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This paper presents a stochastic model predictive control approach combined
with a time-series forecasting technique to tackle the problem of microgrid
energy management in the face of uncertainty. The data-driven non-
parametric chance constraint method is used to formulate chance constraints
for stochastic model predictive control, while removing the dependency on
probability density assumptions of uncertain variables and retaining the linear
structure of the resulting optimization problem. The proposed approach is
suitable for implementation on systems with limited computational power or
limited memory storage, thanks to its simple linear structure and its ability to
provide accurate results within pre-defined confidence levels, even when using
small data batches. The proposed forecasting and stochastic model predictive
control approaches are applied on a numerical example featuring a small grid-
connected microgrid with PV generation, a battery storage system, and a non-
controllable load, showing the ability to reduce costs by reducing the confidence
level, and to satisfy pre-defined confidence levels.
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1 Introduction

Optimal energy management in microgrids with distributed energy generation is a key
tool to support the integration of renewable energy sources (RES), maximizing their use to
lower greenhouse gas emissions, and to mitigate the uncertainties caused by non-
dispatchable loads, RES production dependency on weather conditions, and intra-day
energy prices (Parisio et al., 2014). Moreover, the increasing availability of local energy
storage devices, like batteries, requires proper management to extract their full potential, and
it provides additional degrees of freedom for optimal energy management strategies. The
topic of energy management in microgrids has been widely investigated in recent years, both
for the single-energy and for multi-energy scenarios (Dörfler et al., 2016; Raimondi
Cominesi et al., 2018; Khayat et al., 2020; Ceusters et al., 2021; Wang et al., 2021).

The efficient integration of RES into microgrids is a challenging task due to their
intermittent generation profile, high variability, and low predictability. In recent years, a
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variety of approaches have been proposed to address the energy
optimization problem with a tractable formulation while taking into
account the presence of uncertainties in the problem of optimal
operation of microgrids. Such approaches could be, in principle,
divided into two main categories: deterministic robust optimization
and stochastic optimization methods. Robust, or worst-case,
optimization is a class of approaches where constraint violation
is not allowed for any possible realization of uncertainties, usually
resulting in computationally demanding algorithms and
conservative solutions (Magni et al., 2003; Mayne et al., 2006;
Cannon et al., 2009; Limon et al., 2009; Rawlings and Mayne,
2009). On the other hand, stochastic optimization methods have
been developed to take advantage of possible prior knowledge about
the stochastic characteristics of uncertain variables, such as their
probability density function (PDF), by reformulating the energy
optimization problem in a probabilistic framework.

Several literature contributions indicate stochastic
programming as a promising tool for handling uncertainties in
optimization problems (Mirkhani and Saboohi, 2012). Usually, the
stochastic optimization approaches proposed in the microgrid and
smart grid literature address the problem of minimizing energy costs
and/or greenhouse gas emissions, while taking into account
uncertainties in RES generation and load forecasts (Anderson
et al., 2011; Niknam et al., 2012). Quite often, the resulting
stochastic optimization problem is formulated as a mixed-integer
nonlinear program, on which decomposition techniques or
heuristics are applied (Baziar and Kavousi-Fard, 2013; Cardoso
et al., 2013; Zhang et al., 2013; Ji et al., 2014; Mohammadi et al.,
2014). One example of taking prior knowledge combined with
confidence levels is day-ahead interval optimization considering
observed historic forecast residuals (Kaffash et al., 2021). Stochastic
model predictive control (SMPC) is often considered a promising
approach to introduce the presence of stochastic terms into the
energy optimization problem (Patrinos et al., 2011; Hooshmand
et al., 2012; Farina et al., 2013; Parisio and Glielmo, 2013; Schildbach
et al., 2014; Su et al., 2014; Parisio et al., 2016; Raimondi Cominesi
et al., 2018). Here, several approaches rely on Monte Carlo methods
to generate a set of possible scenarios that are used to represent the
fluctuations of the uncertain variables and optimize over the
expected costs with respect to each scenario. Other SMPC
formulations proposed in the literature rely on probabilistic
constraints on input and state variables formulated using the
Chebyshev–Cantelli inequality or are based on point-wise
reformulation in deterministic terms (Bernardini and Bemporad,
2012; Zhou and Cogill, 2013; Korda et al., 2014; Farina et al., 2015).

Although randomized and scenario-based SMPC approaches
are very promising, they could be computationally demanding for
practical implementation (Blackmore et al., 2010; Prandini et al.,
2012; Calafiore and Fagiano, 2013). Moreover, a common
assumption for various SMPC approaches is the knowledge of a
parametric PDF for the uncertain variables of the problem, which is
not always satisfied. To address those issues, the data-driven non-
parametric chance constraint (DNCC) approach was proposed
(Ciftci et al., 2019b; Ciftci et al., 2019a; Wu et al., 2019; Wu
et al., 2021; Wu and Kargarian, 2023). The DNCC method uses
historical data to determine non-parametric PDFs from data for
each random variable at each time instant, instead of relying on
axiomatic or model-driven probabilistic approaches, i.e., no

assumption on the PDF of the random variables is required. The
DNCC approach then adjusts the confidence level of the chance
constraints based on the uncertainty of the estimated PDF to ensure
satisfaction of the constraints with the pre-defined confidence, in
face of uncertainties and PDF estimation errors. The DNCC
approach results in an accurate, yet simple-to-implement
approach, where the probabilistic constraints are reformulated
as linear algebraic constraints, allowing one to formulate
microgrid energy optimization problems as linear or quadratic
programs that are easier to solve, even on systems with low
computational power.

In this paper, we apply the DNCC approach to the microgrid
energy management problem within an SMPC framework, in
combination with a modification of the forecasting model
proposed in previous works (Lauricella et al., 2020; Lauricella
and Fagiano, 2023). The approach relies on a linear prediction
model and on a fictitious input signal to capture the seasonality of
time series. We modified the original DNCC approach to apply it to
the residuals of the forecasting models. Additionally, instead of the
commonly used point-wise error technique to determine the
confidence set size for the estimated PDF, we adopt the data
bootstrapping approach of Fiorio (2004). Both the DNCC
method and the forecasting model provide good accuracy even
when using a small dataset for the training phase (here, we use
3 weeks of historical data: the first two for the training of the
forecasting model and the third for the estimation of the PDF
and confidence intervals of the DNCC approach). This allows us
to obtain a receding-horizon SMPC with a linear structure, which is
suitable for practical implementation on systems with low
computational power and limited memory storage. Numerical
results show that the SMPC is able to reduce costs when
reducing chance-constraint confidence levels compared to a
nominal MPC. The SMPC is able to satisfy the pre-defined
confidence levels of the constraints when directly applied during
the day with actual realizations of load and PV power generation.

