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Exosomes are defined as submicron (30–150 nm), lipid bilayer-enclosed extracellular 
vesicles (EVs), specifically generated by the late endosomal compartment through fusion 
of multivesicular bodies with the plasma membrane. Produced by almost all cells, exo-
somes were originally considered to represent just a mechanism for jettisoning unwanted 
cellular moieties. Although this may be a major function in most cells, evolution has 
recruited the endosomal membrane-sorting pathway to duties beyond mere garbage 
disposal, one of the most notable examples being its cooption by retroviruses for the 
generation of Trojan virions. It is, therefore, tempting to speculate that certain cell types 
have evolved an exosome subclass active in intracellular communication. We term this 
EV subclass “signalosomes” and define them as exosomes that are produced by the 
“signaling” cells upon specific physiological or environmental cues and harbor cargo 
capable of modulating the programming of recipient cells. Our recent studies have estab-
lished that signalosomes released by mesenchymal stem/stromal cells (MSCs) represent 
the main vector of MSC immunomodulation and therapeutic action in animal models 
of lung disease. The efficacy of MSC-exosome treatments in a number of preclinical 
models of cardiovascular and pulmonary disease supports the promise of application 
of exosome-based therapeutics across a wide range of pathologies within the near 
future. However, the full realization of exosome therapeutic potential has been hampered 
by the absence of standardization in EV isolation, and procedures for purification of 
signalosomes from the main exosome population. This is mainly due to immature meth-
odologies for exosome isolation and characterization and our incomplete understanding 
of the specific characteristics and molecular composition of signalosomes. In addition, 
difficulties in defining metrics for potency of exosome preparations and the challenges 
of industrial scale-up and good manufacturing practice compliance have complicated 
smooth and timely transition to clinical development. In this manuscript, we focus on cell 
culture conditions, exosome harvesting, dosage, and exosome potency, providing some 
empirical guidance and perspectives on the challenges in bringing exosome-based 
therapies to clinic.
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Figure 1 | MSC-exosome morphology and composition. (a) Transmission electron microscopy (TEM) images of human bone marrow-derived MSC-exosomes 
(low magnification, 12,000×, scale bar = 500 nm, and high magnification, 30,000×, scale bar = 100 nm) representative TEM images adapted from Ref. (8). (B) 
MSC-exosomes are surrounded by a phospholipid bilayer and may contain proteins, such as annexins (these are important for transport); tetraspanins such as CD9, 
CD81, and CD63; and other proteins, such as Alix and TSG101, that are involved in exosomal biogenesis from endosomes. MSC-exosome therapy has shown 
beneficial effects in numerous preclinical models, demonstrating histological and functional benefits in multiple organs. Abbreviations: FLOT1, flotillin-1; MHC, major 
histocompatibility complex; TSG101, tumor susceptibility gene 101.
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introduCtion

The intracellular transfer of diverse moieties via extracellular 
vesicles (EVs) has been proposed to be a widespread process. 
Cells release diverse EVs that include exosomes, microvesicles 
(MVs) and apoptotic bodies (1, 2). The classification of such 
EV subtypes is mainly based on their biogenesis and resultant 
biophysical properties, such as size, density, and predominant 
protein markers. Originally, the class of EVs generated through 
the endosomal pathway (exosomes) was assumed to represent 
a mere mechanism for the cell to jettison unwanted moieties 
(3, 4). We now understand that exosome biogenesis is a process 
governed by the endosomal-sorting complex machinery and 
involves the formation of intraluminal vesicles within multi-
vesicular bodies (MVBs). Mature MVBs fuse with the plasma 
membrane and subsequently secrete the enclosed exosomes 
into the extracellular environment. During their biogenesis, 
exosomes associate with an array of bioactive cargo from their 
parental cell. Such cargo has been reported to include genetic 
information in the form of small noncoding RNAs, free fatty 
acids, surface receptors, and proteins (Figure  1) (5, 6). It is 
considered that the biophysical properties of EVs, including 
their cargo, reflect the stimulus triggering their formation (7), 
implying specific packaging of “message” prior to export from 
the parent cell. In turn, the secretion of these biologically loaded 
signaling vectors to the extracellular environment represents an 
important method of cell-to-cell communication, dubbed the 
“new endocrinology”.

Exosomes have been shown to play important roles in a 
broad range of pathological conditions, such as cancer (9), liver 
and kidney disease (10), neurodegenerative disorders (11), and 
numerous cardiopulmonary disorders (12, 13). More recently, in 
addition to their prognostic and diagnostic value, exosomes have 
also been reported to represent novel therapeutic reagents across 
multiple disciplines.

eXosoMe-Based tHerapeutiCs

The therapeutic capacity of exosomes generated by mesenchymal 
stem/stromal cells (MSCs) that have been derived from different 
organs, such as bone marrow, umbilical cord, adipose tissue, or 
placenta has been tested in various disease models. In the cases 
where cells and their respective exosomes were studied in parallel, 
exosome treatment has demonstrated a similar or even superior 
therapeutic capacity to MSC treatment (14). MSC-exosomes have 
provided beneficial effects in numerous disease models promot-
ing functional recovery and neurovascular plasticity following 
traumatic brain injury (15), reducing myocardial infarction size 
(16, 17), ameliorating hypoxia-induced pulmonary hypertension 
(18), aiding repair of kidney injury (19, 20), and orchestrating 
neurological protection by the transfer of microRNA (21, 22). 
MSC-exosome-based approaches for the treatment of different 
disease models are highlighted in Table 1.

