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inTRODUCTiOn

Inherited arrhythmogenic diseases (IADs – also called cardiac channelopathies) are defined as a 
group of genetic diseases characterized by electrically unstable substrate in a structurally normal 
heart (1). Genetic testing in cardiac channelopathies has completed its transition from a research-
based activity to that of a clinical genetic service. In parallel, the advancements of the sequencing 
technologies are providing ways to sequence several genes at a relatively low cost. This is progres-
sively changing the approach to the genetic diagnosis of IADs. Indeed, while Sanger-based genetic 
testing was traditionally limited to the well characterized, most prevalent genes, next-generation 
sequencing (NGS) allows screening even the “minor” disease genes with very short turnaround time. 
This approach to genetic testing is highly efficient, but it is also generating remarkable interpretative 
problems mostly related to the high prevalence of variants of unknown significance (VUS), i.e., not 
clearly related to disease pathophysiology. This issue is relevant to several genetic diseases of the heart 
but is particularly evident in IADs, where the familial co-segregation analysis is hampered by the 
incomplete penetrance and the variable expressivity. How to design the most appropriate screening 
approach is challenging and it requires in-depth knowledge of the specific diseases of interest. In 
this Opinion article, we will review the available NGS approaches and try to outline the available 
strategies to optimize the performance of this genetic testing methodology.

GEnETiC TESTinG OF inHERiTED ARRHYTHMiAS  
in THE ERA OF nGS

Long QT syndrome (LQTS), Brugada syndrome (BrS), and catecholaminergic polymorphic ven-
tricular tachycardia (CPVT) are the main channelopathies that can cause for sudden cardiac death 
(SCD) in children or young adults. In the last few years, the number of genes and genetic variants 
associated with these diseases has increased. For example, there are 15 known LQTS1 genes and at 
least 16 BrS genes.2 Importantly, however, in each disease, there are few major genes and a larger 
number of genes accounting for few cases each. The “minor” genes are usually poorly characterized 
in terms of function and pathophysiological role. As a consequence, the identification of mutations 
in these genes often leads to results that are difficult to interpret. Therefore, the HRS expert consensus 

1 http://www.ncbi.nlm.nih.gov/books/NBK1129/ 
2 http://www.ncbi.nlm.nih.gov/books/NBK1517/ 
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TABLE 1 | Genes included in comprehensive arrhythmias panels.

Genes Location

ABCC9 12p12.1

ACTN2 1q43

AKAP9 7q21.2

ANK2 4q25–q26

ANKRD1 10q23.31

ANKX2.5 5q35.1

CACNA1C 12p13.33

CACNA2D1 7q21.11

CACNB2 10p12.33–p12.31

CALM1 14q32.11

CALM2 2p21

CALM3 19q13.32

CASQ2 1p13.1

CAV3 3p25.3

CTNNA3 10q21.3

DES 2q35

DSC2 18q12.1

DSG2 18q12.1

DSP 6p24.3

EMD Xq28

GPD1L 3p22.3

HCN4 15q24.1

JUP 17q21.2

KCND3 1p13.2

KCNE1 21q22.12

KCNE2 21q22.11

KCNE3 11q13.4

KCNE5 Xq23

KCNH2 7q36.1

KCNJ2 17q24.3

KCNJ5 11q24.3

KCNJ8 12p12.1

KCNQ1 11p15.5–p15.4

LDB3 10q23.2

LMN 1q22

PDLIM3 4q35.1

PKP2 12p11.21

PLN 6q22.31

PRKAG2 7q36.1

RANGRF 17p13.1

RBM20 10q25.2

RYR2 1q43

SCN10A 3p22.2

SCN1B 19q13.11

SCN2B 11q23.3

SCN3B 11q24.1

SCN4B 11q23.3

SCN5A 3p22.2

SLMAP 3p14.3

SNTA1 20q11.21

TBX5 12q24.21

TGFB3 14q24.3

TMEM43 3p25.1

TNNI3 19q13.42

TNNT2 1q32.1

TRDN 6q22.31

TRPM4 19q13.33

TTN 2q31.2
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statement on the diagnosis and management of patients with 
inherited arrhythmias syndromes (2) has outlined the indications 
for genetic testing on the basis of the epidemiological relevance 
of the genes and the clinical implications of genetic testing for 
each disease (i.e., how much the identification of the mutation 
can impact the clinical management).