1.1 Contributions

This article presents a receding-horizon SMPC approach for
energy management in a microgrid with local non-dispatchable
renewable energy generation, a battery storage system, and an
uncertain non-controllable electrical load. We use a modified
linear forecasting model based on the fictitious input approach of
Lauricella et al. (2020) to predict the future PV energy generation
and the electrical load using only 2 weeks of data for model training.
Then, we apply the modified DNCC approach of Ciftci et al. (2019a)
to the residuals of the prediction models evaluated over 1 week of
data. This allows us to obtain an algebraic constraint formulation
that satisfies operational constraints in face of uncertainties to a pre-
defined confidence level. The obtained algebraic constraints are then
used to formulate a stochastic model predictive control for optimal
energy management in a deterministic way.

The main contributions of this work can be listed as follows:

• We applied, for the first time, the forecasting method of
Lauricella et al. (2020) based on the fictitious input in a
receding-horizon fashion to the SMPC framework, showing
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both its accuracy on small datasets and its advantages for
optimal control applications.

• We introduced a regularization term to the forecasting
method to avoid overfitting during the training of the
prediction model for receding-horizon forecasting.

• We modified the original DNCC approach of Ciftci et al.
(2019a) to apply it to the prediction residuals instead of
applying it directly to forecasts. This allows for adaptivity
of the forecasts to changing weather conditions.

• We replaced the point-wise error technique of the original
DNCC approach with the bootstrapping approach of Fiorio
(2004) to statistically improve the sizing of the confidence set
of the estimated PDF.

• We demonstrate with numerical results that the SMPC is able
to satisfy the pre-defined operational constraint confidence
levels, how the reduction of robustness by choosing lower
confidence levels reduces energy costs, and its applicability on
a system with limited computational power.

• We provide an easy-to-follow step-by-step guide for the
application of the presented SMPC approach to allow an
easy repeatability of the obtained results and, in general, of
the DNCC implementation.

1.2 Article structure

This paper is organized as follows. Section 2 presents the
motivation and approach outline, and Section 3 describes the
model learning procedure for time series forecasting. Section 4
presents our formulation of the data-driven non-parametric
chance-constrained approach for energy optimization problems,
while Section 5 introduces its practical implementation within
the SMPC framework, and Section 6 discusses the numerical
results. Finally, Section 7 concludes the paper and provides
directions for future work.

2 Motivation and approach

The main motivation for this work lies in the desire to have a
lightweight microgrid energy optimization approach that could
deliver good performance in face of uncertainties due to
unknown load and unpredictable RES power generation using a
limited amount of data for training and tuning, and having a rather
simple mixed-integer linear program (MILP) at its core. The main
target for such an approach is the implementation of systems with
limited computational power and reduced memory storage. To
achieve this goal, we resort to the linear prediction models with
fictitious input of Lauricella et al. (2020) to forecast the microgrid’s
load and PV power generation, which demonstrated good
forecasting accuracy even when trained on a small amount of
data (i.e., 1 or 2 weeks of historical data) (Lauricella and Fagiano,
2023). Moreover, we adopt the DNCC approach of Ciftci et al.
(2019b) since it requires no a priori knowledge of the true
distribution of uncertain quantities, but it provides a method to
estimate it from data. In addition, it provides a methodology to
convert the resulting chance constraints into linear algebraic
constraints, thus allowing us to formulate a mixed-integer linear

optimization problem to solve the receding-horizon energy
management task.

A high-level conceptual overview of the approach is given in
Algorithm 1. We denote the first day of a week with w. Here, the
assumption is that the data of past 3 weeks are available ([w − 3, w]).
The models described in Section 3 are trained on the first 2 weeks of
the dataset. Then, they are evaluated based on the third week, and
the distribution of the residuals is learned with the DNCC method
described in Section 4. Next, the SMPC described in Section 5 is used
to obtain optimal control decisions for every time step t with a
control resolution of 15 min within the current week ([w, w + 1]). At
the end of the current week, the dataset is shifted by including the
data of the newly observed week and discarding the data of the oldest
week. This process is then repeated, resulting in a continuous
receding-horizon control of the microgrid.

Algorithm 1. High-level overview of the approach

3 Prediction model learning

To predict the future behavior of the microgrid’s load and the
PV power generation, we adopt the forecasting method proposed in
Lauricella et al. (2020). It relies on a linear time-invariant auto-
regressive model with exogenous input (ARX) and on a synthetic
input signal. The method allows good prediction accuracy even
when trained on small data batches, as shown in Lauricella and
Fagiano (2023). The key contribution here is the modification of the
forecasting method, by training it for multi-step prediction in a
receding-horizon fashion, to be used for multi-step forecasts newly
generated at every control step of the receding-horizon SMPC,
instead of a single day-ahead forecast. This includes the addition
of the regularization term in Eq. 7.

It is worth noting that different forecasting models and methods
can be used to predict the behavior of the uncertain variables, in
place of the ARX predictors used here. Depending on the size of the
available dataset and on the available computational power,
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methods like double exponential smoothing, persistence algorithms,
predictive clustering models, support vector machines, machine
learning, and deep learning approaches could be more suitable
and achieve better forecasting accuracy, see, for example, Dutta
et al. (2017); Nowotarski and Weron (2018); Hong et al. (2020);
Aslam et al. (2021)). However, the use of linear ARX predictors
trained, and periodically re-trained, on smaller data batches could
improve forecasting accuracy in face of unusual and fast-changing
energy prices and weather patterns.

