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Atherosclerosis is a complicated disorder and largely attributable to dyslipidaemia and 
chronic inflammation. Despite therapeutic advances over past decades, atherosclerosis 
remains the leading cause of mortality worldwide. Due to their capability of immunomod-
ulation and tissue regeneration, mesenchymal stem cells (MSCs) have evolved as an 
attractive therapeutic agent in various diseases including atherosclerosis. Accumulating 
evidences support the protective role of MSCs in all stages of atherosclerosis. In this 
review, we highlight the current understanding of MSCs including their characteristics 
such as molecular markers, tissue distribution, migratory property, immune-modulatory 
competence, etc. We also summarize MSC functions in animal models of atherosclero-
sis. MSC transplantation is able to modulate cytokine and chemokine secretion, reduce 
endothelial dysfunction, promote regulatory T cell function, decrease dyslipidemia, and 
stabilize vulnerable plaques during atherosclerosis development. In addition, MSCs may 
migrate to lesions where they develop into functional cells during atherosclerosis forma-
tion. Finally, the perspectives of MSCs in clinical atherosclerosis therapy are discussed.
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inTRODUCTiOn

Atherosclerosis, a vascular disorder leading to occlusion of the arterial wall, causes several impor-
tant complications including coronary and cerebral artery diseases (1, 2). Smoking, hypertension, 
diabetes, and dyslipidemia are well-known risk factors for atherosclerosis (3, 4). Despite the effective 
treatment targeting serum lipid abnormalities, atherosclerosis remains a leading cause of mortality 
(1, 5). The pathophysiological mechanisms of atherosclerosis are very complex and involve accu-
mulation of lipoprotein aggregates in the subendothelial space, inflammatory responses of vascular 
endothelial cells (ECs), adhesion and infiltration of monocytes, and transformation of macrophages 
into foam cells induced by oxidized low-density lipoprotein (ox-LDL) (6–9). In fact, atherosclerosis 
is a chronic inflammatory disease involving both innate and adaptive immunity. Pattern recognition 
receptors of innate immunity regulate cholesterol uptake and contribute to the foam cell formation 
and EC dysfunction (10). Antigen-specific T cells recognizing LDL in the intima are the adaptive 
immunity components in the development of atherosclerosis and provoke pro-inflammatory 
stimuli that further exacerbate and propagate this disease (11). Therefore, strategies to mobilize and 
stimulate immunosuppression may provide novel therapeutic approaches to reduce atherosclerotic 
cardiovascular disease (12, 13).

Cell therapy has been a focus for intense research and already being used widely for the treatment 
of various diseases. Mesenchymal stem cells (MSCs), also referred to as multipotent stromal cells, are 
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a class of multipotent stem cells that can be isolated from various 
tissues including bone marrow, peripheral blood, adipose, pla-
centa, etc. (14–16). MSCs have been explored as an attractive 
therapeutic agent in various diseases and injury models includ-
ing acute lung injury, myocardial infarction, acute renal failure, 
cerebral ischemia, Alzheimer’s disease, and corneal damage (14, 
17–22), due to their capabilities of differentiation into multiple 
cell lineages such as mesodermal lineage (adipocyte, osteoblast, 
chondrocyte) and myogenic lineage (15, 23). The interests in 
MSCs have been further enhanced by their advantages over 
other stem cell populations including their low immunogenicity, 
easy cultivation, and expansion in vitro. Moreover, recent studies 
reveal the anti-inflammatory properties of MSCs as guardians of 
inflammation (24). In view of the critical role of inflammatory 
processes in the initiation and progression of atherosclerosis, 
adoptive transfer of MSCs, which has the capability to modulate 
and reduce inflammation, may be a novel therapeutic approach 
to treat atherosclerosis. Understanding of the activities and func-
tions of MSCs in different atherosclerotic animal models and 
mechanisms underlying their therapeutic effects may be impor-
tant for further investigation into its potential clinical application.

