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Accentuating and opposing factors
leading to development of thoracic
aortic aneurysms not due to genetic
or inherited conditions
Simon W. Rabkin *

Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada

Understanding and unraveling the pathophysiology of thoracic aortic aneurysm (TAA),
a vascular disease with a potentially high-mortality rate, is one of the next frontiers in
vascular biology. The processes leading to the formation of TAA, of unknown cause, so-
called degenerative TAA, are complex. This review advances the concept of promoters
and inhibitors of the development of degenerative TAA. Promoters of TAA development
include age, blood pressure elevation, increased pulse pressure, neurohumeral factors
increasing blood pressure, inflammation specifically IFN-γ, IL-1 β, IL-6, TNF-α, and S100
A12; the coagulation system specifically plasmin, platelets, and thrombin as well as matrix
metalloproteinases (MMPs). SMAD-2 signaling and specific microRNAs modulate TAA
development. The major inhibitors or factors opposing TAA development are the con-
stituents of the aortic wall (elastic lamellae, collagen, fibulins, fibronectin, proteoglycans,
and vascular smooth muscle cells), which maintain normal aortic dimensions in the face
of aortic wall stress, specific tissue MMP inhibitors, plasminogen activator inhibitor-1,
protease nexin-1, and Syndecans. Increases in promoters and reductions in inhibitors
expand the thoracic aorta leading to TAA formation.

Keywords: thoracic aortic aneurysm, pathophysiology

The potentially high-mortality rate of thoracic aortic aneurysm (TAA) (1, 2), highlights the need
for a greater understanding of its pathophysiology so as to prevent TAA expansion and rupture.
Although TAA can be due to a variety of different genetic or inherited conditions, the majority
of TAA cases, are usually ascribed to “degenerative” factors (3). The development of idiopathic or
“degenerative” forms of TAA is complex and poorly understood. Degenerative TAAs develop during
processes in which factors leading to aneurysm formation overcome factors, which retard TAA
development. The objective of this review is to discuss the putative factors that accentuate and those
that retard the development of degenerative TAA. Because the structure and embryologic origins
of the cellular composition of the thoracic aorta are different from the abdominal aorta, this review
will rely mainly on data from TAA and not from studies of the abdominal aorta aneurysms (AAAs).

Normal Thoracic Aortic Structure

The major component of the media of the thoracic aorta is dozens of layers of “lamellar units”
consisting’s of two elastic lamellae and intervening tissue that are oriented in concentric layers
around the lumen (4, 5). The extracellular matrix of the lamellar unit is complex and “consists of a
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wide range of components, every one ofwhich has a highly specific
spatial relation to the others” (5). The elastic lamellae are closely
associated with collagen fibers (types I, III, and V collagen) and
fibronectin (5, 6). The lamellae are interconnected by a network
of small elastic and collagen fibers as well as proteoglycans (6).
Smooth muscle cells are also in contact with fibrillin-1- and type
VI collagen-containing as well as bundles ofmicrofibrils (oxytalan
fibers) (5). Smooth muscle cells of the media have a basal lamina-
like layer connecting them to each other as well as to oxytalan
fibers (5). Proteoglycans mainly collagen-associated dermatan
sulfate proteoglycan, cell-associated heparin sulfate proteoglycan,
and interstitial chondroitin sulfate proteoglycan are other compo-
nents of the vascular wall (5).

The constituents of the arterial wall are responsible for its
mechanical properties and the ability of the vessel to prevent
or limit permanent deformation. Elastic fibers comprise elastin,
microfibrils that include the fibulins, fibrillins, and microfibril-
associated glycoproteins, restore the vessel wall to its resting con-
ditions after systolic expansion (5, 7). Collagen fibers and the
microarchitecture that connect them prevent “mechanical failure”
of the vessel under the constant loading of arterial pressure and its
further increase during systole (7).

Structural Changes in the Aortic Wall in
Thoracic Aortic Aneurysm

The aortic wall in TAA shows fragmentation of elastin and col-
lagen fibers (6, 8) and accumulation of glycosaminoglycans in
the media (9). There is a disorganization and breakdown of the
elastin network and its interconnectionwith collagen network and
other components of the aortic wall (6). Fibronectin distribution
is heterogeneous in the aneurysmal aortic wall with areas of “acel-
lular cystic medial degeneration,” which are devoid of fibronectin
and consist of clumps of compact fibronectin around shrunken
smooth muscle cells (6). Fibulin-5, an extracellular protein that
regulates elastic fiber assembly, is reduced in TAA especially in
TAAs that undergo aortic dissection (10, 11).