While the functional roles of exosomes have been extensively 
reported [reviewed in Ref. (43–46)], few reviews have addressed the 
challenges underlying the transition of exosome-based therapies 
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taBle 1 | Summary of MSC-exosome-based approaches for the treatment of different disease models.

disease model MsC-product “nomenclature” isolation method dose assessment dose reference

respiratory
Bronchopulmonary dysplasia Exosomes Density Cushion Cell equivalent 0.5 × 106 Willis et al. (8)
Pulmonary hypertension Exosomes SEC Protein 0.1–10 µg Lee et al. (18)
Pulmonary hypertension Exosomes UC (100K × g) Protein 25 µg Aliotta et al. (23)
Acute lung injury Microvesicles (MVs) UC (100K × g) Cell equivalent 1.5 × 106 Zhu et al. (24)
Silicosis Exosomes Sucrose gradient Protein 40 µg Phinney et al. (25)
Pneumonia MVs UC (100K × g) Cell equivalent 9 × 106 Monsel et al. (26)

Cardiovascular
Myocardial infarction Exosomes ExoQuick Cell equivalent 4 × 106 Yu et al. (27)
Myocardial infarction Extracellular vesicles (EVs) UC (100K × g) Protein 80 µg Bian et al. (28)
Myocardial infarction Exosomes ExoQuick Protein 80 µg Teng et al. (29)
Ischemia/reperfusion Exosomes HPLC Protein 0.4 µg Lai et al. (16)
Ischemia/reperfusion Exosomes HPLC Protein 0.4–0.8 µg Arslan et al. (17)

neurological
Traumatic brain injury EVs Anion exchange 

chromatograph
Protein 30 µg Kim et al. (30)

Laser-induced retinal injury Exosomes UC (110K × g) Protein 10 µg Yu et al. (31)
Optical nerve crush Exosomes UC (100K × g) ExoELISA 3 × 109 Mead and Tomarev (32)
Stroke EVs UC (110K × g) Cell equivalent 2 × 106 Doeppner et al. (33)
Stroke Exosomes UC (100K × g) Protein 100 µg Xin et al. (34)

Musculoskeletal 
Cardiotoxin injury EVs UC (100K × g) Protein 5 µg Lo Sicco et al. (35)

Hepatic
Drug-induced liver injury Exosomes UC (100K × g) Protein 0.4 µg Tan et al. (36)
Liver fibrosis Exosomes UC (100K × g) Protein 250 µg Li et al. (37)

gastrointestinal
Colitis EVs UC (100K × g) Protein 50–200 µg Yang et al. (38); Fang et al. (39)

dermatological
Wound healing Exosomes UC (100K × g) Protein 160 µg Zhang et al. (40)
Wound healing Exosomes UC (120K × g) Protein 100 µg Fang et al. (39)

renal
Ischemia/reperfusion MVs UC (100K × g) Protein 100 µg Zou et al. (41)
Acute kidney injury MVs UC (100K × g) Protein 100 µg Bruno et al. (42)

Ultracentrifugation (UC): 100,000–120,000 × g (100K–120K × g). Size-exclusion chromatography (SEC). ExoQuick and ExoELISA refer to a commercially available exosome isolation 
kit and CD63 capture (exosome) ELISA, respectively (Systems Biosciences, CA, USA).

taBle 2 | Minimal criteria for defining MSCs, as put forth by The International 
Society for Cellular Therapy.

Characterization of mesenchymal stem/stromal cells (MsCs)

 1. Adherence to plastic in standard culture conditions
 2. Phenotype:

Positive (≥95%) CD105 CD45 CD73
Negative (≤2%) CD34 CD90 CD14 or CD11b CD79a or CD19 HLA-DR

 3. In vitro differentiation: osteocytes, adipocytes, and chondrocytes.

Human leukocyte antigen–antigen D related (HLA-DR). Adapted from  
Dominici et al. (49).
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from animal models to clinical development. Furthermore, the 
full realization of their therapeutic potential has been hampered 
by a lack of standardization in exosome isolation and charac-
terization. Herein, we will focus on the therapeutic application of  
MSC-exosomes and outline topics relevant to the facilitation of their 
development as a pharmaceutical preparation, focusing on exosome 
harvesting, dosing and potency, and providing guidance on the cur-
rent challenges in bringing exosome-based therapies to clinic.

MesenCHyMal steM/stroMal Cell 
origin: WHere are tHe eXosoMes 
CoMing FroM?