The NGS, a massive parallel sequencing technology that 
revolutionized the genetic diagnostics, allows large-scale and 
rapid assessment of the entire human genome (3). In principle, 
there are three approaches that can be used: (1) whole genome 
sequencing (WGS), applied to sequence the entire genome, 
coding, and non-coding regions; (2) whole exome sequencing 
(WES) used to analyze only the “exome,” which represents 1% of 
the whole genome; (3) target resequencing panel (TRS) of genes, 
adopted to sequence selected gene sets/panels (4).

The first two approaches, WGS and WES, are mainly applied 
for research purposes, for discovery of new disease genes, while 
TRS is commonly used for the diagnosis in the clinical setting (5).

Recently, Pua et  al. reported a comparison study applying 
different approaches of sequencing, such as TRS, WES, and WGS 
(6). Analyzing a custom panel, including 174 genes involved in 
inherited cardiac disease, they investigated the performances 
of the approaches across this set of genes. Results showed that 
TRS approach achieved a higher coverage (>99.8% at ≥20× read 
depth) compared with the other approaches (88.1 and 99.3%; 
WES and WGS, respectively, at ≥20× read depth). Furthermore, 
this approach has been reported to be faster and more affordable.

AppROACH TO nGS in inHERiTED 
ARRHYTHMiAS

In the pre-NGS era, the analysis of yield of genetic testing 
provided a clear evidence of the tight link between the severity 
of the clinical phenotype and rate of identified mutations. Bai 
et al. (7) showed a high yield of screening (64, 51, and 13% for 
LQTS, CPVT, and BrS, respectively) in patients with a conclusive 
diagnosis compared with the borderline cases (14, 13 and 2%) 
(7). A similar concept also applies in the NGS era. Clinicians 
are tempted to use the fast and efficient NGS technology as a 
diagnostic tool when clinical examinations are inconclusive. This 
can lead to the identification of a high rate of VUS, especially on 
minor genes. Thus, the selection of genes to be included in TRS is 
crucial. In general, there are three NGS strategies available:

(1) Comprehensive cardio panel: 60–180 genes covering all 
known genes (channelopathies and/or cardiomyopathies).

(2) Comprehensive arrhythmias panel: 20–60 genes restricted to 
arrhythmogenic conditions (Table 1).

(3) “Key gene” panels: few genes (3–6 genes), with high evidence, 
related to a specific phenotype.

In patients with conclusive diagnosis, use of TRS panels with a 
limited set of well-characterized genes should be considered the 
first step to reduce the number of tests with uncertain findings 
(first tier) (Figure 1).

The optimal strategy in subjects, who turn out negative in 
the first step, is much less defined. After the exclusion of the 
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FiGURE 1 | Sequencing strategy for genetic testing.
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keys genes, the second tier of screening, using WES approach, 
can be considered (Figure 1). This choice might be preferable 
over the use of comprehensive cardio panels, due to the limited 
evidence of the minor genes associated with channelopathies, 
which cannot justify the investment required for the design and 
production of the second larger disease-specific gene panel. 
Therefore, WES will guarantee the consideration of all the muta-
tions in the minor genes that have not been unraveled yet and 
consider also rare genetic variants in novel genes, still unrelated 
with the phenotype.

Nevertheless, it is clear that there may be hurdles also in the 
interpretations of WES data. Independently from the screening 
approach, it should be considered that for diagnostic purposes 
the presence of (1) a clear pathophysiological link between the 
genetic variant and the phenotype and (2) the co-segregation 
within families, still remain crucial for the interpretation (8).

