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Catalysis is a cornerstone of modern societies as over 90% of processes in the chemical industry are
facilitated by catalysts, with the majority requiring a homogeneous or heterogeneous catalyst (Hagen,
2015). Future renewable energy scenarios also rely heavily on the utilization of electro-catalysts, e.g.,
for the production of clean hydrogen. This shift towards new feedstocks and benign processes entails
the development of new generations of catalysts. While the discovery of catalysts has often relied on
trial and error in the first half of the last century, the establishment of (design) rules has significantly
improved the speed with which new catalysts are being discovered.

To this end, the knowledge-based improvement and design of new catalysts is increasingly
supported by quantum chemical calculations of reaction mechanisms and kinetic modeling of
corresponding reaction rates. In fact, first examples of catalyst design by means of computational
screening have already emerged (Nørskov et al., 2009; Medford et al., 2015; Zhao et al., 2019). The
extent to which computational modeling becomes a dominant factor in the catalysis community in
the 21st century depends crucially on the accuracy with which predictions can be made, but also on
the development of a reductionist approach, where the main contributing factors to the performance
of a given class of catalysts are reduced to a few selected key parameters that can be used efficiently for
computational screening.

Perhaps the most challenging issue in computational catalysis is the fact that the rate constant of a
reaction step changes drastically with minor changes of the reaction barrier (e.g., for a reaction
occurring at 500 K by a factor of about 120 for typical errors of ±20 kJ/mol, or a factor of
approximately 3 for an error ±5 kJ/mol, that is commonly referred to as chemical accuracy) and
that only approximate methods are computationally feasible for the calculation of enthalpy and
entropy contributions of a transition states free energy as the catalytic systems are often large and
complex.

In all fields discussed here (homogeneous, heterogeneous and electro-catalysis) density functional
theory (DFT) has become the workhorse of computational studies as it exhibits the best compromise
between accuracy and computational cost. In homogeneous catalysis for example, the enthalpy
related to the active site of a transition-metal complex can be determined quite accurately with
advanced hybrid functionals (Jiang et al., 2012). However, homogeneous catalysts often exhibit large
ligands raising the issue of conformational complexity that is difficult to model. This is often getting
even more problematic with solvation and leads to difficulties in determining the active
conformational space and corresponding enthalpy and particularly entropy contributions to the
free energy (Harvey et al., 2019). A balanced description of inter- and intramolecular interactions
during solvation is similarly challenging (Schmidt et al., 2013).

In large parts of heterogeneous catalysis (e.g., supported transition metals) one needs to
approximate the active site with a simple extended periodic surface model, that usually omits
the effect of particle size and shape as well as particle-support interactions. Moreover, functionals
using the generalized gradient approximation (GGA) are typically the only applicable choice, with
the best functionals having errors of ±20 kJ/mol for adsorption energies (Wellendorff et al., 2015)

Edited and reviewed by:
Frank Hollmann,

Delft University of Technology,
Netherlands

*Correspondence:
Felix Studt

felix.studt@kit.edu

Specialty section:
This article was submitted to

Modelling, Theory and Computational
Catalysis,

a section of the journal
Frontiers in Catalysis

Received: 26 January 2021
Accepted: 12 February 2021

Published: 15 April 2021

Citation:
Studt F (2021) Grand Challenges in

Computational Catalysis.
Front. Catal. 1:658965.

doi: 10.3389/fctls.2021.658965

Frontiers in Catalysis | www.frontiersin.org April 2021 | Volume 1 | Article 6589651

SPECIALTY GRAND CHALLENGE
published: 15 April 2021

doi: 10.3389/fctls.2021.658965

http://crossmark.crossref.org/dialog/?doi=10.3389/fctls.2021.658965&domain=pdf&date_stamp=2021-04-15
https://www.frontiersin.org/articles/10.3389/fctls.2021.658965/full
https://www.frontiersin.org/articles/10.3389/fctls.2021.658965/full
http://creativecommons.org/licenses/by/4.0/
mailto:felix.studt@kit.edu
https://doi.org/10.3389/fctls.2021.658965
https://www.frontiersin.org/journals/catalysis
www.frontiersin.org
https://www.frontiersin.org/journals/catalysis#articles
https://www.frontiersin.org/journals/catalysis
https://www.frontiersin.org/journals/catalysis#editorial-board
https://doi.org/10.3389/fctls.2021.658965