While some investigators contend that the amount of colla-
gen in TAA is increased (12), other investigators found that the
type of collagen is altered specifically type I and III collagens
are significantly decreased while collagens alpha1(XI) and V are
significantly increased (13). This shift in collagen type may alter
aortic structure and function, regardless of the amount of collagen.
Certainly, fragmentation of collagen and disconnection from the
network structure would impair normal aortic function (14).

Smooth muscle cell rarefaction and increased amounts of
vacuolated basophilic material and calcification of the smooth
muscle cell are evident in TAA (6, 8). These changes not only
are to some extent unique but also are an accentuation of the
changes in the aorta observed in the normal aging process (15).
A minority opinion contends, there is a relative increase in the
number of smooth muscle cells after adjusting for the increased
surface area of the media in the dilated TAA (16). Regardless,
there is a change in smooth muscle cell morphology to a mor-
phology with irregularly shaped cells with distorted intracellular
organelles (vacuolated cytoplasm, enlarged endoplasmic retic-
ulum, and decreased amount of myofilaments) and irregularly

shaped nuclei (8). Smooth muscle cells in TAA exhibit a well-
developed endoplasmic reticulum and Golgi apparatus (6).

The loss of smooth muscle cells in TAA either through change
in their functional capacity, i.e., loss of contractile apparatus or
through cell death is a feature of TAA (8) that strongly suggests
diminution of arterial capacity to contract and maintain its size
and shape despite arterial distension from blood pressure.

Factors Promoting TAA

Hypertension
Increased blood pressure is associated with TAA (17, 18). Hyper-
tension is also a major factor associated with thoracic aortic dis-
section (19, 20). The most likely explanation for the link between
hypertension and TAA development is the mechanical effects
of elevated blood pressure. The increase in stress on the aortic
wall resulting from elevations in systolic pressure produces aor-
tic expansion. Using data from patients with ascending aortic
aneurysm, we estimated wall stress and found that over a systolic
blood pressure range of 110–165mmHg, there was approximately
4 kPa increase inwall stress for each 5mmHg increment in systolic
blood pressure (21) (Figure 1). Mean circumferential wall stress
in TAA, removed at surgery and tested in vitro, increases linearly
with increased intraluminal pressure and aortic diameter (22).
Thus, arterial blood pressure is a major force promoting arterial
enlargement. Arterial distending pressure – pulse pressure, and
the rate of rise of pulse pressure (dP/dt) also produce stress on the
arterial wall.

The role of hypertension in the creation of TAA is not only
a balance between the distending action of increased wall stress
and the constraining and restoring forces of the arterial wall’s
elastic lamellae, collagen, and smoothmuscle but also includes the
impact of neurohumeral factors, operative in some patients with
hypertension. In addition, genetic factors influence the impact
of hypertension on TAA development. A case control study sug-
gested that a variant allele of THBS2 is a risk factor for TAA in
hypertensive patients, whereas the variant alleles ofHSPA8,GPX1,
AGT, and TNF are protective against this condition (23).

FIGURE 1 | Shows the relationship between aortic wall stress and
systolic blood pressure in thoracic aortic aneurysm of different sizes
[from Rabkin and Janusz (21)].
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Angiotensin II is a potent pressor hormone that plays an impor-
tant role in human hypertension. Prolonged angiotensin II infu-
sion in experimental animals, mainly the mouse, produces aortic
aneurysms primarily not only in the abdominal aorta but also in
the thoracic aorta (24–27). Although the mouse model for TAA is
of value (28), we must be mindful of simply extrapolating murine
data to humans because the structure of the human thoracic aorta
is more complex than that of mouse (5).

Antihypertensive treatment reduces aneurysm formation in
mice with TAA induced by the combination of agents producing
both hypertension and degeneration of the elastic lamina (29). In
the absence of randomized clinical studies with TAA as the end
point, these experimental studies provide helpful data.