3.1 Model description

We consider a multiple-input single-output ARX prediction
model, where we have a linear dependency between future
predictions of a signal with its past occurrences and with
appropriate input signals. Let us denote with ŷθ(k|t) the
predicted value of a time series at time step k, given the data
available at time t, the model parameter vector θ, and the length
of the prediction horizon K. Then, we obtain the following
prediction model:

ŷθ k|t( ) � φ k − 1( )T · θ, k ∈ t + 1, . . . , t +K[ ] (1)
The vector θ ∈ Rny+nu ·du+nf denotes the model weights, and
φ(k) ∈ Rny+nu ·du+nf is the regressor, defined as

φ k( ) � Yr k( )T, Ue k( )T, Uf k( )T[ ]T (2)

The regressor Eq. 2 consists of an auto-regressive part denoted by
Yr(k) ∈ Rny and two exogenous components, namely, the external
input Ue(k) ∈ Rnu ·du and a fictitious input Uf(k) ∈ Rnf . The auto-
regressive component Yr and the external input vector Ue are
defined as

Yr k( ) � y k( ), . . . , y k − ny + 1( )[ ]T
Ue k( ) � ue k( )T, . . . , ue k − nu + 1( )T[ ]T (3)

Since we use the one-step-ahead predictor Eq. 1 recursively, to obtain a
multi-step forecast of the load and PV power generation, Yr is initialized
with the most recent ny past measurements for the first prediction
step. Then, Yr is filled with past predictions as the model is iterated
over time until the end of the prediction horizon. For example, to obtain
ŷ(t + 2|t), the auto-regressive component would become
Yr(t + 1) � [ŷθ(t + 1|t), y(t), . . . , y(t + 2 − ny)]. The external input
vectorUe in (3) contains themost recentnupast input signals of dimension
du, with relevant information for the prediction of the considered time
series. These can be external temperature and humidity measurements
and/or forecast of weather and solar irradiation provided by an external
service. Tomodel the (nonlinear) periodic behavior of the considered time
series while using a linear predictor, an additional fictitious signal is
provided as input to the model. Such fictitious cyclic time encoding
consists of sine and cosine functions having a given number of pre-selected
time periods, and it is defined as follows:

Uf k( ) � sin 2π·ts k( )
60·60·p1( ), . . . , sin 2π·ts k( )

60·60·p6( ), cos 2π·ts k( )
60·60·p1( ), . . . , cos 2π·ts k( )

60·60·p6( )[ ]T
(4)

The decision on the pre-selected time periods is based on the
selected non-overlapping windows for the optimization objective

in (7) and should be chosen by cross-validation. The variable p
represents the period in hours, and for practical implementation on
a computational unit, the time step k needs to be converted to ts(k)
having a UNIX timestamp representation in seconds to be correctly
inserted in (4). This guarantees that the described model is actually
time-invariant.

3.2 Model identification

The prediction model Eq. 1 is trained on historical data by
minimizing the simulation error obtained by recursive iteration of
the one-step day-ahead predictor given the initial conditions Yr0 �
[y(t), . . . , y(t − ny + 1)]T over the prediction horizon K for each
time step t ∈ N. This is done to train the model for forecasting in a
receding-horizon fashion, i.e., generating new forecasts at every
control step t of the SMPC. Assuming we have N available data
points, the model training procedure can be described with the
following optimization problem:

θ* � arg min
θ

∑N−K−1

t�0
∑t+K
k�t+1

‖y t + k( ) − ŷθ k|t( )‖22 (5)

Note that (5) is a nonlinear optimization problem since, by iterating
the prediction model recursively, the resulting cost has a polynomial
dependency on θ. Even if N is small, the dimension of the objective
in (5) can grow very quickly depending on the prediction horizon K.
To avoid long computation times during the model identification,
we relax the objective to only contain D � �NK� non-overlapping
prediction windows of the horizonK. The floor operation can lead to
some information loss at the tail of the dataset; thus, ideally, the
dataset should be chosen such that �NK� � N

K. To simplify the
notation, we define the prediction and the measurement vectors as

Ŷθ t( ) � ŷθ t + 1|t( ), . . . , ŷθ t +K|t( )[ ]
Y t( ) � y t + 1( ), . . . , y t +K( )[ ] (6)

Due to the small size of the dataset, we introduce a regularizing term
which is added to the objective function to reduce overfitting. The
relaxation of (5) together with (6) and the regularization term
result in

θ* � arg min
θ

∑D
i�0

‖Y i ·K( ) − Ŷθ i · K( )‖22 + λ · ‖θ‖22 (7)

A larger value of the hyperparameter λ corresponds to a sparser
structure of θ, and a smaller value corresponds to more
flexibility in the magnitudes of θ. Larger values of λ avoid
overfitting, but have a negative influence on training
accuracy since they force a simpler model structure. On the
other hand, smaller values of λ allow for closer resemblance of
the training data, which could reduce model generality. The
tuning of λ is a trade-off between good fitting performance and
model generality; thus, it is recommended to tune its value via
cross-validation. Since the optimization problem has become a
ridge regression, we need to normalize our data to have a zero
mean and unitary variance; otherwise, the regularization term
would not function properly due to the different magnitudes of
the signals. Thus,
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~ue k( ) � ue k( ) − E ue[ ]
Var ue[ ] , ~y k( ) � y k( ) − E y[ ]

Var y[ ] (8)

where E[·] and Var [·] represent, respectively, the expected value
and the variance operators.

4 Data-driven non-parametric chance
constraints

This section presents the theoretical background and the
implementation details of the data-driven non-parametric
chance-constrained approach of Ciftci et al. (2019a), together
with the novel contributions proposed in this work. As remarked
in Section 1, this approach uses adaptive kernel density estimators to
construct an estimate of the probability density functions of random
variables from historical data. The use of kernel density estimators
requires no assumptions on the real probability distribution and
density functions of the random variables affecting the system at
hand. Here, data bootstrapping is used to account for forecasting
errors, providing a method to adjust the predefined confidence levels
with respect to the estimated density function errors evaluated on
bootstrapped data samples. The resulting chance constraints are
then formulated as algebraic constraints by evaluating the quantile
function derived from the estimated density function.

The data-driven non-parametric chance-constrained approach
contains the following steps.

• The estimation of the probability density function of a random
variable from historical data, using kernel density estimation,
and tuning the kernel function bandwidth using Scott’s rule.

• The computation of the confidence set size of the estimated
probability density function using data bootstrapping to
evaluate the estimation errors.

• The computation of the reduced risk level adjusted to the size
of the estimated density function confidence set.

• The reformulation of the corresponding chance constraints
with the reduced risk level.

• The reformulation of the chance constraints as algebraic
constraints to be included in the stochastic model
predictive control problem using the inverse of the
estimated cumulative distribution function based on the
adjusted risk level.

Each of these steps is described in the following sub-sections.

