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Cardiac stiffness, caused by interstitial fibrosis due to deposition of extracellular matrix 
proteins, is thought as a major clinical outcome of heart failure with preserved ejection 
fraction (HFpEF). Canonical transient receptor potential (TRPC) subfamily proteins are 
components of Ca2+-permeable non-selective cation channels activated by receptor 
stimulation and mechanical stress, and have been attracted attention as a key mediator 
of maladaptive cardiac remodeling. How TRPC-mediated local Ca2+ influx encodes a 
specific signal to induce maladaptive cardiac remodeling has been long obscure, but our 
recent studies suggest a pathophysiological significance of channel activity-independent 
function of TRPC proteins for amplifying redox signaling in heart. This review introduces 
the current understanding of the physiological and pathophysiological roles of TRPCs, 
especially focuses on the role of TRPC3 as a positive regulator of reactive oxygen species 
(PRROS) in heart. We have revealed that TRPC3 stabilizes NADPH oxidase 2 (Nox2),  
a membrane-bound reactive oxygen species (ROS)-generating enzyme, by forming 
stable protein complex with Nox2, which leads to amplification of mechanical stress- 
induced ROS signaling in cardiomyocytes, resulting in induction of fibrotic responses in 
cardiomyocytes and cardiac fibroblasts. Thus, the TRPC3 function as PRROS will offer 
a new therapeutic strategy for the prevention or treatment of HFpEF.

Keywords: Ca2+, canonical transient receptor potential, reactive oxygen species, NADPH oxidase, cardiac 
remodeling, cardiac fibrosis

iNTRODUCTiON

The physiological and pathophysiological significance of Ca2+ influx across the plasma membrane 
in cardiomyocytes has been discussed for a long time, but how the heart decodes a specific Ca2+ 
influx as pathological signal under the background of rhythmic Ca2+ entry is obscure. There are 
two major roles of Ca2+ influx in cardiomyocytes: one is to mediate “excitation–contraction (E–C) 
coupling,” where a local Ca2+ influx through voltage-dependent L-type Ca2+ channels activated 
by membrane depolarization (i.e., excitation) induces substantial Ca2+ release from sarcoplasmic 
reticulum (SR), which leads to rhythmic myocardial contraction by increasing myosin ATPase activ-
ity through Ca2+/troponin C-dependent structural changes of actin-tropomyosin filaments, and the 
other is to mediate “excitation–transcription (E–T) coupling,” where a local Ca2+ influx evoked by 
neurohumoral excitation and/or hemodynamic load through activation of voltage-independent  
(or mechano-activated) cation channels induces hypertrophic gene expressions through activating 
Ca2+-dependent transcriptional factors, such as nuclear factor of activated T  cells (NFAT) and 
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myocyte enhancer factor (MEF). Transient receptor potential 
(TRP) proteins, especially canonical TRP subfamily [canoni-
cal transient receptor potential (TRPC)] members, have been 
suggested to function as receptor-activated cation channels 
(RACCs) regulating E–T coupling in the heart (1). We have 
also reported that diacylglycerol-activated TRPC3 and TRPC6 
heteromultimer channels (TRPC3/6) act as a key mediator of 
pathological hypertrophy in receptor-stimulated rat cardio-
myocytes (2, 3) and pressure-overloaded mouse hearts (4), while 
our recent studies using TRPC3/6-deficient mice have revealed 
that TRPC3 specifically mediates pressure overload-induced 
maladaptive cardiac fibrosis, independently of TRPC6 channels  
(5, 6). This review focuses on the putative molecular mechanism 
underlying TRPC3-mediated maladaptive cardiac fibrosis  
in rodent hearts and discusses its therapeutic possibilities.

