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Interesting and effective team behaviors arise when a group of agents contend
with adversaries. Examples range from animal group behaviors observed in nature
to strategies used in team sports. This mini review goes over literature in
multiagent systems that study group control in adversarial scenarios. We
identify different ways of formulating adversaries and discuss various types of
teaming behavior that arise. Specifically from the perspective of multiagent task
assignment, the types of tasks and the nature of assignments brought by the
adversary are categorized. The frontiers of the current literature and the direction
for future research are discussed at the end.
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1 Introduction

Multiagent systems have been studied for various military and civilian security
applications including patrolling (Czyzowicz et al., 2011), target tracking (Ramachandran
et al., 2020), and interception (Garcia et al., 2020). Beyond direct use in security applications,
these problems serve as a vehicle to investigate various teaming behaviors that arise due to
the added challenge by the adversary. Natural swarms competing against predators (Olson
et al., 2013) and team sports (Fujii, 2021) provide good examples of how sophisticated
teaming behaviors emerge in order for them to survive or win. While the term adversarial
could mean, in general, situations where the environment poses risks for the system to fail or
malfunction, this review is focused on scenarios that involve competing teams of agents that
must move in the environment to achieve their objectives.

Given that many multi-agent coordination problems can be explained as versions of task
allocation (Gerkey and Matarić, 2004; Khamis et al., 2015), we discuss the types of tasks and
the nature of assignments that arise in adversarial scenarios. Two key aspects that we focus
are: i) the level of coupling between tasks; and ii) the dynamic and strategic nature of
assignments.

A common way of utilizing multi-agent system is to solve a given problem with “divide
and conquer” approach, which allows spatially distributed tasks to be executed efficiently
(Cortes et al., 2004). However, the coupling between those tasks is loose in the sense that the
success of one agent does not affect the success of its teammates. This is an aspect of task
allocation that adversarial scenarios may potentially stress. When the overall group must
work as a cohesive team to compete against another team, the task may not allow simple
decomposition into independent subtasks. Instead, the agents may have to take specialized
roles that augment each other.

When the adversary is modeled as another decision-making entity, the problem is often
formulated as a non-cooperative dynamic game. In such formulation, the adversary may take
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advantage of a static or open-loop assignment strategies. Therefore,
the assignment must consider the evolution of system states as well
as possible adversarial actions. This is one step beyond an
assignment policy based on a static analysis that is performed
repeatedly over time.

In this mini review, we go over the literature on multi-agent
systems with a particular focus on how the adversarial scenario
pushes the teaming behavior in the above two aspects. The paper is
organized as follows. The first three sections review groups of
literature with different focus: Section 2 on the scalability in team
size; Section 3 on adversarial decision making; and Section 4 at the
intersection of the above two. Section 5 on team sports provides
insights on amore complex teaming that current engineered systems
are lacking. Finally, Section 6 discusses the frontiers of the current
literature and the direction for future research.

2 Patrolling, routing, and tracking

The efficient allocation and coordination of resources are
essential for accomplishing intricate spatially distributed tasks,
such as surveillance and coverage. The spatial constraints
imposed by the geometry of the environment and the movement
of the adversarial agents complicate the decision-making process.

Patrolling involves systematically visiting or traversing
designated areas to uphold security and monitor any possible
alterations. The prevailing approaches often involve pre-
determined cyclic or partition strategies (Czyzowicz et al., 2011),
while some extend these paradigms to incorporate non-
deterministic behaviors (Agmon et al., 2008). Such persistent
surveillance task has also been modeled as a Vehicle Routing
Problem (VRP) (Stump and Michael, 2011). However, successful
patrolling teams demand adaptive decision-making, dynamically
adjusting their strategies based on unexpected events (Portugal and
Rocha, 2013) or threats. Moreover, a specific research category
centers around adversarial patrolling, wherein explicit attacker
models and adversary detection are taken into account (Huang
et al., 2019; Basilico, 2022). The integration of such information
allows for the development and analysis of effective defense
mechanisms and/or countermeasure strategies (Alpern et al.,
2019; Basilico and Carpin, 2020; Duan et al., 2021), significantly
enhancing the system’s resilience against a wide array of potential
attack scenarios.