4.1 Kernel density estimation (KDE)

Let us denote an uncertain quantity as the random variableX and its
distribution function asPX. In the classic chance constraint formulation,
the expression that a randomly drawn valueX ~ PX will be less or equal
to a value ~x with a probability 1 − α can be written as

PX X≤ ~x( )≥ 1 − α (9)
Here, we designate 1 − α the confidence level, and α is the risk level.
We assume no prior knowledge of the true distribution function PX.
Instead, we want to find an estimate f̂X of the true probability

density function (PDF) using kernel density estimation (KDE). Such
an estimate will then be used to formulate data-driven non-
parametric chance constraints which can be used for stochastic
optimization.

Given a dataset V � [x1, x2, . . . , xn], xi ∈ R of n samples from a
probability distribution function PX, an estimate f̂X of the true
probability density function fX can be found with KDE as

f̂X x( ) � 1
nh

∑n
i�1

K
x − xi

h
( ) (10)

Here, h ∈ R denotes the bandwidth, and K(x) is the kernel function.
We adopt the Gaussian kernel functionK(x) � 1

2π
√ e−0.5x2 , but other

kernels such as the Epanechnikov or uniform kernel can be used as
well. We choose the Gaussian kernel due to its smoothness
characteristic. It has shown smoother and more general
distributions on small datasets than other kernels. The choice of
the bandwidth has a significantly higher influence on PDF
estimation than the choice of the kernel function, and it should
be chosen according to the available samples. For simplicity, we
chose the bandwidth as h � n−1

4 according to Scott’s rule (Scott,
1992).

By law of large numbers, the estimated PDF f̂X will converge to
the true density function fX as n → ∞ (Tsybakov, 2009). Since we
have only limited data samples from the unknown distribution
available, the KDE will not converge to the true distribution,
which results in an uncertainty in the estimation.

4.2 Data-driven chance constraints

Considering that we can only estimate the true PDF using a
finite dataset, we know that our estimation will have errors. Jiang
and Guan (2016) propose a quantification of these errors and a
method to include them in the chance constraint formulation. Here,
the estimated distribution function P̂X is assumed to lie within a
confidence set D of probability distribution functions P, whose ϕ-
divergence to the estimated density function is less than a certain
confidence set size d. D is defined as

D � P ∈ M+: Dϕ f‖f̂X( )≤ d, f � dP

dx
{ } (11)

In this work, we only consider 1-dimensional random variables;
therefore, X ~ PX,X ∈ R. We denote with M+ the set of all
probability distributions. Then, the divergence Dϕ(f‖f̂) is
defined as

Dϕ f‖f̂( ) � ∫
R

ϕ
f x( )
f̂X x( )

⎛⎝ ⎞⎠f̂X x( )dx (12)

To account for the uncertainty in the probability distribution
estimation, the classic chance constraint Eq. 9 is reformulated to
hold for every distribution within the confidence set:

inf
P∈D

P X≤ x̂( )≥ 1 − α (13)

To reformulate the chance constraint that holds for all P ∈ D, the
risk level α is reduced to α′ according to the confidence set size d.
Here, we choose the ϕ-divergence to be the χ-divergence of order 2,
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defined by ϕ(x)≔(x − 1)2 for risk levels α ≤ 1/2. This choice allows for
a closed-form derivation of the reduced risk level α′ (Jiang and
Guan, 2016). Then, the reduced risk level α′ is given by

α′ � α −

d2 + 4d α − α2( )√ − 1 − 2α( )d

2d + 2
(14)

To avoid negative values for the risk level, the final risk level α+′
is chosen as α+′ � max(α′, 0). Note that in reality, the risk level
rarely becomes negative, and in this work, it is not negative
as well. This formulation is mainly made for consistency. With
the reduced risk level, the chance constraint can be
reformulated as

P̂X X≤ ~x( )≥ 1 − α+′ (15)
Now, the chance constraint depends only on our estimated
distribution and the confidence set of the estimated
distribution. This chance constraint can now be easily
reformulated to an algebraic representation by calculating the
cumulative distribution function F̂X and then using its inverse
F̂
−1
X (the quantile function) to determine ~x given a confidence 1 −

α as

F̂X ~x( ) � P̂X X≤ ~x( )≥ 1 − α+′ 5 ~x≥ F̂
−1
X 1 − α+′( ) (16)

Evaluating F̂
−1
X (1 − α+′ ) yields a value ~x that will be greater/equal

than any random variable X drawn from any distribution inD, with
a probability of at least 1 − α. This makes sure that the user-defined
confidence 1 − α is realized with respect to the uncertainty in the
estimation P̂X.

4.3 Confidence set size d

As the last step of the DNCC approach, we need to
determine a confidence set size d to construct the reduced
risk level. Ciftci et al. (2019a) proposes using point-wise
errors between the estimated density function f̂X and a
histogram of the available data. Since the performance of
point-wise errors with histograms can change significantly
depending on the chosen histogram bins, we use a different
approach to construct confidence intervals of the estimated
PDF, as proposed by Fiorio (2004).

The general confidence interval for the estimated
density function f̂X of the probability distribution of X can
be written as

E f̂X x( ){ } ∈ f̂X x( ) − u1− α/2( ) · s, f̂X x( ) − uα/2 · s[ ] (17)

Since the variance of the estimation is unknown, the sample variance
s2 is used to construct the confidence interval. The values u1−(α/2) and
uα/2 are the 1 − (α/2) and α/2 quantiles of the t-statistic defined in
(18), respectively.

tX x( ) � f̂X x( ) − E f̂X x( ){ }
s x( ) (18)

With the t-statistic, the quantiles are defined as P(tX ≤ uα/2) � α/2
and P(tX ≤ u1−(α/2)) � 1 − (α/2), respectively. It is important to
make sure that the t-statistic in (18) is unbiased, such that uα/2 ≤ 0

and u1−(α/2) ≥ 0. In Fiorio (2004), the unbiased t-statistic
is obtained by applying bootstrapping to the estimate f̂X as
follows.