CHARACTeRiSTiCS OF MSCs

Tissue Sources, isolation, and expansion 
of MSCs
Mesenchymal stem cells have been found in almost all tissues/
organs and can be derived from a variety of different sources, 
including adult peripheral blood, adipose tissue, and bone mar-
row, as well as fetal tissues, e.g., umbilical cord blood, Wharton’s 
jelly, amnion, amniotic fluid, and placenta (16). Currently, most 
MSCs used for clinical trials are isolated from bone marrow, 
adipose tissue, and umbilical cord blood (25). Bone marrow-
derived mesenchymal stem cells (BM-MSCs) first described 
by Friedenstein et  al. are the most frequently investigated cell 
type and often considered as the gold standard (26). However, 
the procedure for bone marrow aspirate is highly invasive for 
patients and accompanied by a risk of infection. Moreover, the 
limited accessibility is coupled with a relatively low cell yield 
(0.001–0.01%) and a substantial reduction in the expansibility of 
the cells in aged populations (27). Therefore, alternative sources 
of MSCs have been studied for their biological properties, dif-
ferentiation capacities, and surface marker expression. The 
second major source of MSCs is adipose tissue-derived stem cells 
(AT-MSCs). AT-MSCs are normally isolated from biological 
materials generated during liposuction, lipoplasty, or lipectomy 
procedures. These cells share many biological characteristics with 
BM-MSCs (28). Although the colony frequency of cells obtained 
from adipose tissues is higher than those of bone marrow, there 
is controversy on whether AT-MSCs are truly MSCs, as they are 
often named as “adipose tissue stem cells” (29, 30). Embryonic 
tissues are also important sources for MSC isolation. MSCs from 
the embryonic tissues have superior biological properties com-
pared with BM-MSCs (16). They also have improved proliferative 
capacity, life span, and differentiation potential compared with 
MSCs derived from adult tissues (16).

Several different procedures have been used to isolate MSCs 
from different tissues. The commonly applied methods for pre-
paring BM-MSCs or MSCs derived from umbilical cord blood 
(UBC-MSCs) utilize density gradient isolation or direct plating to 
separate mesenchymal from hematopoietic cells by their adhesion 
capacities to the plastic surface (31). Seeding densities are very 
important for successfully expanding MSCs. Accordingly, plating 
densities of 4–22 × 103 bone marrow mononuclear cells/cm2 can 
yield up to 9.8 ×  108 MSCs when they are harvested after one 
passage (32). The UBC-MSCs fraction is suggested to be seeded 
at a higher density of 1  ×  106/cm2 due to their low frequency 
(29). To isolate MSCs from adipose tissue, enzymatic treatment 
is commonly used. Centrifugation is performed to acquire the 
preadipocyte stromal vascular fraction, and the adipocyte frac-
tion is removed. After culture for 10 days, approximately 1:1,000 
cells within the stromal vascular fraction will generate colony-
forming units (29).

validation of MSC identity
Mesenchymal stem cells are identified by a combination of 
phenotypic and functional characteristics. In line with the 
International Society for Cellular Therapy, MSCs must be plastic 
adherent under basic culture conditions and able to differentiate 
to adipocytes, chondrocytes, and osteoblasts in vitro. Numerous 
publications have suggested minimal criteria of several stem cell 
markers to categorize MSCs, including the positive expression 
of CD29, CD44, CD73, CD90, and CD105 and the negative 
expression of hematopoietic markers (CD14, CD34, CD45), 
endothelial markers (CD31), human leukocyte antigen (HLA) 
class II, costimulatory molecules (CD80, CD86), and HLA-DR 
surface molecules (33–35). These biomarkers constitute a uni-
form characterization of MSCs and enable the comparison of 
different studies. However, some of these markers may be lost, 
or new markers may arise during culture process. The markers 
may also vary between different sources. For example, fibroblast-
derived MSCs express CD34 and CD45 surface markers, which 
are absent in BM-MSCs (36). UBC-MSCs showed CD45, CD14, 
and CD31 positive and CD34, CD1a, and CD80 negative, which 
are quite different from that of the BM-MSCs (37–39).