In routing problems, the primary objective is to determine time
or length-optimized paths to deliver information, goods, or services
efficiently. When posed in adversarial scenarios, these problems
undergo distinct formulations that introduce additional aspects and
constraints. For instance, the presence of hazardous zones was
considered in (Macharet et al., 2021). Perimeter (or boundary)
defense is another important task where the goal is to protect a
region from potential targets attempting to enter or escape. Different
dynamic VRP formulations have been proposed to address the task
of a single agent capturing linearly translating targets (Smith et al.,
2009; Agharkar et al., 2015; Bajaj and Bopardikar, 2019). The
objective is to determine an optimal path that intercepts the
maximum number of targets en route before they reach the
perimeter. The same concept was extended to the multi-agent
case applying a partition strategy (Macharet et al., 2020) and a

network flows formulation for the heterogeneous case (Chen et al.,
2021).

Finally, in various real-world applications, such as surveillance,
search and rescue, environmental monitoring, and military
operations, the ability to efficiently and accurately detect and
track targets is of utmost importance (Robin and Lacroix, 2016).
These tasks require the coordinated motion of multiple robots to
achieve an augmented perception of the environment and to
continuously follow mobile targets. In an adversarial setting, a
fundamental approach involves reconfiguring the team
displacement to restore impacted capabilities (Ramachandran
et al., 2020). Differently (Zhou and Kumar, 2023), presents a
robust framework designed to withstand sensing and
communication attacks or failures.

3 Differential games

Adversarial motion control problems, in particular, ones with
direct engagement between red team and blue team have been
modeled using differential games. The focus of the literature has
mainly been on how to extend the strategies developed for one-vs-
one scenario to team-vs-team scenarios while avoiding curse of
dimensionality.

A variant of PEGs called reach-avoid game studies an
engagement between a group of evaders (attackers) who seek to
reach a target area and a group of pursuers (defenders) whose goal is
to minimize the number of breaches by intercepting them. The
solution approach is often based on agent-agent assignments
(Garcia et al., 2020). It approximates the team-vs-team problem
into a combination of one-vs-one problems whose solution can be
obtained using traditional differential game techniques. The
pairwise outcomes are then encoded into bipartite graph, which
can be used to formulate assignment problems. There are existing
algorithms such as Hungarian algorithm (Kuhn, 1955) that solves
Maximum Matching or Minimum Linear Sum Assignment in
polynomial time. The result gives which pursuer should go after
which evader.

Many variants of multiagent reach-avoid games have been
considered using such decomposition method, where the
modification in the game environment (geometry) results in
different low-level control strategy (Garcia et al., 2019; Yan et al.,
2019; Garcia et al., 2020). However, at the high level, the team
strategies all utilize pair-wise outcome to reduce the team
coordination problem into agent-to-agent assignments.

Progress on the teaming aspect has been made by considering
how a coalition of pursuers can team up against a single evader
(Makkapati and Tsiotras, 2019; Yan et al., 2022), which
generalizes the assignment approach. In Shishika et al. (2020)
two-vs-one pincer movement was proposed for the perimeter
defense game, which is a variant of reach-avoid game where
the defending agents are constrained to move on the perimeter
of the target. The two-vs-one result was further utilized to
construct bounded regions within which n-vs-m local games
were defined. While most of the multi-agent reach-avoid games
considered individually greedy attacker strategies, this n-vs-m
formulation showed how the subteam of attackers can team up to
attack a single point so that q = m − n of them can survive and
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score if there are more attackers (m > n). We categorize this as a
force concentration, which has tighter coupling than force
distribution in a sense that the success of a subteam relies on
the cooperation of its members, instead of the subteam
performance being the sum of individual performance.

Turret Runner Penetrator differential game (Von Moll et al.,
2022) is yet another variant where the defender is like a turret and
can neutralize the attacker by turning and pointing at it. This
formulation allows for the consideration of a sequence of
captures similar to the routing formulation (Macharet et al.,
2020). A distinct type of teaming that was studied in this
problem is the heterogeneous roles that arise for the attackers.
More specifically, it was shown that in certain initial conditions,
it is optimal for the attackers to split into two roles: the runner and
the penetrator (Von Moll et al., 2022). The runner acts as a decoy to
waste as much time as possible before the turret pursues the
penetrator, whereas the penetrator seeks to breach the perimeter.
Such a sacrificial role employed by an agent is not something seen in
homogeneous task assignment considered in majority of reach-
avoid games. This work suggests a possibility of a more
sophisticated type of teaming in adversarial games beyond simple
divide and conquer approach.

4 Resource allocation

At a higher abstraction level, allocation of agents/resources in
graph environments have been considered in the literature of
Colonel Blotto (CB) games (Roberson, 2006; Powell, 2009;
Kovenock and Roberson, 2018; Chandan et al., 2020). In its most
standard form, CB games consider a zero-sum two-player game
between two colonels each possessing a certain amount of resources
that can be allocated to a given set of “battlefields.” A battlefield is
won by the colonel who allocated more resources to it. The goal of
each colonel is to win as many battlefield as possible by strategically
allocating its resources without knowing how its opponent is going
to allocate his/hers.