Let xi* denote the bootstrapped data samples obtained by n
times random sampling with replacement of data points from
the original dataset V. With the total number of samples
denoted as n, the bootstrap KDE can be formulated, similarly
to Eq. 10, as

f̂X* x( ) � 1
nh

∑n
i�1

K
x − xi′
h

( ) (19)

The sample variance of the estimated density function f̂X is given by
(20), and its bootstrap analog s2*X (x) by replacing the data points xi
with the bootstrapped data points xi*, and the estimated f̂X with the
bootstrapped estimate f̂X* .

s2X x( ) � 1
nh2

∑n
i�1

K
x − xi

h
( )2

− f̂X x( )2
n

(20)

With the bootstrap estimate f̂X* and the bootstrap sample variance
s2*X , the unbiased t-statistic tX* (x) is defined as

tX* x( ) � f̂X* x( ) − f̂X x( )
sX* x( ) (21)

Now, the quantiles can be obtained from the unbiased t-statistic
with P(tX* ≤ uα/2* ) � α/2 and P(tX* ≤ u1−(α/2)* ) � 1 − (α/2).
These quantiles together with the sample variance s2X can
finally be used to construct the confidence interval for the
estimate f̂X:

E f̂X x( ){ }U � f̂X x( ) − sX x( ) · uα/2*

E f̂X x( ){ }L � f̂X x( ) − sX x( ) · u1− α/2( )*
(22)

Finally, we use the obtained confidence intervals to construct the
confidence set size of our distribution function estimate P̂X. The
confidence set size d is defined as

d � E f̂X x( ){ }U − E f̂X x( ){ }L( )2{ }
1−α

(23)

Here, the subscript denotes the 1 − α quantile of the point-wise squared
distances between the upper and the lower confidence bound.

5 Stochastic model predictive control

In this work, we focus on a single-energy microgrid consisting of
an electric load (Pl [kW]), a photovoltaic power generation system
(Ppv [kW]), a battery that can charge (Pc

b [kW]) and discharge
(Pd

b [kW]), and a connection to the main grid (Pg [kW]), as shown
in Figure 1. Here, it is assumed that the considered microgrid can
only consume energy from the grid at a time-varying price Cg [NOK/
kWh] and cannot resell excess energy to the grid. Therefore, excess
energy is curtailed (Pcur [kW]), i.e., “thrown away.” This decision is
based on the real use case from TronderEnergi (2021), as mentioned
in Section 6. The goal is to optimally control the microgrid such that
the cost of importing energy from the grid is minimized.

We choose receding-horizon model predictive control (MPC) to
tackle the problem of optimal energy management in the considered
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microgrid since it allows to easily account for the operational
constraints of the battery storage system, and it can react to
disturbances in the load and PV power generation. Moreover, to
ensure robust performance to a user-specified risk level, we resort to
a stochastic model predictive control (SMPC) formulation based on
the data-driven non-parametric chance constraints presented in
Section 4.

5.1 Preliminaries

Let t be the time instant for which a control decision has to bemade,
as described in Algorithm 1. Then, by implementing the receding-
horizon SMPCwith a fixed prediction horizon of lengthK, the resulting
controller will plan the controllable inputs for all the next time steps k ∈
[t, t +K]. Then, only the first control decision corresponding to the time
step k = t is implemented. The entire procedure is then iteratively
repeated for all the following time steps within the current week of
operation. All power variables are defined to be non-negative:

Pg k( ), Pcur k( ), Pc
b k( ), Pd

b k( )≥ 0, ∀k ∈ t, t + K[ ] (24)

5.2 Objective

Since the goal is to minimize the total grid energy import cost
over the considered prediction horizon K, the objective function for
the SMPC can be formulated as

∑t+K
k�t

Pg k( ) · Cg k( ) (25)

5.3 Battery

The battery storage system here is described by a simple state-
space model with one state representing the battery state of charge. It

is assumed that the battery model is deterministic, i.e., control
decisions regarding charging and discharging power will be
executed exactly as mandated by the SMPC. We neglect the
battery’s internal dynamics and all the external disturbances
acting on the battery storage system. Let Esoc(k) denote the state
of charge of the battery at time step k in kWh; ηc and ηd the charging
and discharging efficiencies in percent, respectively; and Δt the
duration of one time step in hours. Hence, the battery model is
described by

Esoc k + 1( ) � Esoc k( ) + ηcP
c
b k( ) − 1

ηd
Pd
b k( )( ) · Δt, ∀k ∈ t, t +K[ ]

(26)
The state of charge at the first time step k is initialized with the
realized state of charge as available from the previous time step t − 1.
To protect the battery and increase its lifespan, we add lower and
upper bounds for the state of charge in the optimization problem:

Emin
soc ≤Esoc k + 1( )≤Emax

soc , ∀k ∈ t, t +K[ ] (27)
Furthermore, the battery charging and discharging capacities are
limited as well, and to ensure that the battery is not charged and
discharged at the same time, we introduce the binary decision
variables δc and δd. Here, δc(k) = 1 means that the battery will be
charged at time step k; therefore, δd(k) has to be 0 for the same time
instant. These constraints are formulated as follows:

0≤Pc
b k( )≤Pc,max

b · δc k( )
0≤Pd

b k( )≤Pd,max
b · δd k( )

0≤ δc k( )≤ 1, ∀k ∈ t, t +K[ ]
0≤ δd k( )≤ 1

δc k( ) + δd k( )≤ 1

(28)

5.4 Power balance

TheMPC controller is required to maintain the balance between
the overall power generation and consumption of the microgrid over
the prediction horizonK. This operational requirement results in the
following equality constraint:

Pg k( ) + Pd
b k( ) + Ppv k( ) � Pl k( ) + Pc

b k( )
+Pcur k( ), ∀k ∈ t, t + K[ ] (29)

In (29), Pg(k) and Pcur(k) are considered state variables, Pd
b(k) and

Pc
b(k) are control variables, and Ppv(k) and Pl(k) denote the true

photovoltaic power generation and the load consumption,
respectively, which are both uncontrollable and unknown
variables for the MPC. The equality constraint in (29) can be
reformulated to include the forecasts of the uncertain variables
instead of their true but unknown values. Here, we assume that
Ppv(k) and Pl(k) can be expressed as their predictions plus a residual
term as

Ppv k( ) � P̂pv k( ) + ~Ppv k( )
Pl k( ) � P̂l k( ) + ~Pl k( ) (30)

Here, P̂pv and P̂l denote, respectively, the PV and load forecast
obtained with the prediction model described in Section 3, while ~Ppv

FIGURE 1
Graphical depiction of the considered microgrid, with arrows
indicating the permitted energy flow directions.
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and ~Pl denote the error terms (i.e., the residuals). To capture the
stochastic nature of load and PV generation, we assume that the
error terms are stochastic variables following unknown probability
distributions. We adopt the procedure presented in Section 4 to
estimate such probability distribution on historical error data
obtained by comparing the predictions with their true
realizations from the available validation dataset.

