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INTRODUCTION

Photocatalysis is a Promising Technology for Energy and
Environmental Protection
The current rapid industrial development causes both a heavy reliance on non-renewable energy and
a dramatic increase in atmospheric CO2 concentration, which in turn lead to severe energy and
environmental crises (Zhang et al., 2015; Li et al., 2019; Li et al., 2020; Li et al., 2021). Therefore, it is
urgent to consider how to develop new energy to meet the sustainable development of society.

Nowadays, direct solar-to-fuel conversion through green photocatalysis technology has received
increasing research interests due to its potential for solar energy utilization and storage to relieve the
growing energy demands and greenhouse effect (Habisreutinger et al., 2013). With the expansion
and deepening of the research, photocatalysis technology has been extended to many fields, such as
energy, health, environment, pollution control and value-added chemicals synthesis (Lu et al., 2020).
As a result, the relevance of photocatalysis and human life has been increasing steadily.

The grand challenge of photocatalysis today is to further expand the practical application of
photocatalytic technology in the industrial field, which requires future research to pay attention to
the following aspects:

System-Level Engineering of Photocatalyst
The overall catalytic performance of photocatalyst usually depends on three factors: light harvesting,
photogenerated charge carriers separation and transfer, and surface reaction (Han et al., 2019). On
the one hand, light absorption is closely related to the energy band structure of photocatalysts.
However, most of the existing stable photocatalysts have a wide bandgap, indicating a narrow light
absorption range, which restricts the photocatalytic efficiency. On the other hand, only the
photogenerated electrons and holes that migrate to the photocatalyst surface can participate in
the photocatalytic reaction, whereas most of them are readily recombined in the bulk phase of the
photocatalysts. In addition, some photogenerated electrons or holes may corrode the photocatalyst
rather than participate in the target reaction.

In the past four decades, a variety of strategies have been proposed to adjust the physical and
chemical properties of semiconductor photocatalysts in order to effectively improve the scope of light
absorption, reduce the recombination of photogenerated charge carriers, and accelerate surface
reactions (Wu et al., 2021). In general, engineering special interfaces in composite photocatalytic
systems with diverse individual components to form efficient interactions such as p–n junctions,
heterojunctions, and Z-scheme systems is considered to be an effective strategy for enhancing the
overall photocatalytic efficiency (Chen et al., 2020; Zuo et al., 2021). Nevertheless, this system-level
photocatalyst engineering is clearly a time-consuming process. Therefore, it is important to deepen
understanding of structure-activity relationships and various photoredox mechanisms, and the
advances in situ characterization technique, theoretical calculation and artificial intelligence may
allow this process more efficiently.
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Amplification of Photocatalytic Systems
Today, photocatalytic technology has been mainly applied in the
treatment of the industrial wastewater, including papermaking,
printing, dyeing and electroplating industry, etc. As for other
photocatalysis research fields, such as solar water splitting (Mi
et al., 2021), photocatalytic CO2 reduction (He et al., 2019),
photocatalytic CH4 activation (Ma et al., 2021), nitrogen
fixation (Chen et al., 2020), and photocatalytic fine chemicals
synthesis (Leng et al., 2020; Tan et al., 2021), they often stuck at
the proof-of-concept level.

Although a lot of work has been done on basic photocatalytic
research, there is still a certain gap between laboratory and
industrial application. Laboratory studies can take no account
of the cost, catalyst recycle, energy consumption, environmental
protection, and other issues, but only to prove the feasibility and
mechanism of the photocatalytic system. However, in the case of
amplifying industrial application, there are various
uncontrollable factors in the actual production process, and
the preparation conditions of the catalysts will not be as
controllable and stable as in the laboratory (Tang et al., 2021).
Therefore, the development of economical, feasible, and stable
large-scale preparation methods is the key to realize the industrial
application of photocatalytic systems.

The improvement and optimization of the reactor is also an
important factor for the industrial application of photocatalytic
technology (Danon et al., 2012; Reilly et al., 2017; Pieber et al.,
2018). It is necessary to optimize the system design of the reactor
to achieve the optimal photocatalytic efficiency, since a well-designed
reactor can not only improve the reaction efficiency, but also reduce
the waste of energy and catalyst and improve the economic benefit.

Uniform Efficiency Standards
The lack of a reasonable activity evaluation standard is a huge
obstacle to the development of photocatalytic technology. At
present, most literatures usually normalize the activity of
photocatalysts by their mass or surface area (Qureshi and
Takanabe, 2017; Albero et al., 2020). However, this approach
is ill-advised, because there is generally no linear correlation

between the production rate of the target product and the mass/
surface area of the used photocatalyst. In addition, it is worth
noting that standards for light sources used in photocatalytic
systems vary from country to country, and the reactor and
illumination distances commonly used by different groups also
varies. Therefore, it is pointless to compare the photocatalytic
activity from different literatures based on the yield of the target
product alone.

Recently, the authors have apparently recognized this issue,
and have tended to compare the photocatalytic activity of
different systems using apparent quantum yield (AQY) instead
of traditional yield (Wang et al., 2021). This is undoubtedly a
good trend, provided that standardized AQY calculation tools or
methods are developed.

Is Photocatalysis Green?
Green, clean, low energy consumption and environmental
friendliness is the general impression of photocatalytic
technology. However, it is undeniable that we often add
electrons or hole sacrificial agents, such as triethylamine,
tetrachloromethane, lactic acid, triethanolamine, and various
alcohols, into the photocatalytic system (Liu et al., 2021).
Although the introduction of these scavengers can greatly
promote the photocatalytic efficiency, it also causes
undesirably product and environmental pollution (Wang et al.,
2021). In comparison, integrating certain oxidation reaction with
another reduction reaction (Qi et al., 2020; Han et al., 2021), for
example, cooperatively coupling benzyl alcohol oxidation with
hydrogen production in one system (Qi et al., 2020), may be a
better path to simultaneously maintain high reaction efficiency
and economic benefits. In this context, we urge all authors to use
sacrificial agents with caution.
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