Age
Aging predisposes the aorta to dilatation through changes in aor-
tic structure and composition. In vitro studies of the descending
thoracic aortas of persons without known aortic disease show an
age-related increase in aortic fragility and susceptibility to perma-
nent dilation of the thoracic aorta after pressure distention (30).

Telomere shortening, amarker of aging, occursmore frequently
in patients with TAA compared to controls (31). However, this
finding may relate mainly to TAA associated with bicuspid aortic
valve and not in non-genetic forms of TAA (32).

Matrix Metalloproteinases

Matrix metalloproteinases (MMPs) play an important role in
connective tissue homeostasis (33). MMPs comprise a large fam-
ily of Zn2+-dependent proteolytic proteases, which are synthe-
sized by a number of the cellular components of the aorta
including endothelial cells, smooth muscle cells, fibroblasts, and
macrophages (34). Under physiological conditions, the activi-
ties of metalloproteinases are precisely regulated at the levels of
transcription, zymogen activation, and inhibition by endogenous
inhibitors (35–37). Disruption of the balance between the produc-
tion of active enzymes and their inhibition, favoring MMP acti-
vation produces accelerated turnover of extracellular matrix (38).
Several MMPs, notably MMP-2 and MMP-9, first identified as
gelatinases readily digest collagen and other molecules within the
vasculature (33). In addition to its action on extracellular matrix,
MMPs also acted on molecules involved in signal transduction
(38). Gene expression analysis has found an increase in levels of
MMP-2 and MMP-9 in TAA (39). A recent meta-analysis showed
that there was a significant increase in MMP-9 in the aorta from
persons with TAA compared to persons without TAA (40).

Although the factors producing elastin fiber degradation
leading to TAA formation are not completely understood,
one proteinase that has elastinolytic activity is matrix
metalloproteinase-9, which can be produced by monocytes
or macrophage-like cells (41). Matrix metalloproteinase cleavage
of elastin display biochemical characterization that suggested that
elastin cleavage sites are readily accessible to enzymatic attack
(42). Other MMPs likely to be involved in TAA development are
MMP-14 and -19 whose expression is increased in TAA (43).

MMP-9 is subject to regulatory control through different
signal transduction pathways. AKT2 (RAC-beta serine/
threonine-protein kinase) or protein kinase B (PKB) and

phospho-AKT levels are significantly reduced in human TAA
(44). Aortas from Akt2-deficient mice demonstrate tissue
destruction, apoptotic cell death, and inflammatory cell
infiltration that were not observed in wild-type mice (44).
Angiotensin II-infused Akt2-deficient mice show increased
expression of MMP-9 (44).

Inflammation
A role for inflammation in the pathogenesis of TAA is intriguing
especially as the type of TAA being discussed has been labeled as
“degenerative.” Leukocyte infiltration is greater in the media than
in the intima or adventitia of TAA compared to non-aneurysmal
aortas (45). Only 50% of TAA had leukocyte infiltration sug-
gesting that it is certainly not a universal feature of TAA (45).
Aneurysms with leukocyte infiltration, however, are significantly
larger than the aneurysms without leukocyte infiltration (45).

The media and adventitia of TAA have an increased numbers
of T lymphocytes and macrophages when compared with control
aortas (46). TAA with transmural inflammation, is distinguished
by Th1-type immune responses with activated CD4+ and CD8+
T lymphocytes which produce IFN-γ (45). The density of helper
T cells (CD4+) is several-fold higher than cytotoxic T cells in the
adventitia of infiltrated aneurysms (45, 47). CD4 andCIITA (Class
II transactivator), amajor regulator ofMHC II transcription, show
strikingly higher expression in TAA (48). There are significantly
more CD3+ cells and CD68+ cells in the aortas of patients with
TAA than in control aortas (47, 49). CD3+ cells are localized in the
media and surrounding the vasa vasorum in the adventitia (49).
Further supporting the contention of an inflammatory process in
TAA is the finding that CRP, a traditional marker of inflamma-
tion, correlates with the size (diameter) of both ascending and
descending TAAs (50). Indirect evidence linking inflammation
and TAA development is the finding that TAAs with evidence
of inflammation have less collagen, less elastin, and more elastin
fragmentation (45).

Several inflammatory mediators are worthy of further discus-
sion (Figure 2).