Distribution and Migration of MSCs
Mesenchymal stem cells are increasingly used as an intravenously 
administered cellular therapy due to their characteristics of migra-
tion to the site of injury. To track the distribution of MSCs in vivo, 
various methods of labeling have been used, including radioactive 
labeling, fluorescent vital dyes, contrast agents, transduction with 
reporter genes, and the use of donor cell-specific DNA markers 
such as microsatellites (40–44). By using these approaches, MSCs 
are found to migrate to a variety of tissues after the intravenous 
injection although low or very low frequencies of MSCs are detect-
able in these tissues (45). Early after administration of the MSCs, 
signals from the injected cells are found at the highest frequencies 
in the lung followed by liver and spleen (46, 47). Due to the limi-
tation of technologies detecting transplanted cells, there is only 
limited evidence indicating that the MSCs migrate as intact cells 
into their target locations. Intravenously injected MSCs have been 
observed to accumulate in tissues of myocardial ischemia, and 
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adhesion molecules very late antigen-4 and vascular cell adhe-
sion molecule-1 appear to be involved in the migration (48–50). 
Moreover, an increased level of CC-chemokine ligand (CCL)-2 
has been shown to facilitate the accumulation of MSCs in heart 
(51). In murine stroke model, MSCs migrate into ischemic areas 
after intravenous delivery, which involves the endothelial expres-
sion of P- and E-selectin (52). Apparently, the route of adminis-
tration is critical for the efficiency of MSC therapy. Compared 
with the intravenous route, intra-arterial route of administration 
is more effective in avoiding pulmonary entrapment of MSCs, 
and may thus improve the biodistribution and bioavailability of 
transplanted MSCs to clinically relevant tissues (53, 54).

immunomodulatory Properties of MSCs
A number of studies have confirmed the immunosuppressive 
function of MSCs. MSCs have been used to treat severe graft-
versus-host disease based on the fact that MSCs can alter several 
properties of T  cells. The most prominent one is to efficiently 
suppress the proliferation of the activated CD4+ T helper cells 
and CD8+ cytotoxic T  cells (55, 56). Indoleamine-pyrrole-2-
3-dioxygenase (IDO), an intracellular enzyme, is the primary 
mediator of MSC immunomodulatory activity. IDO has been 
shown to reduce immune cell proliferation by regulating trypto-
phan depletion and accumulating metabolites such as kynurenine 
(57, 58). MSCs are also known to halt B-cell maturation in G0/G1 
phase and simultaneously diminish their chemotactic activity. In 
addition, MSCs can block the maturation of dendritic cells (DCs), 
resulting in a reduced expression of antigens and costimulatory 
molecules necessary for activating T-cells (59). Moreover, MSCs 
are found to downregulate the activating receptors of natural 
killer (NK) cells NKp30, NKp44, and NKG2D (60).

Several studies suggest that MSCs alter the cytokine secretion 
profile of immune cells including DCs, naive and effector T cells, 
and NK cells (61). Indeed, MSCs can reduce tumor necrosis fac-
tor α (TNF-α) secretion from mature DCs type 1 (DC1), increase 
interleukin 10 (IL-10) secretion from mature DC2, decrease 
Interferon gamma (IFN-γ) secretion from NK cells and Th1 cells, 
and increase IL-4 from Th2 cells. In addition, MSCs inhibit the 
production of IL-17, IL-22, IFN-γ, and TNF-α by preventing 
the differentiation of naive CD4+ T cells into Th17 cells in vitro 
(62). Moreover, BM-MSCs decrease the production of pro- 
inflammatory cytokines IFN-γ, TNF-α, and IL-2 in T and B 
lymphocytes and suppress cell proliferation (63). MSCs have also 
been shown to secrete tumor necrosis factor alpha-stimulated 
gene-6 (TSG-6), a powerful anti-inflammatory factor (18). Toll-
like receptors (TLRs) such as TLR3 and TLR4 are abundantly 
expressed in MSCs, and their activation regulates MSC anti-
inflammatory functions (64).

