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Microvesicles (MVs) circulating in the blood are small vesicles (100–1,000 nm in diam-
eter) derived from membrane blebs of cells such as activated platelets, endothelial 
cells, and leukocytes. A growing body of evidence now supports the concept that 
platelet-derived microvesicles (PMVs), the most abundant MVs in the circulation, are 
important regulators of hemostasis, inflammation, and angiogenesis. Compared with 
healthy individuals, a large increase of circulating PMVs has been observed, particularly 
in patients with cardiovascular diseases. As observed in MVs from other parent cells, 
PMVs exert their biological effects in multiple ways, such as triggering various inter-
cellular signaling cascades and by participating in transcellular communication by the 
transfer of their “cargo” of cytoplasmic components and surface receptors to other cell 
types. This review describes our current understanding of the potential role of PMVs in 
mediating hemostasis, inflammation, and angiogenesis and their consequences on the 
pathogenesis of cardiovascular diseases, such as atherosclerosis, myocardial infarction, 
and venous thrombosis. Furthermore, new developments of the therapeutic potential of 
PMVs for the treatment of cardiovascular diseases will be discussed.

Keywords: microvesicles, platelet-derived microvesicles, cardiovascular disease, therapeutic potential, 
hemostasis, inflammation, angiogenesis

iNTRODUCTiON

Extracellular vesicles (EVs) encompass a broad range of vesicles released from cells (1). EVs can be 
classified into different subsets according to their size, cellular origin, content or the mechanism 
leading to their formation (Table 1). Microvesicles (MVs)—also referred to as microparticles—
are vesicles typically around 100–1,000  nm in size. By contrast, smaller vesicles (30–100  nm) 
are referred to as exosomes, while larger vesicles containing nuclear materials are referred to as 
apoptotic bodies. Although there is a general consensus in most studies that apoptotic bodies are 
particles >1 μm (2, 3), there are several studies that describe apoptotic bodies to have a smaller 
size range of 0.5 µm (4, 5).

In the context of platelet biology, the plasma membrane fragments shed from activated platelets 
initially observed to possess procoagulant function were described as “platelet dust” by Wolf (17). 
Subsequent studies employing electron microscopy demonstrated the budding of vesicles from 
the platelet plasma membrane (18) thus confirming the cellular origin of the fragments detected 
by Wolf (17). In fact, 60–90% of EVs have been shown to be derived from platelets as indicated by 
positive CD41 staining (19). Since then, the role of EVs in the field of cardiovascular research has 
garnered a huge amount of interest due to their putative role in various pathological conditions.
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TABLe 1 | Characteristics of extracellular vesicles.

exosome Microvesicle Apoptotic body

Size ≈20–100 nm ≈0.1–1 µm >1 µm

Origin Multivesicular bodies, internal compartments Plasma membrane Cellular fragments

Markers  – Tetraspanins (CD63, CD9, and CD81)
 – ALG-2-interacting protein X
 – Tumor susceptibility gene 101 protein
 – Heat shock 70-kDa proteins
 – Major histocompatibility complex class I and class II

 – Phosphatidylserine (PS)
 – Integrins
 – Selectins
 – CD40 ligands
 – Other antigens of parental cell

 – Histones
 – Fragmented DNA
 – PS

Reference  – (6–9)  – (9–14)  – (9, 15, 16)
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Elevated levels of platelet-derived microvesicles (PMVs) 
are observed in diabetes mellitus, sepsis, rheumatoid arthritis, 
vascular inflammation, and cardiovascular diseases (20–31). 
Indeed, the pathological events associated with these diseases 
activate platelets (32–35), which have been demonstrated to 
increase PMV release, while at the same time, a subpopulation 
of PMVs coming from agonist-activated platelets have been 
demonstrated to contribute to pathological events (36). Thus, 
PMVs may well be both, one of the causes and a consequence of 
the pathophysiology that drives various diseases.

This review will focus on our current understanding of 
PMVs in mediating hemostasis, inflammation, and angiogen-
esis, which are all factors contributing to the pathogenesis of 
cardiovascular diseases. Furthermore, the clinical relevance 
of PMVs will be discussed in the context of their therapeutic 
potential in the treatment of cardiovascular diseases.