TRPC CHANNeLS AND THeiR 
PHYSiOLOGiCAL FUNCTiONS

The trp gene was first identified in 1989 as a causative gene 
mutant of phototransduction in Drosophila (7). Twenty-eight 
mammalian TRP homologs have been identified and these are 
subdivided into six related protein subfamilies based on their 
genetic and functional similarities: TRPC (canonical), TRPV 
(vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML 
(mucolipin), TRPA (ankyrin). TRP proteins commonly possess 
structural 6 transmembrane domains and preserved 25 amino 
acid sequence called “TRP domain.” The TRPC family proteins, 
composed of seven mammalian homologs (TRPC1–TRPC7), 
are believed as molecular candidates of RACCs (8). TRPC4 
and TRPC5 share an about 65% amino acid homology in their 
group, while TRPC3, TRPC6, and TRPC7 show the best homol-
ogy covering ~75% of amino acid sequence (9). TRPC1 shares 
lower sequence homology compared to other TRPC members. 
TRPC1 is first suggested as a candidate subunit of store-
operated Ca2+ channels (SOCCs) (10–13). TRPC1 contributes 
to coordination with elementary Ca2+ signaling events though 
promoting functional coupling between the endoplasmic 
reticulum (ER) and the plasma membrane in receptor-induced 
Ca2+ signaling (14). TRPC1 also functions as stretch-activated 
cation channels in mammalian cells (15). Thus, TRPC proteins 
have two important roles: one is to act as a critical component 
of stretch-activated or store-operated Ca2+ (SOC)-permeable 
channels and the other is to act as a signaling platform to 
amplify receptor-activated Ca2+ signaling via interacting with 
intracellular signaling molecules (16).

TRPC are generally known to be activated downstream of 
phospholipase C (PLC)-coupled receptors, such as G-protein-
coupled receptors (GPCRs) and receptor tyrosine kinases (16). 
TRPC proteins comprise non-selective cation channels by form-
ing homo- or hetero-tetramer complex. Due to their universal 
activation mechanism in many cell types, TRPC channels play 
important roles in basic cellular responses, including proliferation, 
differentiation, and death in response to various environmental 
stimuli. TRPC channels are also linked to physical stimula-
tions such as mechanical stretch, hypoxia, and oxidative stress 
(17). TRPC1 and TRPC6 are suggested as a component of the 

tarantula toxin-sensitive mechanosensitive cation channel (15, 18).  
In fact, inhibition or deletion of TRPC6 has been reported to 
blunt the chronic mechanical stress-induced muscular contrac-
tion in mouse myocytes with Duchenne muscular dystrophy 
(19). In addition, intracellular lipid mediators, such as diacyl-
glycerol and 20-HETE, also mediate activation of TRPC6 induced 
by oxidative stress (20) and mechanical stretch (21). Considering 
the role of TRPC3/6 heterotetramer channels in cardiac hyper-
trophy, TRPC6 protein signaling complex, including TRPC1  
and TRPC3, may function as mechano-activated cation channels 
in the cardiovascular system.

ReGULATiON OF DAG-ACTivATeD 
TRPC3/C6 CHANNeL ACTiviTieS

TRPC3/C6/C7 subfamilies are directly activated by diacylg-
lycerol (22, 23). TRPC3 and TRPC6 are mainly expressed in 
central nervous system, but the physiological significances of 
both channels have been emerged from vascular physiology. 
TRPC6 channel is activated downstream of α-adrenergic 
receptor and mediates cation influx, which evokes membrane 
depolarization and activation of voltage-dependent Ca2+ chan-
nel to induce smooth muscle contraction in rat portal vein (24). 
Following this prominent work, other researches including ours 
demonstrated that TRPC3/C6 channels function to depolarize 
the plasma membrane in response to vasoconstrictive GPCR 
agonists (25, 26). In addition, there are several reports demon-
strated the physiological importance of these channels in non-
excitable cells. In these cellular contexts, TRPC channels mainly 
function as Ca2+ influx channels. However, because the number 
and conductance of endogenously expressed TRPC channels 
seem to be very small, TRPC-mediated Ca2+ influx is consid-
ered to be involved in local Ca2+ signaling rather than global 
intracellular Ca2+ mobilization. In fact, TRPC3-mediated local 
Ca2+ influx is specifically and efficiently transduced to down-
stream signaling pathways in B lymphocytes (27, 28). TRPC3 
is found to interact with several signaling molecules, such as 
PLC, protein kinase C (PKC), receptor for activated C-kinase-1, 
inositol 1,4,5-trisphosphate receptor, and calmodulin (27–31). 
These interactions may be critical for the diversity of down-
stream signaling pathways induced by TRPC3-mediated local 
Ca2+ influx, since local Ca2+ per se is highly mobile and easily 
buffered by buffering proteins in the cytosol.

