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Heart failure is the number one killer worldwide with ~50% of patients dying within 
5 years of prognosis. The discovery of stem cells, which are capable of repairing the 
damaged portion of the heart, has created a field of cardiac regenerative medicine, 
which explores various types of stem cells, either autologous or endogenous, in the 
hope of finding the “holy grail” stem cell candidate to slow down and reverse the dis-
ease progression. However, there are many challenges that need to be overcome in 
the search of such a cell candidate. The ideal cells have to survive the harsh infarcted 
environment, retain their phenotype upon administration, and engraft and be activated 
to initiate repair and regeneration in vivo. Early bench and bedside experiments mostly 
focused on bone marrow-derived cells; however, heart regeneration requires multiple 
coordinations and interactions between various cell types and the extracellular matrix to 
form new cardiomyocytes and vasculature. There is an observed trend that when more 
than one cell is coadministered and cotransplanted into infarcted animal models the 
degree of regeneration is enhanced, when compared to single-cell administration. This 
review focuses on stem cell candidates, which have also been tested in human trials, 
and summarizes findings that explore the interactions between various stem cells in 
heart regenerative therapy.

Keywords: myocardial regeneration, cardiac stem and progenitor cells, synergy, interactions, cell therapy, cardiac 
tissue engineering

iNTRODUCTiON

Cardiovascular disease remains the number one, non-communicable killer disease, which recorded 
a mortality rate of 17.5 million in 2012, and was accounted for 46.2% of all reported deaths world-
wide in 2014 (1). Myocardial infarction (MI) is a common cause of heart failure (HF) due to a 
consequence of partial or complete occlusion of the coronary artery, which diminishes the delivery 
of oxygen and nutrient supply to the myocardium where the vessel serves (2). Approximately 25% 
of myocardial infarcted patients suffer from severe left ventricular dysfunction and are at risk of 
progressive heart remodeling (3). Conventional pharmacological approaches with drugs, such 
as thrombolytic agent, β-blocker, and angiotensin-converting enzyme inhibitor, is often the first 
non-invasive treatment option offered to patients. However, in more severe cases, ST-elevated 
myocardial infarction (STEMI), a more invasive balloon angioplasty, and stent insertion may be 
recommended to achieve myocardial reperfusion. Highly invasive coronary artery bypass grafting 
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FigURe 1 | Summary of cardiac stem/progenitor cells and their interaction with bone marrow-derived cells promoting heart regeneration.
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procedure is only recommended if severe, irreversible coronary 
occlusion is evident. These approaches had shown to alleviate the 
symptoms of the disease and improve the patients’ quality of life. 
Nevertheless, none of these therapies were able to remove the 
fibrotic scar or replace the lost myocardium with new functional 
cardiomyocytes. The presence of the akinetic tissue restricts the 
overall cardiac performance, forcing the remaining myocytes 
to increase contractility to maintain adequate cardiac output. 
These events trigger abrupt alterations in cardiac architecture 
and cause cardiomyocyte hypertrophy, further myocyte loss, 
thinning of the ventricular wall, weakening of contractility, 
and an eventual cease in function of the cardiomyocytes (4). To 
date, heart transplantation is the only curative option. Although 
there are survivors from successful heart transplantations, the 
long waiting time, high patient-to-donor ratio, high incidence 
of post-procedural complications, and limited number of 
transplantable hearts prompt an urgent need for an alterna-
tive solution. Stem cell-based therapies are fast becoming an 
attractive and highly promising treatment for heart disease and 
failure. The most common types of stem cell candidates, which 
had been tested in clinical trials thus far, are derived mainly 
from the bone marrow. In this review, we will discuss the basic 
discovery and current progress of the candidate cells in human 
cardiac regenerative therapy, and the potential to combine 
multiple cell types for regenerating complex components that 
make up the myocardium (Figure 1). Finally, we touch on an 
emerging prospective application in heart tissue engineering.

BONe MARROw-DeRiveD 
MONONUCLeAR AND HeMATOPOieTiC 
STeM CeLLS (HSCs)