FUnCTiOn OF MSCs in 
ATHeROSCLeROSiS

The Pathophysiological Mechanisms  
of Atherosclerosis
Atherosclerosis has traditionally been considered as a 
metabolic disorder caused by hyperlipidemia and fatty deposits 

and a chronic inflammatory disease of the arterial wall (12). 
Inflammation plays a crucial role in every stage of atheroscle-
rosis from initial onset of the plaque to rupture. Early in the 
disease process, entrapped ox-LDL in the vessel wall leads 
to arterial endothelial dysfunction and an upregulation of 
leukocyte adhesion molecules such as selectins, integrins, 
and immunoglobulin proteins, which induce inflammatory 
cell adhesion, rolling, and migration to subendothelial region 
(65–67). Thereafter, monocytes, T cells, and neutrophils infil-
trate through gaps between interendothelial junctions. The 
monocyte-derived macrophages and DCs engulf lipid molecules 
and then become foam cells, and simultaneously produce an 
array of inflammatory cytokines (68). Accumulation of immune 
cells and lipid droplets in the intima result in the early plaque, 
known as fatty steak. In the center of a mature plaque, foam cells 
and extracellular lipid droplets form a core region surrounded 
by a cap of smooth muscle cells (SMCs) and a collagen-rich 
matrix (7). Both macrophages and DCs express TLRs to medi-
ate the activation of antigen-presenting cells and production of 
inflammatory cytokines. CD4+ T cells are crucially involved in 
the development of atherosclerosis, and their depletion reduces 
the lesion size by 70% (69). The predominant T cell subset in 
human and murine atherosclerotic lesions is the Th1 subset, 
which produces a number of inflammatory cytokines such 
as IFN-γ (70, 71). IFN-γ promotes vascular inflammation by 
enhancing maturation and activation of antigen-presenting 
cells, increasing macrophage lipid uptake, reducing collagen 
production by phenotypically modulated SMCs, and enhanc-
ing expression of endothelial adhesion molecules to facilitate 
leukocyte recruitment to the lesions (72). The continuous 
recruitment of leukocytes to atherosclerotic arteries leads to a 
feed-forward promotion of inflammatory cycle.

Due to the essential role of inflammation in the initiation and 
progression of atherosclerosis, MSCs transplantation, which has 
the capacity to modulate and reduce inflammation, has been 
broadly explored as a therapeutic approach to treat atheroscle-
rosis. The notable characteristics of allogeneic MSCs, such as low 
immunogenicity, inhibition of T cell proliferation, and memory 
T cell responses, make allogeneic MSCs transplantation an attrac-
tive approach (56, 73, 74). Multiple studies have demonstrated 
that MSCs exhibit atheroprotective effects in animal atheroscle-
rosis, mostly induced by high-fat diet in apolipoprotein E (ApoE) 
or low-density lipoprotein receptor (LDLR) knockout mice. In 
most of these studies, MSCs are derived from bone marrow 
although umbilical cord blood-derived MSCs and skin-derived 
MSCs (S-MSCs) are also used (Table 1).

MSCs Modulate Cytokine and Chemokine 
Secretion during Atherosclerosis 
Development
The protective effects of MSCs in animal atherosclerosis 
models are mainly attributable to its production of a number 
of anti-inflammatory factors. The application of BM-MSCs 
in atherosclerotic mouse causes an increased secretion of 
anti-inflammatory cytokines such as transforming growth 
factor (TGF)-β1 and IL-10, and the decreased production of 
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TAbLe 1 | Mesenchymal stem cell (MSC) treatments against atherosclerosis in animal models.

Reference MSCs sources/dose Route Animal model Mechanism of MSC action

Fang et al. (75) Bone marrow Allogeneic New Zealand rabbits PAI-1, hs-CRP, MMPs ↓
1 × 107 cells Intra-arterial Collagen fibers ↑

Wang et al. (76) Bone marrow Allogeneic ApoE−/− mice CD4+CD25+FOXP3+ Tregs ↑
107 cells Intravenous CD36, SRA ↓

Lin et al. (77) Bone marrow Allogeneic ApoE−/− mice IL8, MIP-2, eNOS ↑
2 × 105 cells Intravenous

Frodermann et al. (78) Bone marrow Allogeneic LDLR−/− mice Circulating monocytes ↓
0.5 × 106 cells Intravenous CD4+ T cells, CCL2, IFN-γ↓