FORMATiON AND CLeARANCe OF PMvs

Platelet-derived microvesicle formation is complex, and the 
exact mechanisms involved in the generation of PMVs to date 
remains to be clearly defined. However, it has been demonstrated 
that the generation of PMVs can be triggered by various mecha-
nisms: (1) via platelet activation by soluble agonists or (2) shear 
stress or (3) glycoprotein (GP) IIb/IIIa outside-in signaling. 
In the case of platelet activation in response to soluble agonist 
stimulation or in response to high shear stress in the vasculature 
(37–39), sustained elevation of intracellular calcium has been 
observed, which initiates the loss of lipid asymmetry of the 
plasma membrane and cytoskeletal reorganization, ultimately 
leading to PMV generation (Figure  1) (40). The exposure of 
negatively charged phospholipids, such as phosphatidylserine 
(PS), on the outer leaflet of the plasma membrane is regulated 
by the calcium-dependent scramblase transmembrane protein 
(TMEM16F) (41). Likewise, calpain, a calcium-dependent 
protease, is central to regulating cytoskeletal reorganization 
thus facilitating PMV shedding (42). By contrast, unstimulated 
platelets have been demonstrated to generate PMVs via GPIIb/
IIIa signaling, which destabilizes the actin cytoskeleton, result-
ing in shedding of PMVs in the absence of soluble agonist 
stimulation (43). Once generated, PMVs have generally been 
observed to have a relatively short lifespan with studies demon-
strating PMVs to have half-lives of 30 min in mice (44), 10 min 
in rabbits (45), and approximately 5.5  h in apheresis-derived 

PMVs (46). Active endocytosis has been demonstrated to be 
involved in the clearance of MVs (47) including those of PMVs 
(48). Indeed, several studies demonstrated the involvement of 
PS-dependent phagocytic processes in the clearance of PMVs 
in the circulation (44, 49–52). Several opsonins such as com-
plement component C3b, β2-glycoprotein-1, lactadherin, and 
developmental endothelial locus-1 facilitate this PS-dependent 
phagocytosis (44, 49–51, 53). Upon engulfment of EVs by 
phagocytic cells such as macrophages and dendritic cells, liver X 
receptor (LXR) and peroxisome proliferator-activated receptor 
pathways are activated, which both are known to be induced by 
lipid derivatives (54). Indeed, the activation of the cholesterol 
derivative-sensitive pathway LXR by PMVs has been previously 
demonstrated in plasmacytoid dendritic cells (pDCs) (52), 
thereby highlighting the importance of lipid composition of EVs 
on the target cell responses after engulfment. The internalization 
of PMVs is not only essential for the clearance of PMVs but 
also ensures the delivery of the MV content into the target cell 
and thereby exerting their effector functions. Although studies 
have shown PS-dependent phagocytosis to be involved in the 
clearance of PMVs, other mechanisms are also involved in 
this process, which have previously been reviewed in detail by 
Mulcahy et al. (55).

COMPOSiTiON OF PMvs

From the humble origin of being just “platelet dust,” it is now 
apparent that PMVs can mediate a diverse range of physiological 
responses. Their capacity to exert their biological role is attributed 
to their cell membrane composition and molecular cargo. The 
phospholipid composition of PMVs is a composite of the platelet 
plasma and granule membranes with high cholesterol content, 
also indicating an enrichment of lipid rafts (35). PMVs share 
many of the antigens as their parental cells that regulate cell adhe-
sion, activation, and coagulation reactions (Figure  1) (10–13). 
These include various GPs, tissue factors (TF), selectins, and 
coagulation factors V and VIII (10–13). PMVs are packed with 
numerous biological molecules, which facilitate the transporta-
tion and delivery of bioactive mediators that can modulate the 
function of target cells. PMVs carry cytokines and chemokines 
such as interleukin (IL)-1β, CXCL4, CXCL7, and CCL5 (11, 56). 
In addition, a vast amount of proteins, growth factors, and genetic 
material such as ribonucleic acid (RNA), messenger RNA, and 
microRNA can be packaged into PMVs (12, 57–60). Moreover, 
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FiGURe 1 | PMV formation and characteristics. Upon cellular activation, the elevation of intracellular calcium inhibits flippase, while activating floppase and 
scramblase (TMEM16F), mediating the externalization of negatively charged PS (indicated as purple phospholipid). Furthermore, increased intracellular calcium leads 
to reorganization of the cytoskeleton by activating calpain, thereby cleaving PMVs and releasing them into the circulation. The size, physical characteristics, and 
cargo of PMVs depend on the environment and agonist(s) causing PMV generation. PMVs share many surface proteins with platelets such as integrins, selectins, 
adhesion receptors, coagulation factors, and other platelet-derived proteins. PMVs are packed with proteins including growth factors, cytokines/chemokines, and 
apoptotic proteins. PMVs also carry nucleic acids (mRNA, miRNA, and RNA) and mitochondria. PS, phosphatidylserine; GP, glycoprotein; vWF, von Willebrand 
factor; RNA, ribonucleic acid; mRNA, messenger RNA; miRNA, microRNA; PMV, platelet-derived microvesicle.
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PMVs have recently been described to carry mitochondria, 
which can influence inflammatory responses (61).