A comprehensive characterization of the tissue/cellular source of 
exosomes is imperative for exosome-based therapeutics. Detailed 
methods for obtaining human MSCs from several tissues, includ-
ing bone marrow (BMSCs), Wharton’s jelly (WJMSCs), umbilical 
cord blood, and adipose tissue are well reported (47, 48). By 

definition, MSCs must adhere to plastic, demonstrate a baseline 
differentiation potential to osteocytes, chondrocytes, and adipo-
cytes in vitro, and express the presence of widely accepted surface 
markers (Table  2) (49). However, donor-to-donor variability 
remains a prominent challenge. Studies have found that BMSCs 
obtained from older donors have slower proliferation and reduced 
differentiation potential in vitro. Furthermore, discrepancies in the 

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


4

Willis et al. Bringing Exosome-Based Therapeutics to Clinic

Frontiers in Cardiovascular Medicine | www.frontiersin.org October 2017 | Volume 4 | Article 63

differentiation capacity and transcriptome profiles are reported 
to be tissue and species dependent (50–52). To what extent do 
these uncertainties affect the therapeutic capacity of MSCs and 
their resultant exosomes remains unclear. Thus, in addition to 
validated MSC isolation procedures, investigators should adhere 
to carefully selected donor eligibility criteria in accordance with 
the appropriate ethical and regulatory approval, employing strict 
control measures to prevent risk of relevant communicable disease 
agents or diseases (RCDADs), such as human immunodeficiency 
virus (HIV), hepatitis C virus, and cytomegalovirus. Moreover, 
donor screening should include a comprehensive medical record 
review, physical assessment, and medical history interview, with 
records documented in compliance with appropriate regulatory 
frame. The International Society of Extracellular Vesicles (ISEV), 
the Food and drug Administration (FDA), the International 
Council for Harmonization (ICH) of Technical Requirements for 
Pharmaceuticals for Human Use, and the European Medicines 
Agency (EMA) provide extensive guidance for the develop-
ment and generation of novel biological medicines with regard 
to donor/patient care, product safety, and quality (53–56). The 
demonstration that exosomes generated by MSCs isolated from 
WJMSCs are as effective as BMSC-exosomes in treating rodent 
disease models (8) may facilitate standardization and consistency 
of MSC lines for exosome harvesting. Moreover, the umbilical 
cord may possess several advantages over bone marrow. First, the 
umbilical cord represents a more readily available source than 
bone marrow. Second, it is often viewed as discarded medical 
waste that does not require any invasive procedures or cadaver 
procurement.

“pHysioXia” Considerations  
in estaBlisHing MsC Culture 
Conditions For eXosoMe 
produCtion

Previous studies have reported that the protein and RNA profile 
of exosomes reflect the cell culture conditions and microenviron-
mental stimuli that triggered their release. With this in mind, it 
begs to question can “stimulating” and/or preconditioning cells 
be used as a means to generate a more homogenous or efficacious 
exosome population? Interestingly, in an experimental model of 
hyperoxia-induced bronchopulmonary dysplasia (BPD), Waszak 
and coworkers found that the conditioned media (CM) derived 
from hyperoxia-preconditioned rat BMSCs (95% O2, for 24  h) 
provided greater protection in  vivo compared to CM collected 
from cells grown under control conditions (57). Clearly, in the 
absence of further characterization, one can only speculate where 
the observed augmentation of activity resides. Other studies have 
found that MSCs cultured in hypoxia conditions (<5% O2) exhib-
ited an altered protein expression pattern compared to MSCs 
cultured in the so-called “normoxia” (58). Furthermore, in a 
murine hind limb ischemia model, they showed that intra-arterial 
injection of MSCs cultured in both “normoxic” or hypoxic condi-
tions enhanced revascularization compared with saline controls; 
however, the functional recovery of mice that received hypoxia 
preconditioned MSCs was faster (59). These reports suggest that 

preconditioning MSCs in different oxygen environments may 
improve their tissue regenerative potential.

Indeed, “hypoxia” (1% O2) has been shown to increase exo-
some production in numerous cell types in vitro. Previous stud-
ies have shown that the hypoxia-induced elevation in exosome 
secretion is chiefly governed by hypoxia-inducible factor-1 alpha 
(HIF-1α) and is independent of apoptosis (60). Often, laboratory 
cell culture conditions are at atmospheric oxygen levels (21% O2, 
corresponding to a PO2 of ~159 mmHg); following adjustment 
to 5% CO2, this equates to ~19.95% O2 (~150 mmHg). Although, 
it is challenging to accurately measure tissue oxygen concentra-
tions in vivo, it is well recognized that most of the human body 
tissue is normally exposed to much lower O2 levels. This can range 
from 160 to 100 mmHg in the alveoli, >35 mmHg in the brain, 
and ~25 mmHg in skeletal muscle (61–63). Notably, in the bone 
marrow, arguably the most common origin of MSCs, the PO2 is 
reported to be ~40 mmHg, while the umbilical cord vasculature 
PO2 is reported to be between 10 and 30  mmHg (63). Organ 
oxygen levels have been extensively reviewed (63). However, it 
is important to remember that the different techniques used to 
measure oxygen concentration in vivo are subject to their own 
advantages and limitations.