TNF-α, serum cholesterol level ↓
Tregs ↑

Wang et al. (79) Bone marrow Allogeneic New Zealand rabbits hs-CRP, TNF-α, IL-6, NF-κB ↓
1 × 107 cells Intravenous MMPs, cell apoptosis ↓

TSG-6, IL-10 ↑

Abdel-Kawi and Hashem (80) Cord blood Allogeneic Albino rats iNOS ↑
3 × 106 cells Intravenous

Li et al. (81) Skin Allogeneic ApoE−/− mice PGE2, IL-10 ↑
Intravenous TNF-α, NF-κB ↓
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pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6 
(76). TGF-β1 is involved in the MSC-mediated induction of 
CD4+CD25+Foxp3+ regulatory T  cells (Tregs) (82) and the 
decreased proliferation of NK  cells (83). IL-10 exerts its anti-
atherogenic effects primarily by influencing the local inflamma-
tory process within the lesion through inhibiting macrophage 
activation, matrix metalloproteinase, and pro-inflammatory 
cytokines (65, 84). Frodermann et  al. have found that MSC 
therapy significantly reduces serum CCL2 levels, a chemokine 
that attracts and activates mononuclear cells (78). In addition, 
MSC treatment results in an overall reduced inflammatory state 
as well as a significant reduced differentiation of naive T cells. 
Similarly, treatment with skin-derived MSCs (S-MSCs) reduces 
the release of TNF-α and increases the expression of IL-10 both 
in vivo and in vitro, which is both dependent on NF-κB activation 
(81). There is a reduced expression of NF-κB in atherosclerotic 
plaque after MSC transplantation (79). These findings are con-
sistent with many other studies showing that MSCs can inhibit 
the expression and activity of NF-κB (85–87).

Mesenchymal stem cell activation also leads to the production 
and release of modulation of target molecules including IDO, 
prostaglandin E2 (PGE2), and TSG-6 (88). IDO inhibits Th17 dif-
ferentiation through an exhaustion of tryptophan (58). Moreover, 
IDO decreases the proliferation and cytotoxic activity of NK cells 
activated by IL-2 in the presence of MSCs and inhibits the matura-
tion and functional activity of DCs (89). PGE2 has been shown 
to diminish T cell proliferation, stimulate IL-4 and IL-10 secre-
tion, and promote CD4+CD25+Foxp3+ Tregs differentiation (90). 
TSG-6 is not constitutively expressed in normal tissues or cells, 
but is upregulated in response to pro-inflammatory cytokines 
such as TNF-α, IL-1, and IL-6 (91, 92). TSG-6 facilitates a feed-
back mechanism to inhibit inflammation-mediated extracellular 
matrix remodeling by reducing inflammatory factor expression 
and inhibiting neutrophil infiltration and plasmin activity (93, 94).