The discovery of recipient-derived cardiomyocytes in sex-
mismatched donor hearts after bone marrow transplants spiked 
the interest of using bone marrow cells for cardiac cell therapy 
(5–7). Bone marrow mononuclear cells (BMNCs) were the first 
hematopoietic cells selected for this purpose, because of their 
availability and feasibility to be isolated from patients through 
bone marrow aspiration (8). In fact, the in  vitro procedure 
involved minimal manipulation for clinical transplantation, 
making it the most favorite cell candidate in initial cardiac repair 
clinical trials. Nevertheless, most clinical studies observed a mar-
ginal, yet clinically significant, improvement in cardiac function 
after injection with BMNCs (Table  1). Despite evidences that 
showed the BMNCs contribute to angiogenesis (9) and neovas-
cularization (10) by secreting paracrine factors, their capability of 
cardiomyogenic differentiation in vivo remains skeptical. The ear-
liest study, where lineage-negative (Lin−), c-kit-positive (c-kit+), 
EGFP + HSCs were injected into the contracting wall bordering 
the infarct in mice, showed newly formed myocardium, com-
prised cardiomyocytes and vasculature, occupying 68% of the 
infarcted portion of the ventricle 9 days after transplanting the 
bone marrow cells (11). These findings failed to be replicated by 
others. Murry et al. (12) tracked the fate of HSCs (c-kit+, Lin−) 
after 145 transplants into normal and injured adult mouse hearts 
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TABLe 1 | List of clinical trials using bone marrow mononuclear cells.

Study Number of 
patients

Type of patients Duration 
(months)

imaging modality Changes in left ventricular ejection fraction (LveF) Reference

Placebo Treated % Changes in LveF (treated)

TOPCARE-AMI (2002) 20 Acute MI 4 LV angiography
Echocardiography
PET

51.0 ± 10.0–53.5 ± 7.9% 51.6 ± 9.6–60.1 ± 8.6% +8.5* (14)

TOPCARE-AMI (2004)a 59 Acute MI 4 LV angiography
Echocardiography
MRI

50.0 ± 10.0–58.0 ± 10.0% 49.0 ± 10.0–57.0 ± 10.0% +8* (15)

BOOST (2004) 60 STEMI 6 Cardiac MRI 51.3 ± 9.3–52.0 ± 12.4% 50.0 ± 10.0–56.7 ± 12.5% +6.7* (16)

BOOST (2006)a 60 STEMI 18 Cardiac MRI 51.3 ± 9.3–54.4.0 ± 13.0% 50.0 ± 10.0–55.9 ± 14.7% +5.9 (17)

REPAIR-AMI (2006) 204 Acute MI 4 LV angiography 46.9 ± 10.4–49.9 ± 13.0% 48.3 ± 9.2–53.8 ± 10.2% +10.5* (18)

LEUVEN-AMI (2006) 67 STEMI 4 MRI
PET
Echocardiography

46.9 ± 8.2–49.1 ± 10.7 48.5 ± 7.2–51.8 ± 8.8% +3.3 (19)

ASTAMI (2006) 97 STEMI 6 Echocardiography
SPECT
MRI

46.9 ± 9.6–49.0 ± 9.5% 45.7 ± 9.4–48.8 ± 10.7% +3.1 (20)

TCT-STAMI (2006) 20 Acute MI 6 Echocardiography 58.2 ± 7.5–56.3 ± 3.5% 53.8 ± 9.2–58.6 ± 9.9% +4.8* (21)

SPECT

TOPCARE-CHD (2007) 121 Chronic post-infarction 
HF

3 LV angiography N/A 39.9 ± 11.4–41.7 ± 11.9% +1.8* (22)

Gowdak (2008) 10 Severe coronary artery 
disease

12 MRI
Echocardiography

N/A 63.0 ± 14.0–67.0 ± 13.0% +4 (23)

FINCELL (2008) 80 STEMI 6 Echocardiography
LV angiography

57.0 ± 10.0–56.0 ± 10.0% 56.0 ± 10.0–60.0 ± 8.0% +4* (24)

HEBE (2008) 26 Acute MI 12 MRI N/A 45.0 ± 6.3–47.2 ± 6.5% +2.2* (25)

BOOST (2009)a 60 STEMI 61 cMRI 51.3 ± 9.3–48.1 ± 12.9% 50.0 ± 10.0–47.5 ± 16.7% −2.5 (26)

ASTAMI (2009)a 100 STEMI 36 Echocardiography
MRI

46.9 ± 9.6–46.8 ± 8.6% 45.7 ± 9.4–47.5 ± 9.0% +1.8 (27)

REGENT (2009) 200 STEMI 6 MRI
Echocardiography
LV angiography

N/A
N/A

37.0–40.0% (non-selected BMC)
35.0–38.0% (CD34-CXCR4 BMC)

+3* (for both groups) (28)

Traverse (2010) 40 STEMI 6 Echocardiography
MRI

48.6 ± 8.5–57.0 ± 13.4% 49.0 ± 9.5–55.2 ± 9.8% +6.2 (29)