The mechanisms of selective packaging have been demon-
strated widely in EVs (62–65). Albeit not fully characterized in 
PMVs, the difference in lipid composition between PMVs and 
their parental cell, platelets (35), provide evidence for selective 
membrane assembly. Interestingly, it has been observed that the 
physical and biological components of PMVs are influenced by 

the stimulus used to generate PMVs (66–69). The heterogeneity 
observed in PMVs may explain why they have a diverse range 
of biological roles. For instance, larger PMVs may be enriched 
with more receptors and contents within, and thus can exert more 
effects, while smaller PMVs can deliver their biological cargo to 
areas that are otherwise difficult to enter, such as tumors, or to 
cross, such as the blood–brain barrier. Overall, it is important 
to understand that various pathological conditions will produce 
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different types of PMVs carrying unique biological cargos 
that exert specific effects on targets cells. However, the precise 
mechanism by which PMVs selectively package and release their 
biological cargo to influence cellular function needs to be care-
fully determined in the future.

BiOLOGiCAL FUNCTiON OF PMvs

Hemostasis
It is perhaps not surprising that PMVs are most widely 
recognized for their role in mediating hemostasis given the 
resemblance in lipid composition and biological cargo they 
share with their parent cell—the platelet. Diseases that affect 
PMV shedding in the circulation have provided insight into 
their ability to regulate hemostasis. For example, patients with 
Castaman’s defect, where platelets have an isolated inability 
to generate MVs display a bleeding phenotype (70). Similarly, 
Scott syndrome, where platelets cannot externalize PS and 
generate PMVs, is associated with a marked bleeding diathesis 
(41, 70–72). These disorders highlight the importance of PMVs 
in mediating hemostasis.

In accordance with their ability to regulate hemostasis, PMVs 
display both pro- and anticoagulant properties. The assembly of 
the tenase and prothrombinase complexes, and thus thrombin 
generation, is increased in the presence of PMVs due to the 
PS in the outer leaflet of the cell membrane (73). PMVs also 
express TF, which can initiate the extrinsic coagulation pathway 
by activating Factor VII (73, 74). On the contrary, PMVs have 
anticoagulant activity, which is associated with the binding of 
the natural anticoagulant, protein S and activation of protein C 
(75–79). Given the potential pro- and anticoagulant effects of 
PMVs, the tight regulation of PMV levels is likely an important 
factor regulating the hemostatic response.

inflammation
Akin to the wealth of literature demonstrating an important 
pro-inflammatory role for platelets, there is now a growing body 
of evidence demonstrating that PMVs can regulate inflamma-
tory responses. The immunoglobulins, antigens, cytokines, and 
chemokines that PMVs carry can directly regulate immune 
responses (11, 56, 80). The pro-inflammatory effects of PMVs 
can be demonstrated through their interactions with mono cytes 
and neutrophils. Mechanistically, PMVs bind to leu kocytes 
and form aggregates and can induce monocytes to release 
inflammatory mediators including IL-1β, tumor necrosis fac-
tor (TNF)-α, monocyte chemoattractant protein-1, and matrix 
metalloproteinase (MMP)-9, which enhance monocyte migra-
tion (81, 82). Lipopolysaccharide-induced PMVs carry IL-1β in 
its mature form, which can activate endothelial cells and induce 
leukocyte adhesion thus promoting endothelial inflammation 
(56). Furthermore, mitochondria that are released in  vivo in 
sterile inflammatory diseases, such as rheumatoid arthritis, 
have been observed to be packaged within PMVs, which can 
be hydrolyzed by phospholipase A2 IIA to generate bioac-
tive mediators which promote neutrophil pro-inflammatory 
responses (61).