Interferon-gamma
Interferon-gamma (IFN-γ) expression is increased in ascending
thoracic aortic aneurysm (ATAA) (45, 47). This finding is con-
sistent with the significant elevations in circulating interferon-γ,
interferon-inducible protein-10, interferon-inducible T cell alpha

FIGURE 2 | Shows some of the inflammatory factors that may be
operative in production of TAA.
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chemoattractant (I-TAC), and monokine induced by IFN-γ in
patients with TAA (51). TAA aortas show more IFN-γ-inducible
chemokines IP-10 andMig, and recruitment of lymphocytes bear-
ing their cognate receptor CXCR3 (45). Increased IFN-γ expres-
sion in TAA is consistent with the finding that IFN-γ is one of the
most consistently up regulated cytokines in large AAAs (52).

Tissue IFN-γ expression correlates with the amount of MMP-9
and the amount of apoptosis inmedia of TAA (47). IFN-γ may use
a JNK signaling pathway to produceMMP-9 activation, apoptosis,
and aneurysm formation (47). Additional putative mechanisms
for the adverse cellular effect of IFN-γ include enzyme induc-
tion and the formation and release of reactive oxygen species
(ROS) (53).

Patients with TAA have increased plasma levels of IFN-γ as well
as chemokines induced by IFN-γ specifically interferon-inducible
protein-10 (IP-10), I-TAC, and monokine induced by interferon-
gamma (Mig) IP-10 (51). The degree of elevation, however, does
not correlate with either TAA size or its rate of growth (51).

Some TAAs are characterized by recruitment of CXCR3+
T cells, in association with secretion of the IFN-γ-inducible
chemokines, IP-10, and Mig (45). CXCR-3 the cognate receptor
for Ip10, permits recruitment or retention of CD45 leukocytes
into the vessel wall and initiates an inflammatory response and
subsequent aneurysm formation (51).

Another maker of inflammation, IgG4 was present in the
ascending aortic wall of 13% of TAAs and was associated with
larger TAA and those more likely to have a dissection (54). While
this may represent a specific kind of TAA, it nevertheless assists in
linking inflammation to TAA and its consequences.

The anti-inflammatory action of azelnidipine is one putative
explanation for its ability to prevents aneurysm progression in
angiotensin II and beta-aminopropionitrile treatedmice (55). The
antihypertensive agent amlodipine when administered to mice in
which TAA, is induced by this method, show a lack of adventitial
inflammation and medial degeneration (29).

Interleukin-1beta (IL-1β), a pro-inflammatory cytokine, is
markedly increased (almost 20-fold) in human TAAs (47, 56).
IL-1β can enhance release of elastases (57), which can degrade
the elastin component of the arterial wall. Genetic deletion of
IL-1β and IL-1R significantly decreased thoracic aortic dilation
in an experimental model of TAA (56). Importantly, aortas from
IL-1β knockout and IL-1R knockout animals demonstrate pre-
served elastin and smooth muscle cells, fewer inflammatory cells,
and decreased inflammatory cytokine and MMP-9 expression
(56). Treatment with the IL-1R antagonist, anakinra, attenuateds
TAA development in an experimental model (56). Analogous
supporting data is the observation that mice deficient in a neg-
ative regulator of IL-1β signaling, interleukin-1 receptor antag-
onist IL-1Ra-deficient (IL- 1Ra-/-) mice, develop femoral artery
aneurysms with histologic evidence of elastin degradation (58).

TNF-α
TNF-α reduces aortic elastin as TNF-α, as well as basic fibrob-
last growth factor, reduces elastin gene transcription in aortic
smooth muscle cells (57). TNF-α also promotes elastin break-
down through enhanced release of MMP-2 and MMP-9 by vas-
cular smooth muscle cells (57).

S100A12
S100A12, a pro-inflammatory protein that activates the receptor
for advanced glycation end products (RAGE), is increased in 25%
of TAA (59). Its presence is associated with an increased risk of
dissection (59). Transgenic mice, overexpressing S100A12 show
disarray of elastic fibers, and increased collagen deposition in the
aortic wall as well as aortic dilatation (60). These mice also show
an increase in MMP-2 protein and reduction in smooth muscle
stress fibers (60).