In vivo, the oxygen concentration of an organ is an indica-
tion of its physiological state and reflects the balance between 
oxygen delivery and its metabolic consumption. Consequently, 
in a physiological condition, organs are subject their own unique 
“physioxia” status. On balance, the routine laboratory cell culture 
conditions expose MSCs to oxygen levels higher than those in 
their physiologic niches, and this departure from “physioxia” may 
precipitate a “perceived hyperoxia” response. Thus, it is important 
to recognize this factor when interpreting results of experiments 
performed in atmospheric “normoxia,” and also to realize that the 
impact of this factor may vary, depending on the particular study 
and the metrics assessed.

In turn, several questions remain unanswered. The optimal 
oxygen concentration for in vitro MSC culture and the effect that 
it may have on subsequent exosome production remains unde-
fined at this point. Existing reports indicate that optimization is 
likely to be both MSC origin and disease model specific. Thus, 
additional studies assessing the effect of oxygen levels on MSCs 
and their resultant exosomes are much needed.

eXosoMe Heterogeneity

Cells generate three major EV classes: apoptotic bodies, MVs, 
and exosomes. Arguably, it is often assumed each subtype repre-
sents a homogenous vesicle population that can be distinguished 
based on biophysical properties such as size or density. However, 
it has become obvious that even within such subtypes, there is 
heterogeneity (2, 64). Although, the field lacks tools to distin-
guish vesicles from different routes of biogenesis, recent evidence 
has demonstrated that MSCs release distinct EV subpopulations 
that differ in biophysical, proteomic, and RNA repertoires. 
Specifically, Kowal and coworkers found that large-, medium-, 
and small-sized EVs can be isolated by sequential low-, interme-
diate-, and high-speed centrifugation, respectively. Among the 
small-EVs (exosomes), four subcategories were defined by their 
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Figure 2 | Isolation of MSC-exosomes subtypes by size-exclusion chromatography (SEC). Briefly, exosomes were isolated directly from cell culture supernatants 
following a 36 h harvest period in serum-free-media. Cell culture media were subjected to differential centrifugation, 300 × g for 10 min, followed by 3,000 × g for 
10 min, and 13,000 × g for 30 min to remove any cells, cell debris, and large apoptotic bodies in suspension, respectively. Conditioned media (CM) was 
concentrated 50-fold by tangential flow filtration (TFF) and the exosomes were purified using OptiPrep™ (iodixanol) cushion density flotation (3.5 h at 100,000 × g, 
4°C), as previously described (8). Heterogeneous exosomes were further purified by size using size-exclusion chromatography (SEC). Here, sepharose CL-2B 
(80 mL) was washed with 1 × SSPE buffer [containing 1 mM EDTA and 149 mM NaCl in 0.20 mM phosphate buffer (pH 7.4)]. The column was packed with washed 
sepharose CL-2B to create a column with an internal diameter of 1.6 cm and height of 40 cm. Exosomes (1 ml, corresponding to 60 × 106 MSC equivalents) were 
added to column with a flow rate of 1 ml/min. Fractions (1 ml) were collected and assessed by dot plots and electron microscopy. The elution kinetics of 100 nm, 
50 nm, and bovine serum albumin (BSA) were used to estimate exosome elution kinetics. TSG101, Alix, CD63, and FLOT1 levels were assessed by dot plots and 
are reported as relative intensity. Here, we identify two distinct MSC-exosome subtypes. The larger exosomes (>80 nm) have a greater flotillin-1 (FLOT1) and CD63 
enrichment, while smaller exosomes (<80 nm) have a greater TSG101 and Alix ratio.
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degree of enrichment in CD63, CD9, and/or CD81 tetraspanins 
(64). In accordance, Lai et  al. found that MSCs secrete many 
distinct subtypes of vesicles, which differ in RNA and protein 
composition (65). It is relevant to note that the study involved an 
immortalized, iPS-derived MSC cell line that will likely secrete a 
more restricted range of exosome subtypes than those generated 
by primary cells.

In our hands, ongoing studies aim to address the rela-
tionships between MSC-exosome subtypes and therapeutic 

efficacy and to explore the hypothesis that a discrete subtype 
is responsible for the therapeutic activity in our established 
experimental models of BPD, a chronic lung disorder of infants 
(8). Here, we isolated exosomes from either human BMSCs or 
WJMSCs by differential centrifugation, followed by tangential 
flow filtration and iodixanol density floatation before separat-
ing exosome subtypes by size-exclusion chromatography (SEC) 
(described in Figure 2). This approach separates MSC-exosome 
subtypes based on their size, and in accordance with previous 
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Figure 3 | Conventional and emerging exosome isolation techniques. Ultracentrifugation (UC) is the most common exosome isolation method. Here, 
sedimentation of solutes including vesicles is governed by their size/density. Variations of UC such as layered or cushion based-density gradient UC are also widely 
employed. New methods are required to facilitate large-scale, high-yield production of exosomes for clinical applications. Several emerging technology platforms 
have shown promise in isolating exosomes from various sample matrices. Techniques, such as size-exclusion chromatography, ciliated micropillars nano-traps, 
acoustic wave separation technology, and flow field-flow fraction (F4), exploit unique biophysical traits of exosomes.
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reports, we demonstrate a shift in protein markers associated 
with different exosome subtypes. Specifically, we found that 
CD63 and flotillin-1 (FLOT1) is associated with “large”-
exosomes (>80  nm), while Alix and TSG101 is enriched in 
“small”-exosomes (<80  nm). Few studies assess the ratio of 
such markers; however, further investigation is warranted as 
it may provide a tool for distinguishing exosome subtypes. 
Ongoing in vivo studies are testing whether the different MSC-
exosome subtypes exhibit differential therapeutic efficacy in a 
number of animal models currently utilized by our group and 
collaborators.