BONAMI (2010) 101 Acute MI 3 RNA
MRI
Echocardiography
SPECT

37.0 ± 6.7–41.3 ± 9.0% 35.6 ± 7.0–38.9 ± 10.3% +3.3 (30)

(Continued )
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Study Number of 
patients

Type of patients Duration 
(months)

imaging modality Changes in left ventricular ejection fraction (LveF) Reference

Placebo Treated % Changes in LveF (treated)

REPAIR-AMIa (2010) 204 Acute MI 24 LV angiography
MRI

48.7–43.6% 45.4–50.1% +4.7* (31)

FOCUS-HF (2011) 30 Ischemic HF 6 Echocardiography
SPECT
LV angiography

40.0 ± 3.2–40.9 ± 8.5% 37.5 ± 8.2–42.0 ± 14.4% +4.5* (32)

HEBE (2011)a 200 Acute MI 4 MRI 42.4 ± 8.3–46.4 ± 9.2% 43.7 ± 9.0–47.5 ± 9.9% +3.8* (33)

Late TIME (2011) 87 Acute MI 6 Echocardiography
MRI

45.3 ± 9.9–48.8 ± 7.8% 48.7 ± 12.0–49.2 ± 13.0% +0.5 (34)

TOPCARE-AMIa (2011) 55 Acute MI 60 MRI N/A 46.0 ± 10.0–57.0 ± 10.0% +11* (35)

TIME (2012) 120 Acute MI 6 MRI
Echocardiography

44.5 ± 10.8–47.8 ± 13.6% 45.1 ± 10.6–48.3 ± 13.3% +3.2 (36)

Antonitsis (2012) 9 Ischemic 
cardiomyopathy

12 Echocardiography
SPECT

N/A 31.3 ± 6.5–52.5 ± 8.9% +21.2* (37)

FOCUS-CCTRN (2012) 92 Chronic HF 6 SPECT 32.3–31.0% 34.7–36.1% +1.4 (38)

SWISS AMI (2013) 200 STEMI 4 MRI 40.0 ± 9.9–38.7 ± 17.3% 36.5 ± 9.9–37.9 ± 10.3% (early 
injection—5–7 days post-MI)

+1.4 (early injection—5–7 days 
post-MI)

(39)

36.3 ± 8.2–37.4 ± 9.7% (late 
injection—3–4 weeks post-MI)

+1.1 (late injection—3–4 weeks 
post-MI)

N/A, not applicable (Placebo group was not included in trial); HF, heart failure; MI, myocardial infarction; LV, left ventricular; STEMI, ST-elevated myocardial infarction; PET, positron emission tomography;  
MRI, magnetic resonance imaging; SPECT, single-photon-emission computed tomography; RNA, radionuclide angiography.
aFollow-up studies.
*Significant improvement in LVEF (p < 0.05).

TABLe 1 | Continued
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and found no trans-differentiation of HSCs into cardiomyocytes 
(12). Moreover, Balsam and colleagues showed that when 
GFP+Lin−c-kit+ HSCs were injected into infarcted mouse hearts, 
abundant GFP+ cells were detected in the myocardium at 10 days, 
with few cells detectable at 30 days (13). It was found that the 
GFP+ cells did not express cardiac tissue-specific markers, but 
expressed the hematopoietic marker CD45 and myeloid marker 
Gr-1, representing mature hematopoietic fates.

More recently, van Berlo et  al. (40) generated c-kitcre-IRES-
eGFP knocked-in mice to revisit the fate of c-kit+ cells in 
development and following injury (40). They found that most 
eGFP-c-kit+ cells were mainly non-myocytes in the developing 
and injured adult heart. Indeed, c-kit+ cells largely adopted an 
endothelial lineage phenotype in the developing or infarcted 
heart, and rarely became cardiomyocytes (41, 42). While these 
models set out to tag all c-kit+ cells in the organism, questions 
were raised over the fidelity of the model and reporter gene to 
successfully recombine the endogenous, resident cardiac stem, 
and progenitor cells, which also express c-kit (43).