MSCs improve endothelial Function 
during the Development of Atherosclerosis
Endothelial dysfunction is one of the earliest events of atheroscle-
rosis, resulting in subsequent lipid accumulation, macrophage 
recruitment, foam cells formation, and T cell and platelet recruit-
ment (95). In addition to providing a lining for vessel walls, the 
endothelium is a complex endocrine and paracrine organ that 
plays a crucial role in the maintenance of vascular homeostasis. 
Endothelial nitric oxide synthase (eNOS) is responsible for the 
production of most vascular nitric oxide (NO) (96, 97). NO 
acts as a local vasodilator by increasing smooth muscle cyclic 
guanosine monophosphate (cAMP) levels while inhibiting 
leukocyte adhesion and activation, platelet aggregation, and 
SMC proliferation. NO also has anti-inflammatory properties 
by inhibiting the expression of leukocyte adhesion molecules 
(98). Although ECs have the potential to self-repair in response 
to inflammatory stimuli, MSCs appear to be able to accelerate 
the repairing process. For example, amnion-derived MSCs have 
been reported to enhance EC viability as shown by decreasing 
lactate dehydrogenase level and stabilize the endothelial network 
formation in vitro (99). Lin et al. demonstrated that allogeneic 
BM-MSCs transplantation attenuates atherosclerosis through 
repairing the diseased endothelium and improving endothelial 
function (77). ox-LDL deactivates Akt/eNOS activity, induces 
eNOS degradation, and thus inhibits NO production in EC. 
However, coculture with human MSCs reverses the effects of 
ox-LDL on ECs. It appears that the protective effect of MSCs 
on EC activation of the Akt/eNOS pathway is achieved mainly 
through upregulation of IL8 and macrophage inflammatory 
protein (MIP)-2. The effects of human/mouse MSCs on ox-LDL-
treated ECs are blocked by the neutralization antibodies against 
IL8/MIP-2. Therefore, MSC transplantation could ameliorate 
atherosclerosis by improving endothelial function and plaque 
formation.
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MSCs increase the Quantity and enhance 
the Function of Tregs during 
Atherosclerosis Development
Regulatory T cells have been shown to exert an immunosuppres-
sive function through producing inhibitory cytokines such as 
IL-10 and TGF-β. Tregs mediate cell–cell contact by membrane-
bound TGF-β and cytotoxic T  lymphocyte-associated antigen 
(100, 101). Tregs are initially characterized as CD4+CD25+ T cells. 
However, later studies identify forkhead box transcription factor 
(FOXP3) as a key lineage protein and a master regulator in Treg 
development and function (102–104). In atherosclerotic plaques, 
there is a low number of FOXP3+ Tregs (105, 106). Knockdown 
of FOXP3 promotes the progression of atherosclerosis in mice  
(106, 107), suggesting a possible atheroprotective function 
of FOXP3+ Tregs. Transplantation experiments in immune-
deficient, hyperlipidemic mice demonstrate that Tregs exert their 
atheroprotective role by repressing the function of DCs and Th1/
Th2 cells (108). Mechanistic analyses reveal that IL-10 and TGF-
β, the two major cytokines produced by Tregs, suppress functions 
of DCs and Th1/Th2 cells in atherosclerosis (109–112). In addi-
tion, Tregs are able to repress the expression of the matrix metal-
loproteinases MMP-2 and MMP-9, two important proteinases 
degrading extracellular matrix proteins, and thus enhance the 
lesion stability in atherosclerosis mouse model (107, 108, 113).

The major obstacle associated with Treg treatment is the 
inability to efficiently isolate a pure population of Tregs. There are 
no validated cell surface markers that can be used for cell sorting. 
A promising alternative is to use MSCs. MSCs can recruit and 
promote the generation of Tregs (75, 88). Indeed, MSC treatment 
has significantly increased the number and function of Tregs in 
cultured splenocytes. It also increases the mRNA and protein 
expression of FOXP3 in atherosclerotic mouse model (76). It is 
also reported that ApoE−/− mice treated with multiple times and 
high numbers (107) of MSCs can dramatically reduce the long-
term overall loading of effector T cells, which is partially due to 
the lasting increase of Tregs. Several mechanisms underlie the 
MSC-induced expansion of Tregs. Soluble factors are proved to 
be involved while cell–cell contact is also vital. MSCs are able to 
induce Tregs by directly contacting with CD4+ T cells (82). Melief 
et al. have also reported that MSCs increase TGF-β1 secretion to 
promote the generation of Tregs (114). Further study reveals that 
the increased gene expression of the Notch ligand, Delta-like 1, 
is essential for the augmented Tregs induction by TLR-activated 
MSCs, which is dependent on cell–cell contact (64). Notch ligand 
Jagged-1 is also involved in MSC induction of Tregs (115). In 
addition, the presence of monocytes is important for the MSC-
induced generation of Tregs as well. MSCs promote monocyte 
survival and induce monocytes to differentiate toward an anti-
inflammatory type 2 macrophage phenotype, which mediates 
Tregs formation by the production of CCL18 (114).