Regulatory frameworks often require a mechanism-of-action 
that details the identity, quantification, and characterization of 
such bioactive substances responsible for the therapeutic effect(s). 
Moreover, disclosure of non-active components (“excipients”) in 
drug preparations should be acknowledged (56, 66). Knowing 
exosome subtypes harbor different protein and genetic cargo, it 
is fair to speculate that they likely mediate different effects on tar-
gets cells. Thus, improved separation techniques that distinguish 
between “non-active” and therapeutic exosome subtypes may 
help focus the search for the bioactive substance(s) responsible 
for such beneficial effects. The “one size fits all” hypothesis may 
not work for exosome-based therapeutics. Although a specific 
exosome subset may induce beneficial therapeutic effects in a 
specific disease model, it is important to recognize that a differ-
ent exosome subpopulation may afford the beneficial effects in a 
different disease model.

eMerging tHeMes in eXosoMe 
isolation

Isolation methods impact exosome integrity, in  vivo biodistri-
bution and metabolic fate (56). Exosome isolation techniques 
from various biological fluids and cell culture medium have 
been extensively reviewed (67–69). It is well established that 
widely applied exosome isolation techniques, such as differential 
ultracentrifugation (UC), promote vesicle aggregation and often 
co-isolate soluble factors and protein (70). Thus, a consensus in 
the field has shifted toward more “gentle” isolation techniques 
to ultimately reduce contaminants (non-EV material), maintain 
integrity, and isolate “bioactive” vesicles from heterogeneous EV 
populations. To date, popular avenues of investigation include 
gradient density isolation and SEC, with the latter being more 
suited to enclosed tissues culture systems. Variations of such 
approaches have been shown to effectively separate exosomes 
from proteins and soluble factors in different biological fluids 
(71, 72). However, layered density-based procedures may achieve 
enrichment rather than true exosome isolation, where the influ-
ence of UC parameters coupled with high-sucrose concentrations 
may change the osmotic environment (69). Furthermore, UC 
methods are impracticable for large-scale bioprocessing.

Several emerging technology platforms have shown promise 
in isolating exosomes from various sample matrices, with each 
method exploiting a particular biophysical trait of exosomes such 
as their size, density, shape, or surface receptors (Figure 3) (72). 

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


7

Willis et al. Bringing Exosome-Based Therapeutics to Clinic

Frontiers in Cardiovascular Medicine | www.frontiersin.org October 2017 | Volume 4 | Article 63

The final goal is an isolation method that is label free, distinguishes 
between exosome subtypes and interfering components, and can 
facilitate a large-scale production of exosomes.

Recently, Lee and colleagues employed a label-free acoustic 
nano-filter system to isolate exosomes based on their size (73). 
Specifically, using ultrasound standing waves exert differential 
acoustic force, they isolated exosomes from both cell culture 
media and stored red blood cell products. They effectively 
separated exosomes (149  nm) and MVs (410  nm). Although, 
its application for high-throughput exosome preparations is yet 
to be established, previous studies have used label-free acoustic 
wave systems to isolate circulating tumor cells (74).

Exosomes can also be separated by size with 10  nm accu-
racy using variations of flow field-flow fractionation (F4) (75). 
Asymmetrical F4 (AF4) is a one-phase chromatography method 
that uses parabolic-flow to drive exosomes across a flow channel. 
A crossflow intercepts the parabolic-flow perpendicular to the 
channel and distributes particulate components against the flow 
chamber wall. Subsequently, exosomes are separated based on 
differences in diffusivity. Smaller particles diffuse further from 
the accumulation wall and are eluted earlier than larger ones. 
Successful attempts have been made using AF4 to isolate exosomes 
from human neural stem cell culture (76) and melanoma cell lines 
(77). AF4 approaches provide promise for “label-free” isolation of 
large-scale exosome production.

To effectively utilize the size difference between exosomes, 
other EV subtypes and cellular debris, Wang and colleagues 
fabricated a porous silicon nanowire-on-micropillar “nano-trap” 
made from ciliated micropillars (78). This fabricated micro-
fluidic device preferentially traps exosomes with a diameter of 
40–100 nm, while filtering out proteins, larger EVs, and cellular 
debris. Moreover, trapped exosomes can be recovered by dissolv-
ing the porous silicon nanowires in PBS buffer. However, in this 
proof-of-concept study, the authors noted poor vesicle retention 
(~60%) and only assessed small sample volume (30 µl), thus scal-
ability is yet to be demonstrated.