BONe MARROw-DeRiveD 
MeSeNCHYMAL STeM CeLLS

Mesenchymal stem cells, or also known as mesenchymal stromal 
cells (MSCs), are a subset of bone marrow-derived stem cells that 
have plastic adherence characteristics, express CD105, CD73, and 
CD90 but not CD34, CD45, CD14 or CD11b, CD79α or CD19, 
and HLA-DR, and possess the ability to form adipocytes, chon-
drocytes, and osteoblasts in vitro (44). As MSCs express low MHC 
Class I and are lacking MHC Class II (45), the phenotype confers 
the capability of evading host immune responses and hence ena-
bles the cells for allogeneic transplantation (45). Several in vivo 
studies showed improvements in myocardial function despite low 
rates of MSC engraftment and differentiation (46, 47). Although 
trans-differentiation of MSCs into cardiomyocytes was achiev-
able by using demethylating chemicals (48, 49) or by coculturing 
with rodent myocytes in vitro (50, 51), the event in vivo had been 
reportedly low (52). Furthermore, electrophysiological analysis 
revealed that differentiated myocytes did not possess similar 
electrical properties to a functional cardiomyocyte (53). Hence, 
the main regenerative function of MSCs was largely confined to 
its secretome, which contained a plethora of factors with cardio-
protective effects, or stimulants that activate endogenous repair 
mechanisms including the resident cardiac stem and progenitor 
cells (54, 55).

Many trials had been conducted to examine the therapeutic 
efficacy of MSCs in regenerating damaged human hearts at dif-
ferent severities, either with autologous or allogeneic cell sources 
(Table 2). In POSEIDON, transendocardial-administered allo-
geneic BM-MSCs attenuated the progressive heart remodeling, 
reduced the scar mass, and improved the early enhancement 
defect and sphericity index in ischemic cardiomyopathic 
patients, and the effects were greater with a lower cell dose  
(20 million), as compared to a higher dose (200 million) (56). 
The injected allogeneic MSCs did not trigger immune responses 
in recipients, and the observed benefits were mostly similar to 

autologous MSCs (56). However, both allogenic and autologous 
MSC-treated groups did not show significant improvements in 
ejection fraction. In contrast, the phase 2, placebo-controlled 
randomized MSC-HF trial reported encouraging results, which 
demonstrated that HF patients who received a high number of 
intramyocardially delivered autologous MSCs showed greater 
functional improvements in the ischemic heart after 12 months 
(57). They also suggested a possible correlation between cell 
dose and disease severity. Through a longer, 2-year follow-up, 
the phase 1 pilot study MESAMI revealed similar benefits 
from intramyocardial MSC injection in patients with chronic 
ischemic cardiomyopathy, albeit with a smaller sample size of 
10 (58).

eNDOgeNOUSLY DeRiveD ReSiDeNT 
CARDiAC STeM AND PROgeNiTOR 
CeLLS

c-kit+ Cardiac Stem Cells (CSCs)
The first reported primitive CSCs present in the heart were 
identified and isolated based on the expression of stem cell factor 
receptor CD117 or c-kit. c-kit+ CSCs are also positive for Sca-1 
(60 ± 10% of c-kit+ eCSCs are also Sca-1+), MDR-1 (ABCG2), and 
other markers identified on adult cardiac stem and progenitor 
cell populations, such as CD105, CD166, PDGFrα, and CD90. 
c-kit+ CSCs do not express CD34, CD31, CD45, or tryptase, 
distinguishing them from c-kit+ endothelial (progenitor) cells 
and mast cells (64, 65). CSCs are multipotent, self-renewing, and 
capable of forming cardiomyocytes, smooth muscle cells, and 
endothelial cells (64, 65), and their turnover was coupled with cel-
lular homeostasis in the heart (66). In the adult heart, most of the 
CSCs were found to reside in the atrium and the ventricular apex, 
albeit at a very low density (1 cell per every 10,000 myocytes) (64). 
Owing to the scarcity of the CSCs, an optimized protocol had 
been developed to isolate and characterize these cells (67). CSCs 
can be propagated over long-term culture and maintained in an 
undifferentiated, self-renewing, stable state, without showing 
evidence of senescent growth arrest or abnormal karyotype (68). 
Preclinical studies showed that these c-kit+ CSCs regenerated both 
the hearts of rats (64, 69) and mice (65, 70) post-infarction via the 
formation of new myocytes and vasculature, and protected the 
preexisting cardiomyocytes from apoptosis through the secretion 
of IGF-1 (71, 72). The significance of CSCs was further highlighted 
in an elegant experiment which employed an animal model by 
which the proliferating cells in the damaged heart were totally 
ablated using 5-flurouracil, which lead to a blunted the recovery 
of the injured heart (69). However, the recovery was reversed, 
both anatomically and functionally, through the administration 
of c-kit+ clonogenic CSCs, suggesting their indispensable role in 
restoring and initiating myocardial repair and regeneration in 
response to injury.
c-kit+ CSCs have been tested in human trials (Table 3). The phase 
1 stem cell infusion in patients with ischemic cardiomyopathy 
(SCIPIO) trial showed that intracoronary administration of c-kit+ 
CSCs (1 million) increased the left ventricular ejection fraction 
(LVEF) by 7.6 and 13.7% with decreased infarct size of 6.9 and 
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TABLe 3 | Clinical trials using cardiac stem cells.