Intriguingly, there are reports that PMVs can also act as anti-
inflammatory mediators. Recently, Dinkla and colleagues (83) 
have shown that PMVs prevent the differentiation of regulatory 
T cells into a pro-inflammatory phenotype. PMVs can bind to 
CCR6-HLA-DR+ regulatory T  cell subsets via P-selectin and 
inhibit the production of IL-17 and interferon- γ (83). In accord-
ance, PMVs from platelet concentrates can modify innate immune 
cells such as macrophages and dendritic cells. Macrophage 
activation is attenuated in the presence of PMVs as indicated by 
reduced production of TNF-α and IL-10 (84). PMVs also alter the 
function of monocyte-derived dendritic cells as demonstrated by 
their reduced capacity to present antigens, diminished produc-
tion of pro-inflammatory cytokines and decreased phagocytic 
activity (84). PMVs can also modify inflammatory effects of 
the target cell. For instance, PMVs have been demonstrated to 
regulate the inflammatory responses of mast cells by the transfer 
of Lipoxygenase 12 (85). This leads to the production of Lipoxin 
A4, which induces anti-inflammatory and anti-angiogenic 
responses on endothelial cells by suppressing the generation 
of pro-inflammatory cytokines (85, 86). Furthermore, pDCs, a 
subset of dendritic cells that augment inflammatory processes by 
producing a large amount of pro-atherogenic type 1 interferons 
were observed to engulf PMVs in a PS-dependent manner (52). 
PMVs were observed to inhibit pDCs pro-inflammatory response 
by reducing the secretion of TNF-α and IL-8, signifying an anti-
inflammatory mechanism of PMVs (52).

In addition, our group has demonstrated that pentameric 
protein C-reactive protein (pCRP) binds to different MVs includ-
ing PMVs (87). These pCRP-MVs, albeit not pro-inflammatory 
in healthy individuals, can aggravate existing tissue injury by 
activating the classical complement pathway and enhancing 
leukocyte recruitment to inflamed tissues (87). MVs not only 
bind pCRP but also convert pCRP to a highly pro-inflammatory 
monomer of C-reactive protein (mCRP), which can bind to 
endothelial cells and generate pro-inflammatory signals (88–91). 
In addition, autoantigen proteinase 3, an elastin degrading pro-
tease, binds to PS expressing MVs, thereby promoting inflamma-
tion via the generation of reactive oxygen species in neutrophils 
(92). Thus, these studies further highlight the ability of PMVs 
to partner with proteins to induce a pro-inflammatory pheno-
type. Therefore, PMVs may play a dual role in inflammation as 
they may instigate either pro- or anti-inflammatory responses 
depending on the cell membrane composition and biological 
cargo transported by the PMV.

Angiogenesis
In addition to harboring a number of pro-inflammatory 
cyto kines, PMVs may carry growth factors such as vascular 
endo thelial growth factor (VEGF), fibroblast growth factor 2,  
and lipid growth factors suggesting PMVs may play an impor-
tant role in regulating angiogenesis (93). In accordance, Kim 
and colleagues have demonstrated that PMVs can inhibit 
apoptosis while enhancing cell migration, proliferation, sur-
vival, and tube formation in human umbilical vein endothelial 
cells (93). PMVs may also enhance pro-angiogenic MMP-2 
and MMP-9 expression in endothelial cells in vitro and in vivo 
(94). Furthermore, PMVs stimulate the growth of endothelial 
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progenitor cells, thus contributing to the formation of new 
blood vessels (93).

The role of PMVs in regulating angiogenesis in the context 
of cardiovascular diseases has been highlighted by Brill and 
colleagues (95). The authors established that PMVs can induce 
angiogenesis in vitro caused by cytokines, VEGF, basic fibroblast 
growth factor, and platelet-derived growth factor packaged 
within PMVs in a process linked to Src, PI-3K, and ERK sign-
aling (95). Moreover, the injection of PMVs in ischemic heart 
muscle induces the formation of blood vessels in a murine model 
of myocardial infarction (MI), signifying PMVs capability to 
induce myocardial angiogenesis in the setting of ischemia (95). 
PMVs have also been shown to facilitate endothelial repair 
after arterial injury by enhancing the vasoregenerative capac-
ity of early outgrowth cells (EOCs) (96). PMVs enhance the 
recruitment, migration, and differentiation of EOCs at the site 
of injury by enhancing angiogenic growth factors that stimulate 
resident mature endothelial cells (96). The ability of PMVs to 
induce angiogenesis has also been demonstrated in the context 
of neurogenesis following brain injury and tumor progression 
(97, 98) thus, highlighting the potentially broad role of PMVs in 
endothelial repair and angiogenesis.

