations,
respectively, and f0 stands for the initial time of the objective value. If
“CS” approaches “1” with deviations of 10−3 during ten consecutive
generations, we consider that the search is in the convergence state,
termed as “CS ≈ 1” . Therefore, smaller REs at “CS ≈ 1” implies a better
convergence speed. Table 2 summarizes the average statistics of SR and
REs at “CS ≈ 1” based on five comparative approaches for 20 runs.

TABLE 2 Comparative performance metrics of the algorithms for average of
20 runs.

Approaches SR (%) REs at “CS ≈ 1”

PSO-Original-Only 86.24 3,620.2

PSO-Sur-RBF 87.12 2,992.5

PSO-Sur-Kriging 85.12 2,812.6

SVM-ANN 94.27 4,000.0

Bi-SACOD (Ours) 96.31 2,820.4

FIGURE 4
Optimization results for the comparative approaches. (A) Economic profit profiles (B) Economic profit profiles with REs of CDU.

TABLE 3 Comparison of the optimization results.

Approaches Some main decision variables Optimization
results

FIT
(℃)

P
(MPa)

RR PAD1
(MW)

PAD2
(MW)

PAD3
(MW)

PAT1
(℃)

PAT2
(℃)

PAT3
(℃)

Ns-
1

Ns-
2

Ns-
3

Ns-
4

Profit
105US$/D

Before
optimization

360 1.0 3.2 10.2 16.3 11.6 16 32 28 8 12 14 10 0.67

PSO-Original-
only

362 1.2 3.1 12.2 14.3 12.6 14 28 29 6 10 16 12 2.99

PSO- Sur-kriging 367 1.8 2.8 16.1 19.4 12.1 18 39 17 9 10 12 15 2.71

PSO- Sur-RBF 363 1.4 3.6 13.2 17.1 12.3 19 36 21 10 6 13 15 2.79

SVM-ANN 353 1.5 3.5 15.2 17.3 19.6 12 36 24 9 10 12 13 2.53

Bi-SACOD 363 1.3 3.0 13.6 15.3 13.8 17 30 30 7 13 15 9 2.88
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It is clear that only Bi-SACOD and SVM-ANN could obtain
their optimal solutions with a high success rate (SR); Bi-SACOD
saves the number of REs up to 2,820, considerably smaller than that
of SVM-ANN. Although the REs at “CS ≈ 1” for PSO-Sur-Kriging
are nearly similar to those of Bi-SACOD, the SR metrics for PSO-
Sur-Kriging are remarkably lower. In general, both SR and REs
metrics at “CS ≈ 1” for PSO-Original-Only and PSO-Sur-RBF are
slightly inferior to those of the other approaches. From the above, we
infer that Bi-SACOD has a better success rate and convergence
speed than the other methods.

Figure 4A plots the CDU average economic profit profiles in
the 20 runs of the comparative algorithms. It indicates that PSO-
Original-Only achieved the highest profit, while Bi-SACOD is
the second. PSO-Sur-RBF reached a slightly higher profit than
PSO-Sur-Kriging, while the convergence speed of PSO-Sur-
Kriging is marginally higher than that of PSO-Sur-RBF, this
is probably because the local optimum is trapped with the search
of PSO-Sur-Kriging. As far as the number of original CDU
evaluations is concerned, as shown in Table 2. The rigorous
model evaluations number of the PSO-Original-Only is 3,620.2,
while the evaluation number of Bi-SACOD, PSO-Sur-Kriging,
and PSO-Sur-RBF is 2,820.4, 2,812.6, and 2,992.5 in order.
Therefore, the original model evaluation number of Bi-
SACOD is considerably smaller than that of the PSO-
Original-Only method.

Figure 4B illustrates the CDU column comparative economic
profit profiles with the REs of the original model simulation. As
shown in Figure 4B, REs from 0 to 1,000 formed the data-sampling
period, and the profit of the CDU is maintained in the initial state
before optimization. The slow change in the profit of Bi-SACOD
labeled as “A”, “B”, and “C” attributed to the fact that it is in the local
searching state. Figure 4B indicates that the plot of Bi-SACOD is
remarkably more consistent with that of the PSO-Original-Only
method.

Table 3 reflects the contributions of the proposed algorithm. We
can see from Table 3 that in the case of the Bi-SACOD approach, the
economic profit could reach USD 2.88 × 105/day, which is closer to
the profit of the PSO-Original-Only method (USD 2.99 × 105/day),
while the number of rigorous model evaluations of Bi-SACOD is
considerably reduced.

Conclusion

The evolutionary optimization design of CDUs is challenging
due to its mixed-integer variables with time-consuming
objectives and constraints. The presented work focuses on Bi-
SACOD approach for time-consuming objectives and constraints
of CDUs’ design. The main contributions of this work include:1)
For time consuming optimization design, we construct a two-
level global-local surrogate column model for CDU optimization,
in which global Kriging models are adopted to smooth out the
local optima to speed up the search, and RBF local models are

used to further approximate the fitness landscape. 2) Confronted
with the distillation time-consuming MESH equations, we
apply a PSO mixed-Integer constraint evolutionary
strategy and simultaneously adopt SVM-feasibility approach
to solve constraint handling for both the global and
local searching processes. The optimization results of the
CDUs show that Bi-SACOD outperforms the single-level
surrogate column model approaches, and are more
consistent with the rigorous CDU model optimization
approach, whereas the number of evaluations for time-
consuming rigorous models is significantly reduced. In
our follow-up research, we will further improve
the proposed method and extend it to other types of
distillation units.
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