TRPC3/6 channel activities are negatively regulated by  
Ser/Thr phosphorylation of TRPC3/6 proteins via PKC, pro tein 
kinase A (PKA), and protein kinase G (PKG). PKG is repor-
ted to phosphorylate human TRPC3 at Thr-11 and Ser-263, 
and human TRPC6 at Thr-70 and Ser-322 (32). Nitric oxide  
(NO), atrial natriuretic peptide, and inhibition of phospho-
diesterase 5 can activate PKG. The PKG-dependent negative 
regulation of TRPC6 channel activity by NO is physiologi-
cally important in endothelium-dependent vasodilation (33). 
PKA and PKG recognize a similar substrate sequence, and 
PKA-dependent phosphorylation of rodent TRPC6 at Thr-69 
is found to participate in endothelium-independent vasodila-
tion (26). Increased PKG activity is also reported to suppress  
Ca2+/calcineurin-dependent cardiac hypertrophy induced by 
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ago nist stimulation and pressure overload, and blockade of 
PKG phosphorylation by TRPC6 mutagenesis canceled the 
PKG-dependent anti-hypertrophic action (34). By contrast, 
reduction of cGMP/PKG signaling by guanylate cyclase-A 
gene deletion is reported to develop spontaneous cardiac 
hypertrophy through TRPC3/6 channel activation (35). In fact, 
this hypertrophic phenotype was attenuated by the treatment 
with pyrazole-2, an inhibitor of TRPC1-7 channels.

TRPC3/6 CHANNeLS iN CARDiAC 
ReMODeLiNG

The heart can adapt itself to various environmental stresses by 
flexibly changing its structure and morphology. Physiological 
stimuli, such as physical exercise or pregnancy, induce cardiac 
hypertrophy to adapt the increases of oxygen and nutrition 
demands, which is fully reversible. By contrast, pathological 
conditions also induce cardiac hypertrophy, which is followed 
by interstitial fibrosis and eventual left ventricular dilation 
and dysfunction (36). These physiological and pathological 
cardiac remodelings are chronic tissue responses accompanied 
with gene expression. Several pieces of evidence indicate the 
involvement of TRPC channels in the cardiac remodeling 
processes. Intracellular Ca2+ increase and subsequent NFAT 
activation are the best known pathway that mediates patho-
logical cardiac hypertrophy (37). Thus, TRPC channels were 
identified as Ca2+ permeable channels to activate calcineurin/
NFAT pathway. However, now TRPC channels are thought to 
be not only a cation channel but also a scaffold or membrane 
anchor to organize downstream signaling complex and par-
ticipate in pathological cardiac remodeling (Tables 1 and 2). 
Recently, we have revealed that TRPC3 channel functions as 
a mediator linking Ca2+ signaling and reactive oxygen species 
(ROS) production which exacerbates pathological cardiac 
remodeling (5, 6).

Canonical transient receptor potential channels were his-
torically presumed to be the molecular entity of SOCCs. Now 
Stromal interacting molecule 1 and Orai1 channel are identified 
as a molecular entity of SOCCs. SOC entry is known to be criti-
cal for activation of NFAT, which is one of the main transcrip-
tion factors in cardiac hypertrophy. Therefore, several papers 
addressed the involvement of TRPC channels in cardiac hyper-
trophy. Nakayama et al. first demonstrated the involvement of 
TRPC3 in cardiac hypertrophy (52). It has been known that Ca2+ 
influx and subsequent activation of NFAT play critical roles in 
cardiac hypertrophy (35, 36). Their group produced transgenic 
mice overexpressing TRPC3 specifically in cardiomyocytes (37). 
Those mice showed elevated SOC entry and basal NFAT activ-
ity, and eventually exhibited cardiomyopathy. This prominent 
study clearly indicated that TRPC3 expression per  se evokes 
cardiac hypertrophy. Consistent with this report, TRPC3 protein 
abundance is increased in rodent hypertrophic cardiomyocytes 
(53). Neurohumoral factor-induced cardiac hypertrophy was 
also mediated by the increase of TRPC3/C6 expression (3). 
Ectopic expression of TRPC6 in cardiomyocytes also pro-
moted the induction of pathological cardiac remodeling (57).  