Overall, to support the development of exosome-based 
therapeutics, research efforts should focus on the development 
of “label-free” exosome isolation techniques that can support 
high-throughput systems/scale-up requirements and are capable 
of distinguishing exosome subtypes. Although a number of 
highly sophisticated technologies for EV isolation have emerged 
recently, their application is mainly in the biomarker field, as 
tools for exosome-based diagnostics. Although such emerging 
technologies hold great promise, the large-scale preparation of 
isolated exosome subtypes to be used as the basis of exosome-
based pharmaceutical products will probably depend, at least in 
the near future, on modifications of classic industrial processes 
such as SEC.

dose eValuation

Currently, investigators use several different methods to quantify 
exosome dosage, making inter-study comparison troublesome. 
Common quantitative practices include reporting cell equiva-
lents, protein concentration, and/or specialized quantitative 
analytical measurements by instruments, such as tunable resistive 

pulse sensing (TRPS) and nanoparticle tracking analysis (NTA), 
with each method harboring its own advantages and limitations 
[for recent reviews (79–82)]. The need to standardize exosome 
dosing is imperative. Of interest, methods such as TRPS are 
currently used to verify particle size and characterization for 
liposome-encapsulated forms of doxorubicin and are accepted 
within the definition of bioequivalence as set forth by the FDA 
and EMA. Although enumeration of analytical criteria is beyond 
the scope of this review, we acknowledge that the field is limited 
by current technology and lacks the ability to accurately assess 
exosomes at a single vesicle level. Thus, to aid inter-study com-
parison, we recommend that in addition to providing extensive 
detail of standardized cell culture conditions and pre-analytical 
protocols, investigators should measure exosome concentration 
using multiple quantification tools, where possible. A summary 
of the advantages and limitations of common methods used to 
determine exosome dose are highlighted in Table 3. Establishing 
an exosome potency assay is a novel approach which holds great 
promise in standardizing exosome dosing.

deVeloping an eXosoMe potenCy 
assay

The definition of the bioactive substance(s) will remain a cru-
cial question in the preclinical development of exosome-based 
therapeutics. With an orchestra of bioactive cargo and diverse 
physiological effects (Figure 1B), identification of “one” bioactive 
substance or a singular mechanism-of-action appears improb-
able. By FDA standards, potency is defined as the products 
specific ability or capacity to affect a given result (66). With no 
“gold-standard” technique for their quantification, assessment 
of exosome potency would be a valuable tool in overcoming the 
inconsistencies in preparations and batch-to-batch variation. 
For example, exosomes obtained from two separate donors 
may be normalized via a given quantitative method; however, 
the “bioactive” load may differ, subsequently the potency and 
degree of efficacy will not be the same. Thus, investigators should 
consider employing a unique exosome potency unit (EPU) to 
standardize practices and minimize variation between different 
samples. Presently, attempts to define an exosome potency metric 
utilized the immunomodulatory properties of MSC-exosomes. 
For example, Jiao et  al. described an in vitro potency assay for 
MSC-exosomes based on the release of IL-10 from mononuclear 
cells following incubation with exosome preparations, and 
other studies have shown that T-cell proliferation assays may 
be modified to provide the basis for assays on exosome immu-
nomodulatory potency (29, 83). Growing evidence also suggests 
that MSC-exosomes can modulate macrophage phenotypes 
(8, 35). Macrophages play a pivotal part in regulating immune 
responses. They assume both phagocytic “defensive” roles and 
exhibit regulatory “anti-inflammatory” actions, facilitating both 
the initiation and the resolution of inflammation (84). With 
this consideration in mind, our ongoing studies are exploring 
an in vitro macrophage polarization assay as a means of assess-
ing MSC-exosome potency. Briefly, the potency assay involves 
adding MSC-exosomes to murine bone marrow-derived mac-
rophages (BMDMs) that are polarized to the classically activated 
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taBle 3 | A summary of the advantages and limitations of common methods used to determine exosome dose.

exosome dosing 
method

information acquired advantages limitations

Protein Total protein amount Fast May not reflect bioactive ingredient. May measure non-
exosomal-associated protein. Does not reflect particle 
concentration/size/distribution

Low cost

Nanoparticle 
tracking analysis 
(NTA)

Particle concentration, size, and distribution 
(range 10 nm–2 µm)

Fluorescent-NTA available Difficulties in determining vesicle aggregates and size 
heterogeneity in biological samplesProvides absolute EV concentration, 

size and distribution

Tunable resistive 
pulse sensing 
(TRPS)

Particle concentration, size and distribution 
(size range <40 nm–10 µm)

Provides absolute EV concentration, 
size and distribution. Can also 
measure particle surface charge

Different pore sizes are needed to assess biological samples 
that contain both exosomes (for example, <150 nm) and 
larger EVs (>150 nm)
Can detect non-exosome material within size range

ELISA Specific concentration of EV marker (for 
example, CD9 or CD63)

Specific to “exosome” protein May not reflect bioactive exosome population. Time 
consuming. Provides non-specific information about 
exosome size/distribution