IL-6
IL-6 is also increased in TAA (50). Further, there is a significant
correlation between IL-6 and CRP and the size (diameter) of both
[both ascending and descending aneurysms (50)]. IL-6 can be
turned on by S100A12 (60). IL-1β as well as IFN-γ might affect
the formation of TAA through the up-regulation of MMP-9 and
the apoptosis cells in human aortic media (47).

Transforming Growth Factor-Beta
Transforming growth factor-beta (TGF-β) has been implicated
in certain genetic causes of TAA and TGF-β and/or its signaling
pathways can be abnormal in the arterial walls of degenerative
TAA; however, the precise role and molecular mechanisms by
which TGF-β might be operative in TAA has been characterized
as elusive and controversial (61). Indeed, investigators have impli-
cated both enhanced TGF-β signaling and loss of TGF-β function
(TGF-β receptor mutations) in aneurysm formation (62, 63). A
more detailed discussion of this subject is available in several
reviews (61, 62, 64). One speculation, which might unify the dis-
parate results, is that each cell type within the aortic wall responds
differently to TGF-β and it is the balance of effects of TGF-β
in any situation, as well as the impact of other factors, which
dictate the net effect (62). TGF-β has the potential to produce
smooth muscle cell apoptosis and stimulate the differentiation of
fibroblasts into myofibroblasts, which can aid in TAA formation
but it also can down regulate the activity of MMPs, which might
reduce TAA development. From the perspective of this review
whose objective is presenting accepted promoters and reducers of
TAA development, TGF-β will not be considered further.

A Disintegrin and Metalloproteinase with
Thrombospondin Motifs
A disintegrin andmetalloproteinase with thrombospondinmotifs
(ADAMTS) may promote TAA development by degrading ver-
sican and facilitating macrophage invasion into the aortic wall.
ADAMTS-1 and ADAMTS-4 protein and mRNA expression are
increased in TAA (39, 65). ADAMTS-1 and ADAMTS-4 were
identified in vascular smooth muscle cells and macrophages in
TAA concomitant with degradation of versican the main proteo-
glycan substrate of ADAMTS proteinases in the aorta (65).

Coagulation/Fibrinolytic Systems

Plasmin
Plasmin is generated from the zymogen plasminogen by tissue-
type plasminogen activator (t-PA) and urokinase-type plasmino-
gen activator (u-PA). Plasmin has been implicated as a causative
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factor for TAA development based on several lines of evidence.
First, free t-PA is present in increased amounts in aneurysmal
thoracic aortic wall compared to normal aorta (6). Second, Apo E
deficientmice that are also deficient in t-PA (Apoe−/−:Plat−/−) or
u-PA (Apo e−/−:Plau−/−) do not have vascular aneurysms, which
occur in Apo E deficient mice that are not deficient in t-PA or u-
PA (66). Third, large amounts of t-PA are associated with enlarged
arteries (66). Fourth, there is overexpression of the plasminogen
activators t-PA and u-PA in TAA (67). These data suggest that
plasmin generation is a causative factor for TAA development.
One of the sources of t-PA in TAA is macrophages, which invade
the vessel wall from the luminal surface and migrate to the media
(66). Another source of t-PA and u-PA is the aortic smooth
muscle, which is transformed into a secretory cell in TAA (6).

Plasminogen and t-PA can bind to external cell surface via
annexin II and produce plasmin (68). Left unchecked, excess t-
PA and u-PA increases plasmin generation, which can act on
various proteins (Figure 3). Plasmin activation of various factors
including MMP can lead to degradation of essential constituents
of the aortic wall including elastin, collagen, fibronectin, and
laminin (69). Plasmin-induced activation of MMP-3, -9, -12,
and -13 produces collagen and elastin degradation (66). There
is likely a multiplier effect from the damage to each of these
constituents of the arterial wall, because there are major bind-
ing interaction between fibrillins and fibronectin, which involves
the collagen/gelatin-binding region between domains FNI(6) and
FNI(9) (70). Thus, destruction of one element of vasculature has
importance for the entire structure as the cellular elements of the
aorta are interconnected.

Plasmin, produced by t-PA or u-PA, can also activate path-
ways leading to smooth muscle cell apoptosis (71) producing
the histologic picture of smooth muscle cell rarefaction (6).
Plasmin-induced apoptosis can be independent of MMP (72).
Plasmin can also cleave cytokines that are present as zymogens
within the arterial wall such as TGF-β (73). Deficiency of u-PA

protects against media destruction and aneurysm formation,
probably through reduction of plasmin-dependent activation of
pro-MMPs (66).