We assume that the prediction for time step k at the same time t
will have similar errors over different days, i.e., ~P(k|t) ~ ~P(k|t + 24h).
Therefore, the error ~P(k|t) of the prediction for time k at time step t
will follow the same probability distribution every day:
[~P(k|t), ~P(k|t + 24h), . . .] ~ P~P(k|td). Considering the division of a
day into Td time steps per day and, therefore, td ∈ Td, this results in a
total of Td · K probability distributions that need to be estimated
from data.

Given this probabilistic definition of the prediction errors, we
can now define a chance constraint to satisfy the power balance in
(29) for the true load and PV realizations with a pre-defined
confidence level. By substituting in (29) the true load and PV
generation with their forecast plus residual counterpart from
(30), we obtain the following equality constraint that depends on
the random variables ~Pl(k) and ~Ppv(k):

Pg k( ) + Pd
b k( ) + P̂pv k( ) + ~Ppv k( ) � P̂l k( ) + ~Pl k( ) + Pc

b k( ) + Pcur k( )
(31)

To ensure that this equality holds with a certain confidence 1 − α, the
following chance constraint can be formulated using an inequality
that will be later replaced in the optimization with an equality.

P(Pg k( ) + Pd
b k( ) + P̂pv k( ) + ~Ppv k( )≥ P̂l k( ) + ~Pl k( )

+Pc
b k( ) + Pcur k( ))≥ 1 − α, (32)

Notably, the time step notation t is omitted. Since ~Pl(k) and ~Ppv(k)
have different underlying distributions, we cannot directly reformulate
the upper chance constraint into an algebraic formulation. To mitigate
this problem, we introduce a “dummy variable” dpv, as suggested by
Ciftci et al. (2019a). With dpv, first, the probability distribution of the
PV residuals is evaluated, and then the resulting value for dpv can be
inserted in the chance constraint in (32), which allows the evaluation of
the probability distribution of the load residuals, resulting in a full
evaluation of the chance constraint.

P ~Ppv k( )≤ dpv k( )( )≥ 1 − α

P(~Pl k( ) − dpv k( )≤Pg k( ) + Pd
b k( ) + P̂pv k( ) − P̂l k( )

− Pc
b k( ) − Pcur k( ))≥ 1 − α

(33)

Finally, the chance constraint can be reformulated as an equality
algebraic constraint that can be easily included in the MPC
optimization problem by using the DNCC method described in
Section 4.

F−1
~Pl k( ) 1 − α+′( ) − F−1

~Ppv k( ) 1 − α+′( ) � Pg k( ) + Pd
b k( ) + P̂pv k( ) − P̂l k( )

−Pc
b k( ) − Pcur k( ) (34)

This chance constraint ensures that the SMPC will plan the battery
operation such that there will be enough power generated or consumed
in the system to match the true load and PV generation with a
confidence of 1 − α while minimizing the overall energy cost.

5.5 SMPC formulation

By combining the objective function defined in Eq. 25, the
battery dynamics and constraints of Eqs. 26-28, the power
balance chance constraint Eq. 34 with p′ � 1 − α+′ , and the non-
negativity constraints Eq. 24, the final SMPC formulation is

min
Pg,Pcur

Pc
b
,Pd

b
,Esoc

δc ,δd

∑t+K
k�t

Pg k( ) ·Cg k( )

s.t. Pg k( )+Pd
b k( )+ P̂pv k( )− P̂l k( )−Pc

b k( )−Pcur k( ) �F−1
~Pl k( ) p′( )−F−1

~Ppv k( ) p′( ).
Esoc k+1( ) �Esoc k( )+ ηcP

c
b k( )− 1/ηd( )Pd

b k( )( ) ·Δt,
Emin
soc ≤Esoc k+1( )≤Emax

soc ,

0≤Pc
b k( )≤Pc,max

b · δc k( )
0≤Pd

b k( )≤Pd,max
b · δd k( ), ∀k ∈ t, t +K[ ]

0≤ δc k( )≤ 1
0≤ δd k( )≤ 1
δc k( ) + δd k( )≤ 1
Pg k( ), Pcur k( ), Pc

b k( ), Pd
b k( )≥ 0

(35)

6 Results

6.1 Dataset description

The models for load and photovoltaic forecasting are trained on
the publicly accessible dataset of a small microgrid by TronderEnergi
(2021). This dataset includes measured values for weather, load, PV,
and prices. Furthermore, it includes dimensioning hyperparameters
for the battery. To evaluate the SMPC, we use historic weather forecast
data instead of historicmeasured data to have a better representation of
uncertainties. The historic weather forecast data are extracted from the
publicly available data from the Norwegian Meteorological Institute
METNorway (2023). Both datasets are sorted, cleaned, and merged
together in one large dataset. The data are transformed to a time
resolution of 15 min, and every data point is accompanied by a
timestamp. A description of the final dataset can be found in Table 1.

TABLE 1 Dataset description containing the used data points and their units.

Data point Unit

Timestamp YYYY-mm-dd HH:MM:SS + TZ

Load kWh

PV_generation kWh

Price_intraday NOK/kWh

Ambient_temperature (_forecast) °C

Direct_radiation (_forecast) W/m2

Cloud_cover (_forecast) %

Relative_humidity (_forecast) %

Wind_speed (_forecast) m/s

Wind_direction (_forecast) ◦
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6.2 Simulation environment

The main assumption for the simulation is that the power
balance equation in (29) must hold for the true load Pl and true
PV generation Ppv at all times. Next, as mentioned previously in
Section 5.3, the battery system is assumed to be deterministic,
i.e., the control decision by the SMPC for time step t, denoted as
Pc*
b (t) and Pd*

b (t), will be exactly executed as such, and the state of
charge of the battery will exactly follow the dynamics. As battery
charging/discharging power and load and PV generation are
fixed values, the simulation will decide the true grid import Pg
and the true curtailed power Pcur at the time of simulation. The
simulation results at time step t can be described by the following
equations:

Pbal t( ) � Pl t( ) − Ppv t( ) − Pd*
b t( ) + Pc*

b t( )
Pg t( ) � Pbal t( ) Pbal t( )≥ 0

0 Pbal t( )< 0
{

Pcur t( ) � 0 Pbal t( )≥ 0
−Pbal t( ) Pbal t( )< 0{ (36)

6.3 Numerical results

All computations are carried out on a MacBook Pro Late
2013 with a 2 GHz Quad-Core Intel Core i7 and 8 Gb of RAM.