One type of teaming that arise in this framework is coalition
formation. Among other variants of CB games, coalition CB games
(Gupta et al., 2014; Heyman and Gupta, 2018) consider a scenario
where there are more than two players. A special case of three-player
game was considered where A and B each plays against C, while C
must take care of both. What makes this decision making problem
interesting is that A and B each has its own objective function, and
therefore, they are selfish. Yet, there is an incentive for them to
leverage the action of each other to implicitly “cooperate” and beat C
together.

A problem formulated at the intersection of motion control
strategies and resource allocation is the dynamic version of the CB
game, which is referred to as the dynamic attacker-defender blotto
(dDAB) game (Ferguson et al., 2022; Shishika et al., 2022; Chen et al.,
2023). The game is played over multiple stages with sequential
action. There is also an asymmetry between the two players in a
sense that the attacker wins the overall game by allocating more
resources at any node, whereas the defender must prevent that by
maintaining numerical advantage at all the nodes. The path-
guarding game (Ferguson et al., 2022; Chen et al., 2023)
considered a variant of the dDAB game where the defending

team is tasked with guarding a subset of nodes forming a path
between two locations. Strategies that control platoons of defender
resources were proposed. In these problems, coordination is
necessary among defending agents to ensure that there is no gap
in the defended nodes. We can categorize such teaming behavior as
formation maintenance.

5 Machine learning on team sports

Humans have developed robust abilities to work together in
teams to accomplish shared goals in many domains (e.g., in
families, businesses, and politics). Most settings present unique
challenges for analysis, including limited information, mixed-
motives among agents, nonstationarity, etc. While human
strategies may not always be ‘optimal’ in the language of
traditional game theory due to cognitive biases (Thomas, 2018),
bounded rationality (Altman, 2016), or compromises of coalition-
building (Ray, 2007), they work remarkably well across a variety of
settings.

Nevertheless, one human domain stands out as having the
features we desire for studies of robot motion while also being
constrained enough to not be immediately intractable—team sports.
Team sports require coordination among teammates and are usually
played against an opposing team that has a purely opposing goal
(i.e., a zero-sum game). Moreover, recent advances in motion
tracking technologies has enabled the collection of large
quantities of human-generated sports data (Liu et al., 2023),
including movement data in the form of player trajectories.
These advances are recent enough that the field of leveraging this
data to understand adversarial team behavior is still in relative
infancy (Fujii, 2021).

One difficulty is that these games are far from the simplistic
mathematical games, natively featuring a complex panoply of
phenomena, including heterogeneous agents that have differing
psychologies and who take on distinct roles within the team
strategy. As such, some early work is in the direction of using
machine learning techniques to learn player-specific action
templates, which can be leveraged to understand common play
concepts (Miller and Bornn, 2017; Ziyi et al., 2023). Other works aim
to give a glimpse into domain knowledge of high-level intuitive
concepts which may be useful to guide our development of multi-
agent robot team strategies (Fernandez and Bornn, 2018). Long-
term goals are to fuse the high-level concepts, like space-creating/
exploiting behavior, with low-level trajectories of individual players
(Terner and Franks, 2021; Chen et al., 2022). Space-creating/
exploiting behavior can be linked to the concepts of zone
assignment discussed in Section 2.

Ultimately, we view recent advances in the study of team sport as
representing the full diversity of behavior and complexity that we
would like our robotic systems to attain while operating together in
adversarial environments. Thus, it is both a form of a desired
endpoint for development of autonomous systems and also
essentially an independent direction by which to investigate the
same fundamental problems as the rest of the works in this review,
only drilling down from the top-level view rather than the bottom-
up approach of reasoning from a small number of idealized,
mathematical agents.
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6 Discussion

6.1 Types of teaming behavior

Table 1 provides some representative works in the literature with
their attributes in terms of the type of tasks and assignments. The task
to be assigned can have different level of abstraction. The lowest level
and most concrete is a particular location that the assigned agent
should move to. The next level is the assignment of a region or an
opponent agent for which there is a movement strategy. The highest

level of abstraction will be the assignment of roles, wherein the local
objective functions corresponding to individual roles can be different.

The nature of assignment can be either static or dynamic.
Within the works that consider dynamic assignment of tasks, we
further categorize them into ‘passive’ and ‘strategic’. The passive
ones allow re-assignments based on the time-varying situation, but
the analysis is based on instantaneous optimality and does not take
into account how the system will evolve over time.Whereas strategic
assignments are determined based on the possible decisions to be
made by the adversary as well as how it evolves over time.