Consistent with the data obtained from TRPC3/C6 ectopic 
expression model, cardiomyocyte-specific overexpression of 
dominant negative mutants of TRPC3 or TRPC6 [N-terminal 
fragment of TRPC3 or pore-dead mutant (L678-W680 replaced 
to three alanine residues) of TRPC6] suppressed both neuro-
humoral factor-induced and pressure-overload-induced cardiac 
hypertrophy and dysfunction (60). The involvement of TRPC3 
was also demonstrated in cardiac remodeling by myocardial 
infarction (MI) and arrhythmia (41, 48, 50, 61). These reports 
strongly suggest that TRPC3/C6 channels are prominent 
molecules mediating cardiac remodeling induced by exposure 
to several stresses. Recently, we and others reported the effect 
of TRPC3/C6 genetic deletion on pressure-overload-induced 
cardiac dysfunction (5, 6, 19). Seo et al. reported that TRPC3/
C6 double knockout mice, but not single knockout mice, were 
resistant to pressure-overload-induced cardiac remodeling 
(19). However, TRPC3 single deletion was sufficient to suppress 
cardiac remodeling in response to pressure overload in our 
study (5, 6). This discrepancy can be partially explained by the 
difference of mouse strains. In our study, we used 129/Sv mouse 
and Seo et al. used the mouse backcrossed with C57BL/6 mice. 
It has been reported that the responses of the heart to pressure 
overload differ among mouse strains (62). Interestingly, while 
cardiac hypertrophy was not affected by TRPC3 deletion, cardiac 
fibrosis was diminished in TRPC3-deficient mice in response  
to pressure overload (5, 6).

ROS iN CARDiAC PHYSiOLOGY  
AND PATHOPHYSiOLOGY

Production of ROS is observed in most of the pathophysiologi-
cal conditions of the heart, which exacerbate cardiac remod-
eling and dysfunction. ROS are generated from both defect of 
mitochondrial respiratory chains and NADPH oxidase (Nox) 
activation. Among seven members of Nox proteins, NADPH 
oxidase 2 (Nox2) and Nox4 are predominantly expressed in 
the heart. In resting conditions, Nox2 only interacted with 
p22phox subunit, which is crucial for the expression of Nox2 
by preventing proteasomal degradation. Upon cellular activa-
tion, other cytoplasmic subunits p67phox, p40phox, p47phox, and 
small G protein Rac1 are recruited and activate Nox2 protein 
(Figure  1). Among the cytoplasmic subunits, p47phox mainly 
regulates Nox2 complex formation. To form complex, phos-
phorylation of p47phox is necessary. Phosphorylation of p47phox 
is reported to be mediated by PKC, mitogen-activated protein 
kinases (MAPKs), and p21-activated kinase (63). Nox2 is 
located in the membrane of the T-tubules in close apposition 
to the junctional SR (64). The involvement of Nox in cardiac 
pathophysiology was demonstrated in myocardial ischemia, 
pressure-overload and chemical toxicity (65–67). However, 
Nox plays a critical role in cardiac physiology. During regular 
heartbeat, diastole is very important regarding intracellular 
Ca2+ homeostasis. Diastolic LV filling causes stretch of cardio-
myocytes, which evokes mechano-signal transduction. Prosser 
et al. demonstrated that mechanical stretch of cardiomyocytes 
during diastole evokes ROS production via Nox2 activation 
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TAbLe 1 | Involvement of TRPC channels in cardiomyopathy.