Dynamic light 
scattering (DLS)

Particle concentration and size (range 
<1 nm–10 µm)

Fast Difficulties in measuring heterogeneous samples
Small volume required

Flow cytometry Particles concentration and size (size range 
~>150 nm)

Non-specialized (typical) laboratory 
equipment

Detection limit (~<150 nm) (cytometer dependent)

Fluorescently labeled EVs

Cell equivalents Cell number Low cost Requires standardized tissue culture procedures. Does not 
reflect particle concentration/size/distributionFast

emerging tools 
for estimating 
exosome dose

description

“Fingerprinting 
assays”

Quantifies surrogate markers (for example levels/ratios of exosome markers such as CD63, CD9, and CD81) as an indication of potency and/
or dose

Exosome potency 
assays

Quantifies the ability of an exosome preparation to elicit the desired biologic/therapeutic action or surrogate activity in vitro and/or in vivo

NTA and DLS size ranges were obtained from http://malvern.com. TRPS detection range was obtained from http://izon.com.
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of specialized isolation and characterization methods has allowed 
investigators to more accurately isolate and characterize exosome 
populations.

Considering the development of exosome-based therapeutics, 
lessons could be learned from cell therapy. The in vitro expan-
sion of cells (such as MSCs) is required to deliver an effective 
therapeutic dose, with the absence of having a detrimental 
impact on the quality of the cell. Upon scaling-up, process ana-
lytical technology (PAT), a system proposed by the FDA, may 
be implemented to monitor the manufacturing process through 
continuous measurement of cell parameters (87, 88). Monitoring 
bioprocess parameters, such as population doubling time, tem-
perature, metabolite concentrations, pH, pO2 and pCO2, may help 
ensure optimal exosome quality and quantity, as previous reports 
have shown that subtle acidic pH shifts may impair exosome 
aggregation inhibiting forces and, in turn, promote aggregation 
and reduce functionality (56).

Recently, the inevitable shift to using tissue culture bioreactors 
has been used to generate large-scale EV preparations. Indeed, 
Watson and colleagues demonstrated that hollow-fiber bioreac-
tors promotes enhanced exosome production (~40-fold greater 
EVs/ml of CM) when compared to conventional 2D tissue culture 
preparations (89). However, it remains unclear if such methods 
enhance generalized EV production or simply reflect a reduction 

(proinflammatory) M1-phenotype. The functional endpoint is 
the capacity of MSC-exosomes to suppress the mRNA induction 
of TNFα. The half maximal effective concentration (EC50 value, 
50% inhibition in TNFα mRNA levels, relative to M1 control) is 
transformed to an arbitrary EPU (described in Figure 4) (8). In 
turn, an EPU could potentially be applied to standardize dosing 
between different exosome preparations. In all cases, potency 
assays need to be disease specific, fit-for-purpose, and employ 
relevant functional end-points.

ManuFaCturing and sCale-up

In 2002, Lamparski et al. described a method for the production 
and characterization of clinical grade exosomes derived from 
dendritic cells for their application in cancer vaccine clinical tri-
als (85). Using ultrafiltration coupled with a sucrose/deuterium 
oxide UC cushion, they isolated vesicles (50–90 nm in diameter) 
containing major histocompatibility complex (MHC) class-I, -II, 
and CD1, and tetraspanin molecules (CD9, CD63, and CD81) In 
addition, in 2005, Navabi and coworkers detailed the develop-
ment of a method for the preparation and characterization of 
good manufacturing practice (GMP)-grade exosomes from the 
ascites fluid of ovarian cancer patients (86). Since then our under-
standing of exosome biology has improved and the development 
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Figure 4 | Stepwise approach to developing an MSC-exosome potency 
assay. Considering limitations in current exosome quantification techniques, 
assessment of exosome potency would be a valuable tool to standardize 
exosome dosing. Step 1: primary murine bone marrow-derived macrophages 
(BMDMs) were obtained by flushing the femur and tibia of 6- to 8-week-old 
FVB mice. M1 polarization was initiated by lipopolysaccharide (LPS) 100  
ng/ml and interferon-γ (IFNγ) 20 ng/ml stimulation. Macrophage polarization 
(1 × 106 BMDMs) was initiated with/without the presence of MSC-exosome 
preparations (0.05–1 × 106 cell equivalents), providing several ratios of 
MSC-exosome cell equivalents-to-BMDMs. After 24 h, total RNA was 
isolated and TNFα mRNA levels were assessed by RT-qPCR. The functional 
endpoint is the capacity of MSC-exosomes to suppress the mRNA induction 
of TNFα. Step 2: an EC50 value (50% reduction in TNFα mRNA, relative to M1 
control) is transformed to an arbitrary exosome potency unit (EPU). Data 
were adapted from our recent work (8), where we demonstrated purified 
human umbilical cord MSC-exosomes, dose dependently suppressed mRNA 
levels of TNFα in alveolar macrophages in vitro. Step 3: an EPU can be 
applied to standardize dosing between different exosome preparations or as 
a means of correlating potency to exosome quantity.
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in exosome re-uptake. Under the considerations discussed above, 
relating to EV diversity and the possibility that only specific exo-
some subtypes may represent the therapeutic agent, it is premature 
to assume that production of higher EV numbers will necessarily 
yield a higher efficacy final product. Optimization of MSC culture 
conditions will, therefore, require the parallel development of a 
dependable and easily adoptable potency assay.