Study Number of 
patients

Type of 
patients

Duration 
(months)

imaging 
modality

Changes in left ventricular ejection  
fraction (LveF)

Reference

Placebo Treated % Changes in 
LveF (treated)

SCIPIO (2011) 23 HF 4 Echocardiography
MRI

30.1 ± 2.4–30.2 ± 2.5% 30.3 ± 1.9–38.5 ± 2.8% +8.2* (73)

SCIPIOa (2012) 33 HF 4 and 12 Echocardiography N/A 27.5 ± 1.6–35.1 ± 2.4% (4th 
month) and 41.2 ± 4.5% (12th 

month)

+7.6* (4th month)
+ 13.7 (12th 

month)

(74)

MRI

CADUCEUS 
(2012)

25 MI 6 MRI 39–44.8% 38–43.4% +5.4 (76)

CADUCEUSa 
(2014)

25 MI 12 MRI 42.5 ± 11.1–48.2 ± 11.4% 42.4 ± 8.9–48.2 ± 10.3% +5.4 (77)

N/A, not applicable (Placebo group was not included in trial); HF, heart failure; MI, myocardial infarction; LV, left ventricular; MRI, magnetic resonance imaging.
aFollow-up studies.
*Significant improvement in LVEF (p < 0.05).

TABLe 2 | Clinical trials using bone marrow-derived mesenchymal stem cells.

Study Number of 
patients

Type of patients Duration 
(months)

imaging  
modality

Changes in left ventricular ejection fraction (LveF) Reference

Placebo Treated % Changes in 
LveF (treated)

Chen (2004) 69 Acute MI 6 Echocardiography
PET

48.0 ± 10.0–
54.0 ± 5.0%

49.0 ± 9.0–67.0 ± 3.0% +18* (59)

Hare (2009) 53 Acute MI 6 Echocardiography
MRI

48.7–56.1% 50.4–56.9% +6.5 (60)

POSEIDON (2012) 30 Ischemic 
cardiomyopathy

13 Echocardiography
CT

N/A 27.85–29.5% (allogeneic)
26.23–28.53% (autologous)

+1.65 (allogeneic)
+2.3 (autologous)

(56)

PROMETHEUS (2014) 6 Ischemic left ventricular 
dysfunction secondary 
to MI

18 MRI N/A 41.2 ± 4.9–51.3 ± 5.4.0% +10.1* (61)

SEED-MSC (2014) 80 Acute MI 6 Echocardiography
SPECT

49 ± 11.7–
55 ± 11.8%

52.3 ± 9.3–53.9 ± 10.2% +1.6* (62)

TAC-HFT (2014) 65 Ischemic 
cardiomyopathy

12 MRI
CT
Echocardiography

N/A 28.1 ± 0.8–35.7 ± 9.0% +7.6 (63)

MSC-HF (2015) 55 Ischemic HF 6 Echocardiography
MRI
CT

25.1–23.8% 28.2–33.2% +5* (57)

MESAMI (2016) 10 Ischemic 
cardiomyopathy

12 Echocardiography
SPECT

N/A 29.4 ± 2.0–35.7 ± 2.5% +6.3* (58)

N/A, not applicable (Placebo group was not included in trial); HF, heart failure; MI, myocardial Infarction; LV, left ventricular; PET, positron emission tomography; MRI, magnetic 
resonance imaging; SPECT, single-photon-emission computed tomography; CT, cardiac tomography; MSC, mesenchymal stromal cell.
*Significant improvement in LVEF (p < 0.05).
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7.8 g after 4 and 12 months, respectively (73, 74). A study was 
also performed to address the safety of intracoronary infusion 
of 20 million c-kit+ CSCs into swine hearts (75). The results 
showed neither renal and liver damage nor further myocardial 
injury due to microembolism. Nonetheless, the cell retention 
in the myocardium remained low despite the high number  
of infused cells.