Gene Species Model expression and/or function Reference

TRPC1 Human Failing heart Increased expression of mRNA (38)
Mouse Univentricular pressure overload Increased expression of mRNA
Mouse Pressure overload Contributed to background Ca2+ entry and hypertrophy and fibrosis (39)
Rat Spontaneous hypertensive Increased mRNA expression and involved in LV (40)

rat hypertrophy
Mouse MI Increased expression of mRNA (41)
Rat Abdominal aortic banding Increased protein abundance (42)
Rat Neonatal cardiomyocytes Knockdown inhibits agonist-induced hypertrophic responses
Mouse Aged mdx mouse Increased protein abundance (43)
Mouse Dominant negative NRSF transgene Increased protein abundance (44)

TRPC3 Mouse Pressure overload TRPC3-knockout suppressed cardiac fibrosis and accumulation of oxidative stress (5, 6)
Human Failing heart Increased expression of mRNA (38)
Mouse Overexpression and chronic agonist 

treatment
Coupled to NCX1 and involved in arrhythmia (45)

Mouse Cardiac CA-Gαq-transgene Increased expression and involved in hypertrophy and arrhythmia (46, 47)
Mouse MI Increased expression of mRNA (41)
Mouse Pressure overload Double knockout with TRPC6 suppressed cardiac remodeling (19)
Dog Tachypacing-induced heart Increased protein abundance and reduction of atrial (48)

failure remodeling by Pyr3 treatment
Human Atrial fibrillation patient Increased protein abundance
Goat Atrial fibrillation model by repetitive 

burst pacing
Increased protein abundance

Mouse Dilated cardiomyopathy (MLP-KO) Inhibition of TRPC3 suppressed dilated cardiomyopathy and aberrant ROS production (49)
Mouse Pressure overload Inhibition of TRPC3 suppressed cardiac hypertrophy (4)
Rat Adult cardiomyocytes Overexpression of TRPC3 increased apoptosis in response to ischemia-reperfusion (50)
Rat Neonatal cardiomyocytes TRPC3 knockdown reduces PE-induced ANP and BNP expression without affecting  

cell size and beating frequency
(51)

Rat Neonatal cardiomyocytes Knockdown of TRPC3 suppressed Ang II-induced hypertrophic responses (3)
Mouse Cardiomyocyte-specific transgene Cardiomyopathy and increased cardiac hypertrophy by pressure-overload and  

Ang II/PE treatment
(52)

Rat Neonatal cardiomyocytes ET-1, PE, FBS treatment increased the protein abundance (53)
Rat Pressure overload or isoproterenol 

treatment
Increased protein abundance

Mouse Cardiac CA-calcineurin transgene Increased protein abundance
SHHF rat Hypertension Increased protein abundance

TRPC4 Human Failing heart Increased expression of mRNA (38)
Mouse Pressure overload Contributed to background Ca2+ entry and hypertrophy and fibrosis (39)
Mouse MI Increased expression of mRNA. Ectopic expression of dominant negative TRPC4  

increased basal myocyte contractility and reduced hypertrophy and cardiac structural  
and functional remodeling after MI while increasing survival

(41)

TRPC6 Human Failing heart Increased expression of mRNA (38)
Mouse Univentricular pressure overload Increased expression of mRNA
Mouse Cardiac CA-Gαq-transgene Increased expression and involved in hypertrophy and arrhythmia (46, 47)
Mouse MI Increased expression of mRNA (41)
Mouse Pressure overload Double knockout with TRPC3 suppressed cardiac remodeling (19)
Mouse Duchenne muscular dystrophy 

myocytes
Gene deletion or selective drug blockade of TRPC6 reversed the phenotype of  
excessive stress-stimulated contractility and arrhythmia

(54)

Mouse Isoproterenol stimulation TRPC6 suppression by Klotho reduced cardiac remodeling (55)
Mouse Pressure overload Increase protein abundance (56)
Mouse Pressure overload Phosphorylation of TRPC6 by cGMP-PKG pathway prevented cardiac hypertrophy (34)
Mouse Ang II treatment or TRPC6 

overexpression
ANP-induced TRPC6 by phosphorylation protects heart from cardiac hypertrophy (35)

Rat Neonatal cardiomyocytes and  
cardiac fibroblast

ET-1 treatment increased mRNA and involved in NFAT activation and Gα12/13-mediated 
hypertrophy

(2)

Human Failing heart Increased expression of mRNA (57)
Mouse Pressure overload and endothelin 

treatment
Increased expression of mRNA

Rat Neonatal cardiomyocytes Knockdown of TRPC6 suppressed Ang II-induced hypertrophic responses (3)