6.3.1 Prediction models
The models for load forecasting and PV generation forecasting

are trained with the model described in Section 3. The number of
initialization steps/auto-regressive features is chosen to be ny = 3,
the number of past exogenous inputs is nu = 1, and the prediction
horizon is set to K = 12 h. Through initial cross-validation, the
regularization parameter is chosen to be λ = 50. Both models share
the same weather features as described in 6.1 and the same
fictitious input periods represented in hours, p = [4h, 12h, 1d,
2d, 7d, 14d]. These time steps are chosen such that they fit the
periodical behavior of the load and PV while producing stable
results in regard to the optimization with non-overlapping
windows of length K = 12 h in (7). As a key aspect of the
presented work is low data availability, the total dataset size for
training and validation is 3 weeks of data with a resolution of
15 min. The models are trained on the first 2 weeks of the dataset
and evaluated on the third week.

The evaluation of the load model is shown in Table 2 and the PV
model in Table 3. Both evaluations use the Root-Mean-Square-Error
(RMSE) as a metric. Additionally, the mean absolute percentage
error (MAPE) is shown only for the load model since PV generation
can take zero values.

MAPE � 100%
n

∑n
i�1

|yi − ŷi|
|yi| , RMSE �


1
n
∑n
i�1

yi − ŷi( )2√
The comparison between load predictions and true values for

the first day of calendar week 12 is shown in Figure 2. Considering
the simplicity of the model and the data availability, the results for
calendar weeks 32 and 43 are very good. The figure shows that the

model is capable of learning the load behavior even in situations
with peaks. It can also be observed that training is very fast
considering the time resolution of 15 min. This supports the
approach of retraining the model every week with new data to
obtain the best possible predictions by capturing short-term
trends.

An exemplary plot for the PV model is shown in Figure 3. It
shows that the PVmodel is able to capture the typical PV generation
trend during the day very well. All in all, the results show that the
model structure is applicable to both load consumption and PV
generation learning with good prediction results on small data
batches and low computational burden.

6.3.2 DNCC method
As mentioned in Section 5.4, we want to use the DNCCmethod to

estimate the probability distributions of the errors of the trainedmodels.
The underlying assumption is that we can capture the uncertainties in
the models and in weather predictions in the evaluation errors of the
model. Since we assume the availability of data of 3 weeks and the
models are trained on 2 weeks, data of 1 week are left for error
evaluation and PDF estimation.

The errors are estimated in the following way: we start with a 3-
dimensional array A. The first dimension corresponds to the daily
time step td ∈ Td and has, in this case, a size of Td = 4 · 24 = 96. The
second dimension corresponds to the kth predicted time step at
time td and has a dimension K = 4 · 12 = 48. The third dimension
corresponds to the recorded error values e (k|td) and grows with
the size of the validation dataset. Therefore, A has a non-
homogeneous third dimension. Following a receding horizon
fashion, for each model prediction at every time step t in the
validation dataset, we record the error of the kth predicted time
step e (k|t). The time step t is mapped to a daily time step td, and the
error value at the kth prediction step is put into A [td, k, :]. Finally,
for each td and k, we run the DNCC method on the array of error
values A [td, k, :]. This results in Td · K = 96 · 48 = 4068 probability
distributions with their respective chance-constraint formulation.
Note that the DNCC method is applied a priori, i.e., before the
beginning of a new week. Therefore, a longer initial computation is
not a problem. In total, the estimation of 4,068 probability
distributions and their corresponding cumulative distributions

TABLE 2 Numerical results for load model trained and evaluated on different
datasets. The calendar week specifies the evaluation week.

Cal. Week 2020 12 24 32 43 47

RMSE [kW] 5.91 3.8 2.77 4.46 3.78

MAPE [%] 17.5 21.3 19.4 13.7 13.9

Training time [s] 2.13 3.29 2.28 2.94 2.39

TABLE 3 Numerical results for PV model trained and evaluated on different
datasets. The calendar week specifies the evaluation week.

Cal. Week 2020 12 24 32 43 47

RMSE [kW] 8.47 6.88 7.23 7.24 3.52

Training time [s] 3.09 3.11 3.19 5.20 2.50
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through integration took 5:20 min. The estimation process is
summarized in Algorithm 2.

Algorithm 2. Error evaluation for the DNCC method

For illustration of the estimated probability distribution and the
confidence intervals, we run the DNCC method with a risk level of
α = 0.1 (confidence p = 0.9). Figure 4 shows an exemplary estimated
PDF with confidence intervals corresponding to the specified
confidence. In this case, the risk level α = 0.1 was reduced by the
algorithm to α+′ � 0.094 due to the uncertainties in the distribution
estimation.

Evaluating the DNCCs for every time step of the predictions in
Figure 2 yields the exemplary prediction correction displayed in
Figure 5.

6.3.3 SMPC
The presented SMPC formulation in Section 5 is used to

perform battery set-point control for every control time step on a
test dataset with the size of 1 week such that both the models and
the DNCCs have not been trained/evaluated on. A high-level
overview of the process is described in Algorithm 1 and Section 2.
Assuming we are at the first day of the current week denoted by w,
the assumption here is that the prior 3-week data are available
[w − 3, w]. First, we train the load and PV models on the first
2 weeks of the dataset, the so-called training data [w − 3, w − 1].

FIGURE 2
Comparison between load model predictions and load measurements for the first day of calendar week 12.

FIGURE 3
Comparison between PV model predictions and PV generation measurements for the second day of calendar week 24.
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Then, we learn the distribution of the model errors on the last
week of the dataset, the so-called validation data [w − 1, w].
Finally, the SMPC is run and evaluated on the current week [w,
w + 1], the so-called test data. This ensures the most realistic
evaluation of the method. The SMPC computes the battery
control set-points at each time step t within the current week
by planning K = 12h ahead and applying the first control decision
at time t. Note that w is updated by Δw = 1week, while t is updated
by Δt = 15 min.