TABLE 1 Categorization of tasks, assignments, and the resultant team behavior.

What is assigned Nature of assignment Team coupling Behavior type

Czyzowicz et al. (2011); Agmon et al. (2008) Location/Segment Static Coordinated Force distribution/
Defensive

Macharet et al. (2020) Location/Sector Dynamic—Passive Coordinated Force distribution/
Defensive

Ramachandran et al. (2020); Zhou and Kumar. (2023) Location Dynamic—Passive Coordinated Force distribution/
Offensive

Chen et al. (2021) Opponent Agent Dynamic—Passive Coordinated Force distribution/
Defensive

Yan et al. (2019); Garcia et al. (2020) Opponent Agent Dynamic—Strategic Coordinated Force distribution/
Defensive

Shishika et al. (2020) (Attacker) Location/Breach point Dynamic - Strategic Cooperative Formation control/
Offensive

Ferguson et al. (2022); Shishika et al. (2022); Chen et al. (2023) Location/Formation Dynamic—Strategic Cooperative Formation/Offensive

Von Moll et al. (2022) Role Dynamic—Strategic Cooperative Specialization/Offensive

Fernandez and Bornn (2018) Role N/A Cooperative Specialization/Offensive

FIGURE 1
Frontiers in the current literature in terms of scalability with respect to the number of agents, and interdependency between tasks that add
complexity in decision making.
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As the label for the coupling between tasks or the teammembers,
we use coordination and cooperation. The term coordination is used
for loose coupling between tasks where the success of each agent/
task is independent from one another. Also, the contribution of each
agent to the overall team performance metric is linear or sublinear.
On the other hand, cooperation is used for tasks where the failure of
one agent can significantly affect the overall success of the team.

We identified the following types of teaming behavior: i) force
distribution, ii) formation control, and iii) specialization. Force
distribution is the most common type of teaming where the
agents are given loosely coupled tasks that can be executed
separately. The team performance typically consider the sum of
individual utilities. The formation control, on the other hand,
requires the team members to be in a particular configuration to
fulfill the mission requirement. Finally, specialization occurs when
the agents take heterogeneous roles.

6.2 Scalability vs. task interdependency

Figure 1 depicts the state of the current literature in two axes:
scale in terms of the number of agents, and the interdependency
between tasks that adds complexity in decision making.

Game-theoretic formulation leads to complex strategic
interaction between the blue team and the red team, however,
scalability is achieved by decomposing the overall problem into
pairwise results where there is no coupling between team members.
A more effective teaming arises when agents take heterogeneous
roles. Achieving scalability while considering heterogeneous roles
for tightly coupled teaming behavior is an open area for research,
represented by the frontiers F1 and F2 in Figure 1.

Another gap in the current literature is that game-theoretic
formulation treats the entire team as a single decision-making entity.
Such a centralized approach naturally leads to limited scalability.
The frontier F3 is about scaling up the centralized game theoretic
analysis by decentralizing the decision making. There are some
efforts in taking game-theoretic results and using machine learning
techniques to decentralize the decision making (Paulos et al., 2019;
Lee et al., 2023). Mean field game provides another way to achieve
scalability (Lasry and Lions, 2007; Guan et al., 2022), however, the
focus is on within-team interaction, and therefore, incorporating an
explicit models of adversary still remains as a challenge.

The frontier F4 is concerned with the incorporation of adversarial
decision making in large-scale multi-agent system that are currently
formulated as one-sided optimization. The primary challenge in this
pursuit lies in mitigating the computational complexities inherent in
the associated combinatorial optimization. To address this challenge,
a multifaceted approach is warranted, involving the deployment of
online strategies that can dynamically adapt to partial and evolving

information, the ability to reroute in response to unexpected
obstructions in the initial plan, and the orchestration of
cooperative strategies to proactively avoid potential attacks.

7 Conclusion

We review the literature on multi-agent systems operating in the
presence of adversarial group of agents. From the task-assignment
perspective, we categorize the type of tasks and the nature of
assignment that arise in adversarial scenarios. The consideration
of adversarial engagement require the assignment scheme to be
dynamic and strategic, which is also supported by the literature on
the analysis of team sports. Finally, we identify the frontiers in the
current literature where the challenge includes: the scale up of game-
theoretic strategies to large groups, enhancing the level of teaming by
incorporating specialized roles, and incorporation of adversarial
decision making in decentralized multiagent systems.
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