Cardiospheres and Cardiosphere-Derived 
Cells (CDCs)
Cardiospheres are 20–150 µm cellular spheres, which are gener-
ated from the explant outgrowth cells of heart biopsies (65, 78). 
These cardiospheres supposedly consist of CSCs that reside in the 
core and cardiac lineage committed cells (e.g., myofibroblasts) 
and differentiated cells (vascular smooth muscle cells, endothelial 
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cells), which comprise the outer layer of the spheres (65). The 
three-dimensional microenvironment of cardiospheres had been 
shown to protect the CSCs from oxidative stress as well as maintain 
their stemness and function (79). When these cardiospheres were 
expanded on fibronectin, the CDCs became highly proliferative 
in the monolayer and were clonogenic and multipotent, in vitro 
(80). This enables fast and efficient expansion of the CDCs for 
heart therapy, with retained regenerative potential (78, 81, 82). 
The therapeutic effects of CDCs had also been demonstrated 
in in  vivo studies, ranging from small-to-large animal models  
(81, 83, 84) and in human trials (76, 85). CDCs showed potential in 
reducing infarct size, improving LVEF and cardiac hemodynamics 
in infarcted animal models (81, 83), which could be maintained 
for up to 16 weeks (82). The positive observation in in vivo studies 
led to the initiation of a randomized phase 1 clinical trial, known 
as the cardiosphere-derived autologous stem cells to reverse 
ventricular dysfunction study or the CADUCEUS trial (76). The 
trial showed significant reductions in scar mass (8.4 g in the first 
6 months and 12.9 g after a year) but no differences in the LVEF.

ReLATiONSHiP BeTweeN BONe 
MARROw-DeRiveD CeLLS AND 
ReSiDeNT CSCs

Cardiospheres and CDCs represent a mixed cell population, 
which employs an assortment of heterogeneous cells and this 
heterogeneity sparks the idea of employing synergistic effects 
between various cells to aid CSCs to perform better for cardiac 
regeneration.

Mononuclear bone marrow cells had been shown to benefit 
the injured myocardium after their administration, but the effect 
was then concluded as not sustainable. Paracrine signaling is a 
generally accepted explanation for the mechanism of repair, 
regeneration, and modest improvement in cardiac function. 
Loffredo et al. (86) conducted a sophisticated experiment using 
bitransgenic MerCreMer ZEG mice to study the degree of new 
myocyte formation after induced injury in the heart, following 
BMDC transplantation (86). In this model, all cardiomyocytes 
were permanently shifted to express GFP from β-galatosidase 
(β-gal) by a pulse treatment of 4-OH tamoxifen, and all new 
myocytes were identified as non-GFP expressing β-gal-positive 
cells. The study revealed that the number of new myocytes was 
greater in subjects treated with c-kit+ bone marrow MNCs. This 
coincided with increased resident GATA4+Nkx2.5+ cardiac pro-
genitors, which was not observed when the subjects were given 
bone marrow MSCs. Moreover, Hatzistergos et al. (54) used GFP- 
transduced MSCs and when transendocardially injected them 
into the infarcted heart of the Yorkshire swine and showed 
increased GFP− c-kit cells by 2- and 15-fold in the infarcted and 
border regions, respectively (54). These cells coexpressed MDR-1 
and GATA4, suggesting that they were of endogenous CSC origin. 
These findings were consistent with the in vitro data which showed 
that greater c-kit+ CSCs were mobilized from heart explant  
cultures in the presence of MSC feeder layers (87). In addition to 
the activation of the endogenous pool of CSCs, MSCs prompted 
cardiomyocyte proliferation, which correlated with an increased 

number of cardiomyocytes expressing serine 10 phosphorylated 
histone H3, a mitotic marker indicative of cell cycling (54). The 
regenerative capability of MSCs was further confirmed with a 
study by Suzuki et al. (88), which discovered the ability of MSCs in 
mobilizing CD133 and c-kit+ bone marrow cells as well as stimu-
lating myocyte proliferation in chronic hibernating myocardium 
(88). Indeed, the administration of MSCs was found to drive the 
increment of c-kit+/CD133−, c-kit+/CD133+ progenitor cells, and 
Ki67+ and phospho-histone H3+ cardiomyocytes.

The synergistic effects between MSCs and heart-derived, 
resident c-kit+ CSCs were further confirmed in two studies where 
cotransplantation of both cell types showed greater amelioration 
in improving cardiac performance and scar size post-infarction 
(89, 90). Both transepicardial and transendocardial administra-
tions of either xenogenic or autologous MSCs showed greater scar 
reductions and global heart function restorations as compared to 
single-cell administration in swine model, which illustrates the 
interaction between MSCs and CSCs in enhancing the regenera-
tion of the heart post-infarction.