“oFF-tHe-sHelF” eXosoMes

With evidence to suggest that exosomes can be stored at −20°C 
for up to 6  months with no loss to their biochemical activity, 
“off-the-shelf ” exosome-based products represent an attractive 
pharmaceutical formulation (56, 66, 90). Although standardized 
storage procedures remain to be defined, current storage proto-
cols use isotonic buffers to prevent pH shifts during storage, avoid 
freeze–thaw cycles and are absent of dimethyl sulfoxide (DMSO) 
and glycerol as previous reports have shown these agents may 
impact exosome integrity (91). With a lack of data addressing 
the impact of storage time and excipients on exosome structural 
stability and functional efficacy, more studies are warranted to 
help define a provisional “shelf-life” for exosome-based products 
and facilitate the manufacturing and distribution process.

eV-Based tHerapy in CliniCal trials

Promising preclinical data that demonstrated dendritic cell-
derived EVs containing MHC–peptide complexes could alter 
tumor growth in immune competent mice led to a phase I anti-
melanoma clinical trial conducted in France (92) and a phase I 
anti-non-small cell lung cancer clinical trial in the United States 
(93) (clinical trial applications highlighted in Table  4). Both 
clinical trials administered autologous dendritic cell-derived EVs 
that met their respective current GMP standards. Such clinical 
trials to date are important for their demonstration of both the 
feasibility and the short-term safety of autologous EV adminis-
tration, but safety considerations for therapies based on exog-
enous exosome-based products will arguably be more stringent. 
Nevertheless, it is very encouraging to note that preclinical stud-
ies have established immunomodulation as the main therapeutic 
mechanism of MSC-exosomes action. Immunomodulation is 
clearly involved in the autologous exosome clinical trials men-
tioned above, and this may provide guidelines and precedent for 
clinical trials using exogenous exosomes. In this context, a recent 
clinical case involving treatment of a steroid-refractory graft-vs-
host disease patient with MSC-EVs derived from unrelated bone 
marrow donors produced encouraging results (94).

Ultimately, issues raised in this review aim to provide a basic 
guidance for investigators on key issues to consider for the smooth 
transition of exosome-based therapies from the preclinical model 
into clinical development (Figure  5). Among them, determin-
ing the optimal dose, the appropriate time window for exosome 
administration, the number of doses, and route of administra-
tion that achieves maximal efficacy without adverse effects are 
the most important issues to resolve. Such issues will be disease/
model specific and clearly beyond the scope of this work.

suMMary

Exosome-based therapeutics represent a most promising next 
generation approach for treating a diverse number of diseases, 
particularly diseases the pathogenesis of which involves a pri-
mary (or major) inflammatory component. The efficacy of MSC-
exosome treatments has been robustly established in numerous 
preclinical models, but development of large-scale GMP-grade 
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Figure 5 | Strategic flowchart for the preclinical testing of exosome-based therapeutics. EV, extracellular vesicle. Adapted from Ref. (97).

taBle 4 | Exosome-based therapy: clinical trials.

disease phase Vesicle cellular source route of 
administration

isolation method Modified 
(y/n)

status reference

Melanoma I—open label Autologous monocyte-derived 
dendritic cells

SC UF/UC sucrose 
cushion

Y Complete Escudier et al. (92)

Non-small cell lung 
cancer

I—open label Autologous monocyte-derived 
dendritic cells

SC and 
intradermal

UF/UC sucrose 
cushion

Y Complete Morse et al. (93)

Colon cancer I—open label Autologous ascites SC UC sucrose cushion N Complete Dai et al. (95)
Colon cancer I—open label Plant based – Not declared Y Ongoing NCT01294072
Type I diabetes I—open label Umbilical cord blood (allogeneic) 

MSC
– Not declared N Ongoing NCT02138331

Non-small cell lung 
cancer

II—open label Tumor cell Pleural or 
peritoneal cavity

Not declared Y Complete Besse et al. (96)

Wound healing (Ulcer) I—open label Plasma (autologous) – Not declared N Enrolling NCT02565264

MSC, mesenchymal stem/stromal cells; SC, subcutaneous; UF, ultrafiltration; UC, ultracentrifugation.
Adapted from Lener et al. (56).
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exosome-based pharmaceuticals and subsequent clinical trials 
demand the resolution of several technological and mechanistic 
issues, reflecting the cautious navigation in unknown seas for this 
relatively novel field. Among the major issues to be resolved are 
the definition of an EPU, the standardization of MSC culture con-
ditions and protocols for exosome harvest and storage. Although 
safety considerations need also to be addressed, it is expected 
that safety concerns for cell-free, exosome-based clinical trials 
will be arguably milder than those relevant to live cell MSC trials 
currently in progress, as mutagenicity and oncogenicity concerns 
will be null.
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