TRPC7 Rat Dahl salt-sensitive rat Increased expression of mRNA (58)

LV, left ventricular; NRSF, neuron-restrictive silencer factor; NCX1, Na+/Ca2+ exchanger; CA, constitutive active; MLP, muscle LIM protein; PE, phenylephrine; ANP, atrial natriuretic 
peptide; BNP, brain natriuretic peptide; Ang II, Angiotensin II; ET-1, endothline-1; FBS, fetal bovine serum; SHHF, spontaneously hypertensive heart failure; MI, myocardial infarction; 
cGMP, cyclic guanosine monophosphate; PKG, protein kinase G; NFAT, nuclear factor of activated T cells; TRPC, canonical transient receptor potential; ROS, reactive oxygen 
species.
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FiGURe 1 | Involvement of TRPC3 in the activation of NADPH oxidase 2 (Nox2). (A) TRPC3-mediated Ca2+ influx recruits and activates protein kinase C (PKC) 
which phosphorylates p47phox and evokes Nox2 enzymatic activation. (b) Schematic illustration of the domain structure of TRPC3. TRPC3 interacts with Nox2 
through the C-terminal region. Numbers represent the positions of amino acids from first methionine.

TAbLe 2 | Cardiac phenotype of canonical transient receptor potential (TRPC) 
knockout mice.

Knockout  
mouse

Phenotype Reference

TRPC1 No effect on Ang II-induced cardiac hypertrophy (39)
Reduced pathological cardiac hypertrophy by  
double knockout with TRPC4

TRPC3 Resistant to pressure-overload-induced cardiac 
remodeling

(4, 5, 18)

Reduced ischemia–reperfusion (I/R) injury by  
triple knockout with TRPC6 and TRPC7

(59)

TRPC4 No effect on Ang II-induced cardiac hypertrophy (39)
Reduced pathological cardiac hypertrophy by  
double knockout with TRPC4

TRPC5 No further reduction of pathological cardiac  
hypertrophy to that of double knockout of TRPC1/C4

(39)

TRPC6 Resistant to pressure-overload induced cardiac 
remodeling

(18)

Reduced I/R injury by triple knockout with TRPC3  
and TRPC7

(59)

TRPC7 Reduced I/R injury by triple knockout with TRPC3  
and TRPC6

(59)

5

Numaga-Tomita et al. TRPC3 Channels in Cardiac Fibrosis

Frontiers in Cardiovascular Medicine | www.frontiersin.org September 2017 | Volume 4 | Article 56

in microtubule-dependent manner (68). Those ROS oxidize 
ryanodine receptors in junctional SR, which sensitizes ryano-
dine receptors to Ca2+ and thereby increases Ca2+ release in 
coming systolic contraction.

In pathological situations, involvement of cardiac hypertro-
phy is manifested. Nox activity is increased in the end-stage 
failing human heart and that it is likely to be an important 
source of increased cardiac ROS in human chronic heart failure 
(69). Bendall et  al. first reported that Ang II-induced cardiac 
hypertrophy was blunted by deletion of gp91phox subunit in mice 
(65). Nox2 mediates Ang II-induced cardiac hypertrophy by 
modulating Akt and Wnt signaling (70, 71). However, pressure-
overload-induced cardiac hypertrophy was not affected by 
deletion of gp91phox (72, 73). Besides the cardiac hypertrophy, 
interstitial fibrosis is manifested in heart failure observed in the 
elderly population, and patients with HFpEF caused by hyper-
tensive heart disease, aortic valve stenosis, and hypertrophic 
cardiomyopathy (74). Nox2 was important for transforming 
growth factor β-induced cardiac fibrosis in hypertensive rat 
(75). gp91phox knockout mice also showed vulnerability to MI. 
In contrast to the different involvement of cardiac hypertrophy 
induced by neurohumoral factors versus pressure overload, 
interstitial fibrosis in response to above factors were abolished 
in either Nox2 or Rac1-deficient mice (65, 72, 76–78).