CSCs ReLATiONSHiP wiTH OTHeR 
CeLLS

Telocytes
Telocytes, which were first described in 2009 as interstitial Cajal-
like cells, are peculiar stromal cells that were recently found to 
reside in the interstitium in all heart layers (91–93). These cells 
express vimentin and CD34, with several reports that showed 
coexpressions with c-kit or PDGFR-β markers (94). Of note, the 
unique phenotype that distinguishes telocytes from other inter-
stitial cells is the distinct and very fine cellular prolongation called 
telopodes. The average length of these telopodes could extend 
from a few ten to hundred microns. Transmission electron micro-
scopic analysis showed that most of the telocytes intermingled 
with adjacent cardiomyocytes and precursors of telopodes form-
ing an organized myocyte cluster that was integrated in the myo-
cardium (95). Furthermore, changes in number of telocytes have 
also found to be associated with severe alterations in heart matric 
architecture (96), and transplantation of telocytes into injured rat 
hearts had also shown improved functions (97). Although there is 
no direct evidence that demonstrates how telocytes functionally 
influence CSC activity in vivo, the distribution and organization 
of these telocytes in the myocardial interstitium, however, sup-
port the notion that they may be an important “nurse” cell in the 
CSC niche that governs endogenous precursors and immature 
cardiac myocytes in heart development and regeneration (98).

epicardial-Derived Cells (ePDCs)
The epicardium consists of a unique population of cells that 
originated from the proepicardial organ expressing WT1, Tbx18, 
and retinaldehyde dehydrogenase2. These cells enveloped the 
developing heart and formed distinct layers of epicardium and 
subepicardial mesenchyme, which promoted cardiomyocyte 
proliferation, triggered myocardial expansion to generate thick 
myocardium during heart development (99, 100). EPDCs con-
tributed to the majority of non-myocyte support cells, such as 

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


8

Leong et al. Synergistic Cells and CSCs in Regeneration

Frontiers in Cardiovascular Medicine | www.frontiersin.org July 2017 | Volume 4 | Article 47

cardiac fibroblasts and smooth muscle cells and their invasion 
to the myocardium and endocardium was accomplished via the 
epithelial–mesenchymal transition (101). A study conducted by 
Winter et al. (102) showed that EPDCs facilitated cardiomyocyte 
progenitor cell (CMPC) proliferation under hypoxic conditions 
(1% O2) in coculture, albeit with decreased cell motility (102). 
Coculture of both EPDCs and CMPCs produced increased 
angiogenic factors, such as VEGF and PDGF-BB. In vivo, an 
MRI study showed an improvement in ejection fraction and a 
significant decrease in end systolic and diastolic volumes when 
both cells were administered. Significantly higher endothelial 
densities at the border and infarcted zones were also observed, 
with preserved ventricular wall thickness. However, in vivo results 
showed that there were little to no cell engraftment or differen-
tiation in the infarcted heart after EPDC/CMPC administration. 
This suggests that a paracrine interaction may be the main reason 
for the improved heart function, and the CMPCs were enhanced 
through the secretion of growth factors by EPDCs (102).

Circulatory Angiogenic Cells (CACs)
Surviving hostile environments primarily requires the establish-
ment of perfusion and revascularization of the infarct regions. 
Hence, the vascular network within the injected region is key 
to cell survival. CACs, or early outgrowth endothelial progeni-
tor cells, were considered blood-derived cells that play a role in 
both vasculogenesis and angiogenesis in promoting myocardial 
repair, mainly through paracrine interaction (103). A study by 
Latham et al. (103) demonstrated that conditioned medium from 
CAC–CSC cocultures showed greater capacity in mobilizing 
CACs and inducing tubule formation in HUVECs in vitro, which 
was attributed to the upregulation of angiogenic factors, such 
as angiogenin, SDF-1α, and VEGF. Echocardiography showed 
significant restoration of the LVEF and reduced scar formation 
in infarcted hearts of NOD/severe combined immunodeficient 
(SCID) mice following coadministration of CACs and CSCs 
(103). These improvements were also coupled with successful but 
modest smooth muscle cell, endothelial cell, and cardiomyocyte 
differentiation.

Saphenous vein-Derived Pericytes (SvPs)
Pericytes (also known as Rouget cells, mural cells, or perivas-
cular mesenchymal precursor cells) are mesodermal cells that 
surround the endothelial lining in the microvasculature. These 
cells were highly proliferative and express neural/glial antigen 2, 
Sox-2, PDGFrβ, CD34, and several mesenchymal markers such 
as CD105, CD90, and CD44. Various studies have suggested that 
the transplantation of SVPs into ischemic limb was previously 
found to restore the regional circulatory network via new vessel 
formation in immunodeficient mice (104). Moreover, fibrotic 
scar, cardiomyocyte death, and vascular permeability were found 
to be reduced in infarcted mice myocardium that was treated with 
SVP, via microRNA-132-mediated angiogenesis (105). The rela-
tionship of the SVP with the endogenous CSC was first described 
by Avolio et al. (106). However, unlike the bone marrow-derived 
MSCs, the in vivo study suggested no additional benefits in restor-
ing the ventricular function and hemodynamics when CSCs were 
intramyocardially cotransplanted with SVP into the infarcted 

heart of SCID/Beige-immunodeficient mice. Although mice that 
received both cells showed greater reductions in scar size, the 
differences were not statistically significant when compared to 
treatment with CSCs or SVP cells only (106).