MSCs Can Migrate to Lesions and 
Develop into Functional Cells during 
Atherosclerosis Development
The intrinsic ability of MSCs to differentiate into functional cell 
types enables them to repair the diseased or injured tissues in 

which they are localized. The carboxyfluorescein succinimidyl 
ester-labeled mMSCs are found in areas close to the endothelium 
at 7 days after the injection while S-MSCs migrate to atheroscle-
rotic plaque and selectively take up residence near macrophages 
(77, 81). The transplanted BM-MSCs are able to “home in” on the 
ruptured plaque regions and differentiate into ECs and collagen 
fibers (75). BrdU-labeled BM-MSCs are observed in ruptured 
plaques 4 weeks after the MSC transplantation. The mechanisms 
regulating stem cell differentiation and their mobilization or 
migration to the site of vascular injury involve several mediators 
and receptors, such as P-selectin glycoprotein ligand-1, α4 integ-
rin, CXC chemokine receptor-2 and -4, and β1- and β2-integrins 
(116, 117). In addition, the interaction of platelets with progeni-
tor cells also influences MSC chemotaxis, adhesion, activation, 
and differentiation into mature ECs during vascular repair (118).

MSCs Reduce Dyslipidemia during the 
Development of Atherosclerosis
Dyslipidemia is a major risk factor for the development and pro-
gression of atherosclerosis (119). MSCs appear to have indirect 
effects on cholesterol metabolism through immune modulation. 
The connection between immune cells and cholesterol metabo-
lism has been established. Both ApoE−/− mice on chow diet and 
LDLR−/− mice on high-fat diet lacking both B and T cells show 
reduced plasma lipoproteins, especially the apoB-containing 
lipoproteins (120). MSCs treatment not only suppresses inflam-
matory responses but also significantly lowers the plasma 
cholesterol levels in MSC-treated mice due to a reduction of 
VLDL levels after a 5-week treatment (78). In MSC-treated mice, 
a significant decrease of lipoprotein lipase is observed in liver, 
which reduces the availability of free fatty acids for VLDL synthe-
sis. MSC-treated mice also exhibit a reduced VLDL metabolism 
due to the reduced activation of Kupffer cells. Kupffer cells can 
express mediators promoting VLDL secretion by hepatocytes 
(121). Moreover, lipoprotein lipase deficiency in macrophages 
reduces their uptake of VLDL or ox-LDL, thereby attenuating 
atherosclerosis (122, 123). Overall, MSCs reduce VLDL levels by 
decreasing inflammation. Indeed, TNF-α that is downregulated 
in MSC and splenocyte coculture has been shown to upregulate 
SREBP-1c, which increases VLDL synthesis (124). Conversely, 
IL-10 overexpression reduces plasma cholesterol, mostly due to a 
reduced VLDL, in LDLR−/− mice (125).

MSCs enhance Stability of Advanced 
Atheroslerotic Lesions
Atherosclerotic plaques are able to alternate between stable and 
vulnerable states depending on the internal environment. It is 
generally believed that lesions with a thin fibrous cap, large lipid 
core, and a large number of macrophages are unstable and prone 
to rupturing. Rupture and embolism of the atherosclerotic plaque 
lead to acute coronary syndrome and ischemic stroke (126, 127). 
Clinical evidence indicates that the instability rather than the 
plaque size determines the prognosis of cardiovascular diseases 
(128, 129). Recently, allogeneic MSCs have been evaluated for 
their potential to repair ruptured lesions. It appears that MSCs 
can increase the regeneration of the inner endothelial lining 
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and collagen fiber formation in the vessel wall, implying their 
potential in treating advanced lesions (75).