Different from tunable Nox2, Nox4 is regulated only by its 
expression. Nox4 also requires p22phox. Therefore, Nox4 is likely 
to contribute to basal ROS production. It has been demonstrated  
that Nox4 localizes in intracellular membrane especially perinu-
clear location associated with SR or mitochondria. Downregu-
lation of Nox4, the major Nox isoform presents during early stages 
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FiGURe 2 | Physical interaction with TRPC3 prevents NADPH oxidase 2 (Nox2) from proteasome-dependent downregulation. In physiological condition, level  
of Nox2 expression is kept low by proteasomal degradation. Without interaction with p22phox, actively gp91phox is degraded. By physical interaction with TRPC3,  
both gp91phox and p22phox are protected from proteasomal degradation, which leads to excess expression of Nox2 enzyme on the plasma membrane.
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of differentiation, suppressed cardiogenesis. This was rescued by 
a pulse of low concentrations of hydrogen peroxide (H2O2) 4 days 
before spontaneous beating appears. The mechanisms of ROS-
dependent signaling included p38 MAPK activation and nuclear 
translocation of the cardiac transcription factor MEF2C (79). 
Cardiomyocyte-specific knockout of Nox4 reportedly suppressed 
pressure-overload-induced cardiac hypertrophy, fibrosis and 
dysfunction (80). However, null knockout of Nox4 mice showed 
opposite phenotype as exaggeration of contractile dysfunction, 
hypertrophy, and cardiac dilatation (81). Cardiomyocyte-specific 
overexpression of Nox4 counteracted cardiac dysfunction by 
increasing angiogenic activity in cardiomyocytes, suggesting 
that increases of Nox4 expression is an adaptive response against 
chronic heart stress (81). Low tonic production of H2O2 by 
Nox4 in endothelial cells has a vasoprotective role by increasing 
antioxidant systems such as heme oxygenase-1 and NO synthases  
(82, 83). Therefore, Nox4 seemingly plays a protective role in car-
diovascular homeostasis, in contrast to Nox2. Although expres-
sion of Nox1 is relatively low in heart compared to Nox2 and 
Nox4, sepsis-induced myocardial cell death and ROS production 
were significantly suppressed in Nox1-deficient mice (84).

COUPLiNG OF Nox PROTeiNS  
AND TRPC CHANNeLS

Besides the activation mechanism of Nox2 mentioned earlier, 
Nox2 requires extracellular Ca2+ influx to be activated (85–87). 
In neutrophil-like cell line HL-60, TRPC3, and TRPC6 are critical 
Ca2+ channel for the activation of Nox2 (88). In these cells, GPCR 
activation induced large increase of intracellular Ca2+ concentra-
tion and removal or pharmacological blocking attenuated Nox2 
activation. Therefore, TRPC channels function as a provider 
of Ca2+ for the enzymatic activation. Kitajima et  al. reported 
that TRPC3 functions not only Ca2+ channel but also protein 
stabilizer by physical interaction (Figures  1 and 2). Previous 
work demonstrated that interaction with p22phox is critical for 
Nox2 stabilization. Recently, an ER resident membrane protein 

competes with p22phox to interact with Nox2. By releasing from 
p22phox and proceeding to proteasomal degradation, the protein 
termed negative regulator of ROS facilitates degradation of Nox2 
to reduce basal expression (89). By contrast, increased stability 
of Nox2 by TRPC3 is not simple facilitation of Nox2-p22phox 
interaction. In fact, p22phox by itself could interact with TRPC3 
and be stabilized by the interaction (Figure  2). In pressure- 
overloaded heart, Nox2 expression was significantly increased, 
which was completely abolished in TRPC3-deficient mouse 
hearts. In addition, TRPC3 silencing reduced basal expression of 
Nox2 in rat neonatal cardiomyocytes (NRCMs), although there 
was only slight reduction of basal Nox2 expression in normal 
hearts of TRPC3 knockout mouse compared to those of wild 
type. In both experimental samples, there were no differences 
regarding Nox2 mRNA levels. Furthermore, the reduction of 
Nox2 in TRPC3-silenced NRCMs was mostly rescued by protea-
some inhibitor, indicating that TRPC3 increases Nox2 protein 
abundance by protecting from proteasome-dependent degrada-
tion (Figure 2).