We compare the performance of a nominal MPC with that of
the SMPC method on five different and randomly chosen
calendar weeks representing different times of the year. For
each of those weeks, we evaluate the SMPC method for
multiple risk levels α ∈ [0.01, 0.05, 0.1, 0.2, 0.3]. The evaluated
metrics are the average step computation time, which measures
how long the optimization in Eq. 35 takes to solve, the
satisfaction of the true realized load (Pl(t)≤ P̂l(t) + ~Pl(t)) and
the true realized PV generation (Ppv(t)≤ P̂pv(t) + ~Ppv(t)), to
evaluate how well the DNCC methods satisfy the pre-defined
confidence levels, and finally the realized grid energy costs. The
results are shown in Table 4.

The first result to highlight is the same average computation
time of both nominal MPC and SMPC. This is due to the property of

computing and evaluating the DNCCs a priori and only inserting the
resulting values in theMILP, as described in Eq. 35. Next, we observe
that the SMPC with risk level α = 0.3 has the lowest realized average
grid energy cost compared to all other methods. The results show
that decreasing the confidence level improves the grid energy costs.
On the other hand, decreasing the risk level and, therefore,
increasing the confidence results in higher costs, yielding a
tradeoff between robustness and cost. Although the most robust
method has the highest cost between the SMPCs, a very good result
is that the average cost of the most robust SMPC is very close to the
average cost of the nominal MPC. Additionally, taking into account
the load and PV satisfactions, the most robust SMPC delivers a
higher satisfaction and, therefore, more guarantees at the same
average cost. The last result to point out is that the SMPC is able
to satisfy the pre-defined confidence in many cases (marked
percentages). In particular, for the risk levels α = 0.2 and α = 0.3,
the SMPC satisfies the risk levels and, therefore, the confidences on
average. This shows the possibility of maintaining pre-defined
confidence levels with the presented method. The mismatch
between confidence level and load and PV satisfactions for high
confidence levels (lower risk levels) can be explained by the limited
data availability, which means that the true error distribution might
contain larger errors that we did not observe in the validation data.

FIGURE 4
DNCC example of estimated PDF with confidence intervals corresponding to a confidence p =0.9.

FIGURE 5
DNCC estimates applied to load model forecast with a confidence of p = 0.9.

Frontiers in Control Engineering frontiersin.org11

Babić et al. 10.3389/fcteg.2023.1237759

https://www.frontiersin.org/journals/control-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fcteg.2023.1237759


To have a greater insight into the SMPCs’ behavior compared
to the nominal MPC, we compare the battery state-of-charge
(SoC) between the nominal MPC and the SMPC with different
risk levels on calendar week 13. The comparison is shown in
Figure 6. It shows that with increasing risk level α, the SMPC

tends to charge the battery more so that it has more energy to
discharge. This can be confirmed with the higher SoC peaks
compared to the nominal MPC and with the full battery
discharging up until the SoC constraint for both nominal
MPC and all SMPCs.

TABLE 4 Comparison of nominal MPC and SMPC with various risk levels α on different calendar weeks.

Calendar week 2020 13 25 33 44 48 Average

Nominal MPC

Avg. step time [s] 0.152 0.163 0.209 0.182 0.178 0.177

Load satisfaction [%] 59.8 39.0 51.8 92.7 36.9 56.0

PV satisfaction [%] 70.8 92.7 57.0 86.6 91.8 79.8

Grid energy cost [NOK] 179.89 30.99 67.42 289.33 268.43 167.21

Stochastic MPC Avg. step time [s] 0.136 0.140 0.150 0.152 0.160 0.148

α = 0.01 Load satisfaction [%] 91.7 73.5 84.2 99.9 81.4 86.1

α′+= 0.002 PV satisfaction [%] 58.9 98.8 89.1 99.1 95.4 88.3

Grid energy cost [NOK] 190.46 32.22 69.28 278.62 265.10 167.14

Stochastic MPC Avg. step time [s] 0.140 0.143 0.152 0.155 0.166 0.151

α = 0.05 Load satisfaction [%] 92.3 74.0 84.2 99.9 79.3 85.9

α′+= 0.018 PV satisfaction [%] 54.5 98.7 86.2 99.1 93.0 86.3

Grid energy cost [NOK] 191.50 31.45 70.39 278.48 265.21 167.41

Stochastic MPC Avg. step time [s] 0.140 0.146 0.151 0.154 0.156 0.150

α = 0.1 Load satisfaction [%] 90.8 72.3 83.9 99.3 78.7 85.0

α′+= 0.041 PV satisfaction [%] 52.5 98.5 86.0 98.4 90.6 85.2

Grid energy cost [NOK] 191.63 31.51 68.91 276.44 264.69 166.63

Stochastic MPC Avg. step time [s] 0.139 0.142 0.161 0.153 0.163 0.152

α = 0.2 Load satisfaction [%] 87.1 65.9 79.3 99.6 73.4 81.0

α′+= 0.124 PV satisfaction [%] 47.8 98.5 69.9 97.0 86.9 80.0

Grid energy cost [NOK] 188.58 31.55 69.11 273.52 264.52 165.46

Stochastic MPC Avg. step time [s] 0.140 0.144 0.153 0.155 0.155 0.150

α = 0.3 Load satisfaction [%] 82.0 58.0 72.2 99.3 62.9 74.9

α+′ � 0.214 PV satisfaction [%] 39.4 98.4 56.7 92.7 60.7 69.6

Grid energy cost [NOK] 184.47 31.73 68.88 275.42 263.27 164.75

FIGURE 6
Comparison of battery state of charge between SMPCs with various risk levels and the nominal MPC.
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7 Conclusion

We presented a stochastic model predictive control approach to
address the energy management problem in microgrids based on
data-driven non-parametric chance constraints and on linear
prediction models with fictitious input signals to forecast
uncertain quantities like electric energy load and renewable
power generation. The proposed framework allows the
formulation of the resulting stochastic model predictive control
as a rather simple mixed-integer linear program using appropriate
algebraic constraints, making it feasible for implementation in
systems with limited computational power. Moreover, numerical
results demonstrated the performance of the approach even when
only a limited amount of historical data is available for the training
and tuning phase of the algorithm. The presented approach is able to
reduce costs when reducing robustness through chance constraints,
deliver robustness at the same average cost compared to a nominal
MPC, and to satisfy constraints up to the pre-defined confidence.
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