C-reactive protein (CRP) is recognized as a predictive indica-
tor of plaque instability because of its direct pro-inflammatory 
effects. CRP induces ECs to express various adhesion molecules 
and chemotactic molecules. CRP also stimulates monocytes to 
produce and secrete potent pro-coagulant factors promoting 
the inflammatory response (130, 131). Plasminogen activator 
inhibitor-1 (PAI-1) is a major inhibitor for fibrinolysis and an 
important risk factor for thrombotic diseases (132). In a rabbit 
advanced atherosclerosis model, MSCs transplantation dramati-
cally decreases the expression of sensitive biomarkers for tissue 
damage, including CRP, MMPs, and PAI-1 (75). TNF-α promotes 
inflammatory cell accumulation in atherosclerotic plaques to 
negatively impact plaque stability and promote thrombosis and 
cell necrosis (133). IL-10, on the other hand, promotes lesion 
stability through inhibiting inflammatory cell accumulation and 
inducing SMC proliferation (109, 134, 135). MSC transplantation 
effectively stabilizes vulnerable plaques in atherosclerotic rabbit 
model through immune modulation, as indicated by a reduction 
in TNF-α and IL-6 and an increase in IL-10 in MSC-treated 
animals (79). Moreover, the expression of MMP-1, MMP-2, 
and MMP-9 in lesion is decreased after MSC transplantation, 
suggesting that alterations in MMPs may influence the extracel-
lular matrix and further affect the lesion stability. These findings 
indicate that MSCs may alter plaque vulnerability by decreasing 
the regional collagen degradation via reduction of MMP synthe-
sis. Furthermore, the cell apoptosis is one of the major features 
in atherosclerotic plaque (136, 137). In fact, the apoptosis of 
vascular ECs, vascular SMCs, and macrophages is involved in the 
formation, development, and rupture of atherosclerotic plaque 
(138). MSC transplantation dramatically decreases the number of 
apoptotic cells in plaques, suggesting that MSCs may increase the 
plaque stability also by inhibiting cell apoptosis (79).

PiTFALLS in USinG MSCs TO TReAT 
ATHeROSCLeROSiS

Numerous clinical and preclinical trials have suggested that MSC 
transplantation is safe (139–141). The minimal and maximal 
dosages for therapeutic application has not been determined yet, 
but currently applied doses are in the range of <1–5 × 106 MSCs/
kg body weight (142). Koç et al. have found that intravenously 
adoptive MSCs are well-tolerated in patients with mammary car-
cinoma at a dose of 1 × 106 MSCs/kg body weight (143). However, 
in animal models, allogeneic MSCs can be rejected by recipient 
mice although allogeneic MSCs show low immunogenicity (144). 
In addition, although preclinical and early phase clinical trials 
have not detected potential pitfalls of MSC therapy in human 

patients after MSC transplantation, tumor formation has been 
reported in several rodent models. BM-MSC transplantation may 
lead to the occurrence of gastric cancers (145). The chromosomal 
instability is also observed in mouse BM-MSCs that may lead to 
a malignant transformation (146). In October 2011, the experts 
in Cell Products Working Party have reached a consensus that 
good manufacturing practice conditions, such as cell preparation, 
culture, and manipulation, decrease the risk of tumorigenicity in 
MSC therapy. Cell culture condition and cell propagation dura-
tion significantly impact the formation of cytogenetic abnormali-
ties (147).

COnCLUSiOn AnD PeRSPeCTive

The major advantage of MSCs is their ability to migrate to sites 
of injury, respond dynamically to the extent of injury, and secrete 
a broad range of beneficial factors. These factors can modulate 
the inflammation status and restore endothelium function in 
atherosclerotic lesions. MSC transplantation represents a novel 
approach for efficient prevention and treatment of atherosclerotic 
plaque rupture. Studies on MSCs have provided theoretical and 
experimental evidence for its clinical application. However, there 
are no differences in atherosclerotic plaque burden after long-
term observations in the MSC treatment group compared to 
controls, which indicates that the therapeutic effects of MSCs may 
not sustain for a long time after the removal of engrafted MSCs. 
To acquire persistent effects of MSCs, multiple treatments may be 
necessary. In addition, to effectively translate the current findings 
into clinic, future studies using mouse models with humanized 
immune system may be necessary, such as severe combined 
immunodeficiency (SCID), NOD/Shi-scid, IL-2Rγ null (NOG), 
or NOD/Lt-scid, IL-2Rγ null (NSG) mice.

Overall, much investigation remains to be done before under-
standing how MSCs are distributed and removed in the recipient, 
and whether their atheroprotecive effect is mediated through 
immunomodulation, or if the effectiveness of MSC therapy can 
be enhanced by various pretreatments with cocktails of different 
factors.
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