An example of the first tier strategy was recently reported by 
Millat et al. (9). Analyzing a cohort of 15 LQTS with a key panel, 
including only the main five genes associated with LQTS (KCNQ1, 
KCNH2, SCN5A, KCNE1, and KCNE2), they compared TRS and 
Sanger sequencing. The results showed that Sanger efficiently 
sequenced all the 69 exons compared with the TRS that sequenced 
55/69 exons (86% of the targeted regions). NGS–TRS showed cost 
and turnaround time advantages over Sanger method. The study 
by Millat et al. highlights a very relevant problem, which is com-
mon to all NGS platforms: lack of coverage of specific regions of 
genes. In some cases, the problem can be particularly relevant. For 
example, several exons of KCNH2, a highly prevalent LQTS gene 
(~35% of patients), are not completely sequenced due to their 
high CG rich sequence. Thus, integration with Sanger sequencing 
of uncovered regions is often required with a consequence impact 
on costs and turnaround time.

Another interesting study on the evaluation of the first tier 
approach has been reported by Steffensen et  al. in a cohort of 
39 patients analyzed for the main genes associated with LQTS 
(KCNQ1, KCNH2, SCN5A, and KCNE1) (10). Results showed a 
high percentage of patients (17 patients; 44%) carrying variants 
classified as pathogenic compared with patients carrying VUS or 
VUS likely pathogenic (11 patients; 28%) and no alterations (13 
patients; 34%).

Enlarging the screening to other seven minor genes (ANK2, 
KCNJ2, CACNA1C, CAV3, SCN4B, AKAP9, and SNTA1) associ-
ated with LQTS, the authors identified only three more variants, 
two classified as VUS and one as likely benign, demonstrating 
a very limited contribution, when including minor genes in the 
screening but a significant increase in the cost of the genetic 
tests.

The use of large panels, inclusive of all the minor genes 
may have additional limitations, as reported by Alfares et al. in 
patients with hypertrophic cardiomyopathy (HCM) (11). They 
tested over 9  years, 2,912 probands referred for clinical HCM 
genetic testing with different approaches: 11-gene panel, 18-gene 
panel, and a 50-gene pan cardiomyopathy panel. Results showed 
that the majority of positive tests were due to pathogenic or likely 
pathogenic variants in the MYBPC3 and MYH7 genes (83%), the 
two well-characterized genes routinely screened even with Sanger 
sequencing. Furthermore, analyzing a subset of 202 HCM patients 
with 18-gene panel and the pan cardiomyopathy panel, none of 
the probands had a causative variant outside the 18 “classic” HCM 
genes, suggested that use of the extended cardiomyopathy gene 
panel is useless for patients with HCM and should be reserved for 
patients with atypical clinical phenotypes (12).

SUMMARY AnD FUTURE 
DEVELOpMEnTS

Next-generation sequencing technology has improved sig-
nificantly over the past few years. However, there are still some 
limitations that need to be considered in terms of sensitivity of the 
uncovered regions (lower than Sanger sequencing). Moreover, 
the high-throughput capability is revealing itself as a double edge 
sword: on the one hand, it allows amazingly short turnaround 
time and reduced costs, but on the other hand, it reveals an 
increased rate of VUS and tests that are not conclusive (and 
therefore clinically irrelevant). A way to overcome this problem 
can be the implementation of a shared knowledge based on VUS. 
International collaborative efforts for the annotation of genetic 
variants are currently being explored as a mean to improve the 
interpretation capabilities for NGS results (13). The ClinVar 
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database3 is a publicly available tool for deposition and retrieval of 
variant data and annotations (14). This effort is expected to sup-
port the decision on the pathogenicity of identified variants and, 
most importantly, to resolve the classification of VUS. Meanwhile, 
the most appropriate use of NGS is that of a phenotype-driven 
approach with sequencing panels with a limited number of well-
known genes and used in patients with clear clinical indications 

3 https://www.ncbi.nlm.nih.gov/clinvar/ 

for genetic testing. Therefore, if causative mutations are not 
identified on the “key” disease IAD genes, the analysis should 
take a “research track” with the use of WES. However, patients 
should be counseled accordingly.
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