and reaction barriers (Sharada et al., 2017). While this approach
has been shown to be sufficient to describe trends observed in
heterogeneous catalysis (Honkala et al., 2005; Medford et al.,
2015), there is an ongoing challenge to include support effects and
to accurately model the interface of a (nanometer sized) particle
with the support (Zhao et al., 2017;Whittaker et al., 2018). All this
means that approximate active site motifs need to be invoked and
calculations of reaction barriers are time-consuming even at the
GGA level of theory.

Arguably the most difficult field for computational studies is
electro-catalysis. Not only does one have to deal with the
complexity of a homogeneous or heterogeneous catalytic
system, there is also the additional intricacy of the reaction
being divided into electron and proton transfer steps. In
heterogeneous electro-catalysis, for example, the reaction is
taking place at the charged solid-liquid interface that is
extremely difficult to model. Furthermore, the kinetics become
a function of the applied electrochemical potential. Moreover, the
calculation of reaction barriers starts with a separated proton/
electron pair that leads to unnatural changes of the surface dipole
and electric fields along the coordinate of the transition state such
that reaction barriers need to be extrapolated. It is therefore not
surprising that modeling efforts in heterogeneous electro-
catalysis did first emerge after introducing the concept of the
computational hydrogen electrode (CHE) model (Nørskov et al.,
2004) that elegantly circumvents the necessity of treating reaction
barriers explicitly. Many challenges remain, however, such as fast
accurate calculations of reaction barriers, a detailed view on the
diffusion through the Helmholtz layer and corresponding explicit
modeling of the solvent and solid-liquid interface, to name a few
(Gauthier et al., 2019; Chan, 2020; Li et al., 2020).

While calculations of accurate enthalpies are thus subject to
many obstacles (from the quantum chemical method to the
approximation of the active site), this might even be more
problematic for the entropy associated with a catalytic reaction
step. Commonly, the entropy contribution is derived from the
vibrational part of the partition function. In heterogeneous
catalysis, for example, both, the adsorbates and transition
states are rather confined and due to its simplicity this is
typically calculated using the harmonic oscillator
approximation. More accurate methods are emerging (Kundu
et al., 2016; Sprowl et al., 2016; Jørgensen and Grönbeck, 2017; Li
et al., 2018; Amsler et al., 2021) but are often computationally
demanding and imply a trade-off with respect to the accuracy of
the corresponding enthalpy (e.g., molecular dynamics (MD)
simulations yield more reliable entropies, but are typically only
feasible at the GGA level of DFT). This is where developments of
faster algorithms and methodologies such as machine learning
(Bučko et al., 2020) are expected to move the frontiers of what is
possible nowadays.

Importantly, accurate free energy data for adsorption energies
and transition states is only one part of the equation. How the
calculated reaction mechanisms translate into simulated
conversion and hence reaction rates and selectivities depends
crucially on the (micro)-kinetic model invoked to describe the
reaction and whether this model is able to capture the important
features of the real technical catalytic system. There is a broad

range of approaches to deal with kinetics ranging from the simple
mean-field, steady-state approximation to simulations using
reactor models that include heat and mass transfer (Schlögl,
2017). Linking these various time and length scales with
accurate free energy calculations in a multi-scale approach is
still presenting a major challenge (Bruix et al., 2019; Plessow et al.,
2019). There is thus ample room to improve the theoretical
description of the kinetic model underlying a catalytic process
and the 21st century will likely see that the improvement of
kinetic models goes along with more accurate (free energy) data,
keeping in mind the problem of still fairly large errors of rate
constants (see above) even for extremely well described
reaction steps.