Platelet and Prothrombin Activation
Platelets and prothrombin are activated in patients with TAA
>45mm in diameter (74). Circulating markers of platelet acti-
vation (sGPV, sCD40L) are significantly higher in plasma of
patientswithTAA (74). The absence of a difference in these factors
between Marfan’s or degenerative TAA, suggests that platelet acti-
vation is not an etiology of degenerative TAA but rather is either
a consequence of the altered hemodynamics (rheology) in TAA
or is a later stage factors that may or may not accentuate TAA
expansion.

Prothrombin/thrombin (II/IIa) (immunoreativity) is present in
the aortic wall of TAA but not in the normal aorta (74). Thrombin
candamage the endothelial layer of cells (75, 76). The consequence
of endothelial barrier dysfunction (76) can be the entry of circu-
lating factors into the arterial wall, whichmay damage arterial wall
components leading to loss of aortic structure and function.

SMAD-2
Although SMAD-2 is more well known for its presence in specific
genetic causes of TAA, there are data that dysregulation of SMAD2
activation and its nuclear translocation occur in degenerative TAA
as well (77). SMAD2 protein and phosphorylated SMAD2 are
increased in the medial layer of TAA of a degenerative cause (78).
In contrast, SMAD3 as well as RhoA pathways are not altered in
TAA (78). The activation and the overexpression of SMAD2 are
specifically found in smooth muscle cells of TAA (78).

To the extent that angiotensin II is operative in arterial hyper-
tension, it is noteworthy that angiotensin II produces SMAD2acti-
vation leading toMMP-9 production through a pathway involving
intracellular signal regulated kinase (ERK) (79). In an experimen-
tal model of surgically induced TAA in mice (C57BL/6J), protein

FIGURE 3 | Shows factors in coagulation cascade that produce or oppose development of TAA.
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levels of SMAD2, SMAD1/5/8, and phospho-SMAD1/5/8 were
increased and SMAD4 was decreased from control values (80).
A switch from a TGF-βR(I)/SMAD2-dependent response, to an
ALK-1/SMAD1/5/8 response may enhance matrix degradation
leading to TAA development (80).

Factors Opposing TAA Development

Using a concept of accentuating and mitigating factors, one can
visualize the construct leading to TAA formation as an imbalance
between factors favoring and factors opposing permanent aortic
expansion.

Arterial Wall Composition

The constituents of the aortic wall maintain normal aortic dimen-
sions in the face of aortic wall stress (Figure 4). Reductions in
the amount of any of these components or their fragmentations
diminish the ability of the arterial wall to resist permanent defor-
mation. Loss of elastin produces tortuous, stiff vessels that show
little diameter change between systole and diastole and become
stenotic because of smooth muscle cell proliferation, presumably
in an attempt to compensate for the loss of elastin (14). The
loss of elastin may increase blood pressure leading to a further
increase in circumferential stress, which creates a further impetus
for aortic aneurysm expansion. The relative amounts of changes in
arterial wall components – collagen, elastin, glycosaminoglycans,
fibrulins, fibronectin, and vascular smooth muscle cells – in the
aortic segments that experience these changes, may influence
aortic compliance in TAA (81).

Tissue Inhibitors of Metalloproteinases

Tissue inhibitors of metalloproteinases (TIMPs) are endogenous
inhibitors of MMPs and consequently are important regulators of
local MMP activity (35, 38). The four tissue inhibitor of metallo-
proteinases (TIMP-1 to -4) are broad-spectrum MMP inhibitors
but with some differences in specificity (38, 82). These proteins

are significant regulators of the activities of MMPs and, in some
instances, of other metalloendopeptidases as well (83). Tissue
effects are determined by the balance of MMP and TIMP acti-
vation. A recent meta-analysis showed that there was a highly
significant reduction in TIMP-1 and TIMP-2 in TAA compared
to controls without TAA, resulting in a MMP-9 to TIMP-1 or
TIMP-2 ratio over 3.5-fold greater than controls (40).

In Akt2-deficient mice, angiotensin reduces the expression of
TIMP-1, which might account for the TAA found in this animal
model (44).