In addition, there were reciprocal regulation between 
TRPC3 and Nox2, i.e., enhancement of Nox2 expression also 
increased TRPC3 expression and channel function (5). Similar 
regulation of TRPC channels by Nox protein has been reported. 
Nox4 expression is important for TRPC6 upregulation in podo-
cytes (90–92). In these studies, TRPC6 was oxidized by ROS 
produced by Nox4 and its activation was facilitated. However, 
Nox2-dependent increase of TRPC3-mediated current was 
not affected by diphenyleneiodonium treatment. Therefore, 
the reciprocal regulation between TRPC3 and Nox2 also 
increased channel density on the plasma membrane reflecting 
the increase of gross expression of TRPC3 by co-expression 
with Nox2.

Proteomic analysis using RhoA (G17A)-agarose revealed 
that microtubule-associated Rho guanine nucleotide exchange 
factor, GEF-H1, was significantly associated with RhoA in  
TGFβ-stimulated cardiac fibroblasts (6). GEF-H1 is reportedly 
activated by microtubule depolymerization, and oxidative stress 
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increases GEF-H1 activity through microtubule depolymerization- 
dependent manner (6). As inhibition of TRPC3 or Nox2 sup-
pressed the mechanical stretch-induced RhoA activation in rat 
cardiomyocytes and the TGFβ-stimulated RhoA activation in rat 
cardiac fibroblasts, Nox2-derived ROS-mediated GEF-H1 activa-
tion may underlie the induction of fibrotic responses induced  
by mechanical stress in cardiomyocytes as well as TGFβ stimula-
tion in cardiac fibroblasts.

The reciprocal positive regulation of TRPC3 and Nox2 
caused aberrant increase of ROS production in mechanically 
stressed hearts, which lead to RhoA activation pathway in both 
cardiomyocytes and cardiac fibroblasts, resulting in eventual car-
diac fibrosis (Figure 3). Interestingly, both TRPC3-deleted and 
Nox2-deleted mice suppressed only cardiac fibrosis in response 
to pressure overload (5, 73), while both hypertrophy and fibro-
sis were reduced in both mice chronically treated with Ang II  
(2, 63). These pieces of evidence indicate that TRPC3 and Nox2 
have close association in pathological cardiac remodeling caused 
by various environmental stresses.

THeRAPeUTiC iNSiGHTS

Cardiovascular disease is a leading cause of morbidity and mor-
tality, accounting for more than a quarter of all deaths worldwide 

(45). Especially, heart failure is a final stage of all cardiovascular 
diseases, and the 5-year survival rate after diagnosis is less than 
50% (93). Since accumulated oxidative stress is the major cause 
of heart failure, antioxidant agents have been paid attention to the 
novel therapeutics for heart failure. Based on the involvement of 
Nox2 in cardiac dysfunction as mentioned above, Nox2-targeted 
drugs seem to be promising. Several reports demonstrated that 
inhibitory action on Nox2 ameliorates cardiac dysfunction. Allicin 
protects against cardiac hypertrophy and fibrosis via attenuating 
ROS-dependent signaling pathways (94). Trimetazidine inhibits 
pressure overload-induced cardiac fibrosis (95). Nox inhibition 
ameliorates cardiac dysfunction in rabbits with heart failure by 
apocynin (96). However, most of Nox inhibitors are less selec-
tive among different Nox isoforms. As mentioned above, Nox2 
and Nox4 play also critical role in cardiac physiology. Nox is 
also important for innate immunity. Therefore, complete and 
direct suppression of Nox enzyme need to be considered with 
caution. Seo et al. demonstrated that dual inhibitor of TRPC3/C6, 
GSK503A, could suppress cardiac fibrosis in pressure-overloaded 
rat hearts (19). In addition, chronic treatment of a relatively selec-
tive TRPC3 inhibitor, Pyr3 suppressed mouse cardiomyopathy in 
either genetic or pressure-overload mouse model of heart failure 
(4, 49). These reports strongly suggest that TRPC3 could be a 
potential pharamacological target. Although beneficial effects 
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