On top of all of this, the vast majority of modeling efforts is
focused on static active site motifs of a catalytic system. Catalysts,
however, are often rather complex arrangements of atoms and
can possess fairly dynamic behavior (Hansen et al., 2002; Kalz
et al., 2017; Paolucci et al., 2017; Tang et al., 2019; Maurer et al.,
2020), e.g., by switching between metallic and oxidic states, as
evidenced for supported transition metal heterogeneous catalysts
in oxidation reactions (Hellman et al., 2012). There may thus be
several active sites with different reaction steps and rate constants,
the ratio of which changes as a function of time, present in one
catalytic system that all need to be modeled to mimic the
experimentally observed properties of catalysts.

The extend to which computational catalysis will be successful
in advancing the atomic-scale understanding of catalytic
processes will also heavily rely on the collaboration with
experimentalists, as this will help to obtain a better
understanding of the exact nature of the active site and the
dependence of reaction rates on factors such as temperature,
pressure and applied potential. Likewise, computational studies
can guide experimentalists to interpret their spectroscopic data,
narrowing the search for active sites and helping to understand
their dynamics.

While more realistic simulations will only be possible by
including a greater complexity of the active sites as well as
more sophisticated kinetic modeling, deriving a detailed
mechanistic understanding of working catalysts is only one
part of future research directions. The other grand challenge
lies in the development of a knowledge-based approach enabling
predictive modeling and thus fast computational screening for
new catalyst leads. This means that one needs to reduce the
complexity used to understand the functioning of a catalytic
system in excruciating detail, to a few selected key parameters that
grasp the entirety of what determines the properties of a catalyst
such that changes from one catalyst to another are well described
by them. This complexity reduction is the core of catalyst design
strategies.

There are ample examples in homogeneous, heterogeneous and
electro-catalysis where this has been achieved through so-called
scaling relations that are able to predict reaction energies and their
corresponding reaction barriers using simple descriptors (Nørskov
et al., 2002; Michaelides et al., 2003; Bligaard et al., 2004; Abild-
Pedersen et al., 2007; Greeley et al., 2009; Man et al., 2011; Busch
et al., 2015; Medford et al., 2015; Wodrich et al., 2016; Zagal and
Koper, 2016; Latimer et al., 2017; Pegis et al., 2017; Craig et al.,
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2019; Kropp and Mavrikakis, 2019; Anand et al., 2020; Yang and
Hong, 2020). In conjunction with microkinetic models, volcano
relationships can be derived, allowing for the fast computational
screening of a large number of catalysts. Importantly, the same
limitations in terms of accuracy of the calculated rate constant and
complexity of the kinetic model and thus activity of a catalyst (see
above) apply when searching for new catalyst leads—i.e., how can
one discover new catalytic materials if the predictability of DFT has
an uncertainty of two orders of magnitude with respect to
calculated rate constants? Fortunately, DFT seems to be much
better when describing trends from one catalyst to another,
compared to its precision for single reaction steps, e.g., recent
work has shown that errors for predictions of differences of the
same reaction barriers between different catalysts are only ±5 kJ/
mol for functionals that have intrinsic errors of 50 kJ/mol (Plessow
and Studt, 2020). While catalyst screening needs to include
measurements of the stability of potential catalysts, future
studies might also include their feasibility in industrial
applications (e.g., manufacturing costs, recyclability, associated
environmental issues).

This is where new methodologies such as machine learning
have the potential to play an important role in the future
(Meyer et al., 2018), e.g., in correlating and identifying key

parameters of interest. The main problem to date, however, is
that these approaches will only work sufficiently, if large, well-
defined amounts of theoretical (and/or experimental) data are
available.

The future will show how new techniques shape
computational catalysis from the acceleration of quantum
chemical calculations and the possibility to include the entire
complexity of the catalytic system to new ways of searching for
correlations among classes of catalytic systems that translate to
the knowledge-based design of catalytic materials for the
chemical and energy industry of the future.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

ACKNOWLEDGMENTS

The author gratefully acknowledges support from the Helmholtz
Association.

REFERENCES

Abild-Pedersen, F., Greeley, J., Studt, F., Rossmeisl, J., Munter, T. R., Moses, P. G.,
et al. (2007). Scaling properties of adsorption energies for hydrogen-containing
molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105. doi:10.1103/
physrevlett.99.016105

Amsler, J., Plessow, P. N., Studt, F., and Bučko, T. (2021). Anharmonic correction
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