Inhibitors of MMP

microRNAs
Small non-coding RNA molecules or microRNAs (miRs) can
induce translational repression and modulate protein abundance
of specific genes products and in so doing affect cellular function
generally and cardiovascular tissue specifically (84). Decreases in
miRs-1, -21, -29a, -133a, and -486 expression is present in TAA
and there is a significant relationship betweenmiR expression lev-
els (miRs-1, -21, -29a, and -133a) and aortic diameter (85). MMP-
2 andMMP-9 are potential targets formiR-29a andmiR-133a (85).
These data plus the significant inverse relationship between miR-
29a and total MMP-2 in TAA suggest that there is an inhibitory
signal that normally attenuates MMP production so that a reduc-
tion in these inhibitors can lead to TAA formation (85).

In ATAAs with dissection sevenmiRNAs weremarkedly differ-
ent from normal aorta (86). Target gene-related pathway analysis
point to five pathways, especially those involved in the focal adhe-
sion and the mitogen-activated protein kinase (MAPK) signaling
pathways (86). mir143/145 under expression that may explain
part of the changes in vascular smooth muscle in TAA (86).

Inhibitors of Plasmin Production

Plasminogen activator inhibitor-1 (PAI-1) mRNA and protein are
increased in the media of TAA (67). In vascular smooth muscle

FIGURE 4 | Shows some of the blood pressure and vascular factors that produce or oppose development of TAA.

Frontiers in Cardiovascular Medicine | www.frontiersin.org May 2015 | Volume 2 | Article 216

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


Rabkin Promoters and inhibitors of TAA

cells isolated from human TAA, there is an increased amount of
PAI-1, which increases further when exposed to TGF-β 1 (67).
PAI-1 is subject to regulatory control by the SMAD2 signal-
ing pathway (67). PAI protects against plasmin-induced vascular
smooth muscle cell death (67). PAI-1 should protect against TAA
development based on the role for plasmin in TAA formation
discussed above. There is little data in this area; however, studies in
AAA support the concept of PAI-I as an inhibitor of aneurysm for-
mation (87, 88). PAI-I can alter aortic diameter in experimentally
induced AAA (89).

Protease nexin-1 (PN-1), a regulator of protease activities in
the vascular wall, is an inhibitor of thrombin, urokinase-type
plasminogen activator (u-PA), tissue-type plasminogen activator
(t-PA), and plasmin (90). PN-1 is produced and secreted by
VSMCs (91) and is present in large amounts on cell membranes
(90). PN-1 mRNA and protein is overexpressed in the media of
TAA and in vascular smooth muscle cells cultured from TAA
(67). PN-1 overexpression promotes development of an anti-
proteolytic vascular smooth muscle cell phenotype (67). PN-1
overexpression inhibits plasmin and tissue-type plasminogen acti-
vator via the formation of inhibitory complexes and prevents cell
apoptosis (69).

The increase expression of PAI-I and PN-1 in TAA suggested
that these factors are part of cell defense mechanisms against
protease-induced matrix degradation and protease-induced cell
death (90).

Syndecans

Syndecans are a family of four cell surface proteoglycans
[syndecan-1 (Sdc-1), Sdc-2, Sdc-3, and Sdc-4] that interacts with a
number of soluble and insoluble factors in the extracellular matrix
to regulate transmembrane signaling events (92). Syndecans have
diverse cellular roles including regulation of extracellular matrix
assembly, tissue repair, as well as inflammation (93).

Although there are no data on Syndecans in TAA, it is notewor-
thy that Sdc-1 deficiency exacerbated AAA formation in exper-
imental AAA and is associated with protease activity, elastin
degradation, and inflammatory cell recruitment into the aortic
wall (94). Tumor-associated MMPs cleave the ectodomains of
human syndecan-1 and syndecan-4 (95). Although the process has
not been studied in TAA, it is interesting to speculate that MMP
activation in TAA may blunt the anti-inflammatory protective
actions of Syndecans in TAA. Syndecan-1 increases the uptake of
PN-1 (96), which inhibits the effects of coagulation factors in TAA
development.

Summary

In summary, the processes leading to the formation of TAA are
complex, interwoven, and involve promoters and inhibitors at
many potential sites. There is a need for more investigation into
modulating the initiators and enhancing the inhibitors of TAA.
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