CARDiAC CeLL THeRAPY iN CLiNiCAL 
TRiALS

Bone marrow-derived stem cells remain the most common, 
first-generation cell candidate used in clinical transplantation.  
A striking report by Nowbar et al. (107), who conducted a weighted 
regression and meta-analysis to study 49 trial reports using 
autologous bone marrow stem cells and outlined the discrepan-
cies between these trials, concluded that only 10% of the human 
studies were performed without errors with none showing benefits 
from BMNCs (107). In contrast, Fisher et  al. (108) performed 
a systemic review that excluded all the non-randomized trials, 
of which contributed to the majority of discrepancies outlined 
in Nowbar’s report, and suggested that autologous bone marrow 
stem cell treatment can improve HF patients’ quality of life and 
exercise capacity (108). Their findings are in line with a recent 
meta-analysis which included 48 randomized-controlled trials by 
Afzal et al. (109) and also agreed that bone marrow-derived cells 
(both BMNCs and MSCs) improved heart function in ischemic 
heart disease patients (109). Nonetheless, it is widely accepted 
that the therapeutic benefits from bone marrow-derived cells 
are mainly attributed to a paracrine mechanism that activates 
endogenous healing. Reconstituting injured myocardium with 
cardiomyocytes may require second-generation cardiogenic 
cells, the more defined, homogeneous cardiac-derived stem/ 
progenitor cells or pluripotent stem cells, some of which have 
been used for clinical trials (73, 74, 76, 77, 110) (Figure 2). Careful 
selection of cell candidates, mode of delivery, employment of cell 
engraftment and enhancement strategies, in-depth investigation 
of mechanisms of efficacy, and clinically meaningful endpoints 
in future experimental studies can help to advance cardiac cell 
therapy (111).

FUTURe DiReCTiONS: eMeRgiNg, 
STATe-OF-THe-ART APPLiCATiONS iN 
HeART TiSSUe eNgiNeeRiNg

Although several stem cells have been proposed to regenerate the 
heart, there is no consensus on the best cell type to be used in 
cellular therapy and the search for establishing a gold standard is 
still ongoing. Given the complexity of the heart, and the empti-
ness of the infarcted area, the regeneration process will require 
multiple coordinations from different therapeutic cells with 
synergistic functions, together with an established extracellular 
matrix scaffold. Some in  vivo studies have investigated these 
approaches, but it has not been widely explored. It is important to 
realize that most experiments are conducted in two-dimensional 
culture systems and little is known about the survival and perfor-
mance of these interactions in the three-dimensional structure. 
These questions lead back to the fundamental investigation of 
determining the optimal cell types for the engineering of tissue 
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constructs, and their functional behaviors in three-dimensional 
cultures. Ott et al. (112) demonstrated a new concept of produc-
ing bio-engineered hearts by using the natural hearts from rats 
(112) by decellularizing the heart scaffold using detergents, then 
re-cellularizing through introducing neonatal cardiac cells and 
endothelial cells (112).

With the invention of induced-pluripotent stem (IPS) cells, 
the mass generation of human cardiomyocytes is no longer dif-
ficult. The challenging aspect, however, is reintroducing the cells 
into the construct, finding the means of ensuring their long-term 
survival and identifying the factors that drive their maturation. 
Lei Yang’s laboratory generated cardiovascular progenitors 
from IPS cells and attempted to reintroduce these cells into the 
decellularized mouse heart scaffold. The group demonstrated ex 
vivo proliferation, migration, and differentiation in the three-
dimensional construct, but failed to regrow the myocardium to 
acquire sufficient strength for pumping fluid like the native heart 
(113). Another similar study by Guyette et al. (114) repopulated 
decellularized human hearts with cardiomyocytes derived from 
IPS cells. This study showed that the cardiomyocytes success-
fully engrafted onto the cardiac scaffolds and showed electrical 
conductivity and thus set the ground for the translational value 
of using acellular human heart matrix for complete myocardial 
regeneration in the future (114). A complex three-dimensional 
construct is an extremely promising approach for heart 

regeneration. However, the research is still in its infancy, and 
more studies are required before this technique can be translated 
into clinical applications.
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