PMvs iN CARDiOvASCULAR DiSeASeS

Atherosclerosis
The rupturing of an atherosclerotic plaque can lead to MI and 
stroke, which are leading causes of death and disability glob-
ally. Indeed, excessive amounts of PMVs have been observed 
in patients with atherosclerosis (23–28). The increase in PMV 
numbers was found to correlate with multiple parameters 
including carotid artery intima media thickness, lipid-rich ath-
erosclerotic plaques, and plaque burden (23–27). In the setting 
of atherosclerosis, increased hemodynamic shear stress due to 
plaque-associated luminal stenosis as well as the accumulation 
of oxidized low-density lipoprotein can activate platelets and 
stimulate generation of pro-inflammatory PMVs (33, 99).  
In atherosclerosis, monocytes adhere to activated endothelial 
cells, infiltrate the intima, and differentiate to tissue mac-
rophages, which then engulf lipids and form foam cells (100). 
Smooth muscle cells migrate from the media to the intima and 
produce extracellular matrix, forming the fibrous cap (100). 
Macrophages and smooth muscle cells can undergo apoptosis 
leading to accumulation of extracellular lipid which forms the 
necrotic core (100). Indeed, PMVs have been implicated with 
these different stages of atherogenesis. For instance, PMVs 
encapsulate and transport miR-223 to endothelial cells, which 
can trigger endothelial apoptosis via the insulin-like growth 
factor-1 receptor (60). PMVs, together with endothelial MVs, 
increase endothelial permeability thereby influencing vascular 
endothelial dysfunction, an early step in the development of 
atherosclerosis (101). The presence of P-selectin expressed by 
PMVs allows them to interact with leukocytes via P-selectin 
GP ligand-1 thereby facilitating leukocyte accumulation at 
the site of endothelial injury and enhancing leukocyte infiltra-
tion from the blood vessel to the intima (82). Further to this, 

PMVs can transfer the pro-atherogenic cytokine RANTES to 
endothelial cells and induce monocytes and endothelial cells 
to release pro-inflammatory cytokines such as IL-8, IL-1β, 
TNF-α, and IL-6, further enhancing leukocyte adhesion and 
infiltration (102–104). PMVs encapsulate active caspase-3 that 
can induce macrophage apoptosis (105). As a consequence 
in atherosclerosis, lipids derived from dead macrophages can 
accumulate and can contribute to the formation of the necrotic 
core. Furthermore, PMVs have been demonstrated to stimulate 
smooth muscle cells, leading to the migration of smooth muscle 
from the media to the intima thereby enhancing lesion pro-
gression (106, 107).

However, the main caveat of these studies is the fact that 
PMVs are only detected in the circulating blood of patients 
with atherosclerosis but are not found in the atherosclerotic 
plaque itself (108). This raises the question as to whether PMVs 
are merely associated with atherogenesis or play an active role 
in disease pathogenesis. The absence of PMVs in the plaque, 
while intriguing because of the evidence of PMVs’ infiltration 
in other inflamed tissues, such as arthritic joints (36), could 
suggest selective removal of PMVs as they engage with other 
cells and exert their effects at the intraluminal area of the ves-
sel in the setting of atherosclerosis. PMVs are highly subjected 
to endocytosis/phagocytosis, due to the high expression of 
adhesion molecules and PS (109). This potentially enhances 
the clearance of PMVs in comparison with other blood stream-
derived MVs, which may possibly be one of the mechanisms 
contributing to the absence of PMVs in the atherosclerotic 
plaque. These are important questions for further studies.

Acute Coronary Syndromes (ACS)
High levels of circulatory PMVs have been observed in patients 
with ACS and are also associated with the degree of elevation 
of cardiac enzymes, IL-6, and CRP levels (29–31). The elevated 
levels of PMVs in the plasma of patients with ACS persisted for 
up to 4 years after MI and is linked with markers of coagulation 
activation and soluble CD40L (110). In accordance with these 
findings, PMVs have been demonstrated to correlate with the size 
of myocardium at risk and microvascular dysfunction after ST 
elevation MI (STEMI) (111, 112). Also, it appears likely that MVs 
play an active role in promoting vascular inflammation and car-
diac damage in patients after an ACS since MVs, including PMVs 
containing pro-inflammatory isoforms of CRP, have been dem-
onstrated to be elevated in these patients (87, 88). Furthermore, 
PMVs independently predict future admission for major bleed-
ing in non-STEMI patients (113). Taken together, these data 
suggest that PMVs detected in patients with ACS may also act 
as reporters of vascular inflammation, microvascular obstruction 
and myocardial damage in cardiovascular diseases (29, 30, 111, 
112). While elevated levels of PMVs are often observed in patients 
with ACS, there are few studies that have reported variances in 
the levels of PMVs and the lack of association of PMVs with the 
severity of coronary artery disease (114, 115). The discordance in 
the levels of PMVs in ACS may be due to the variability of inclu-
sion criteria and medication of the patients enrolled in each study. 
Also, the lack of consensus in the characteristic and definition of 
MVs may account for the variations observed in the literature. 
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TABLe 2 | Advantages and disadvantages of extracellular vesicles (EVs) as 
emerging therapy for cardiovascular diseases.

Advantages Disadvantages

Natural homing ability and specific 
transfer of bioactive molecules 
(152, 153)

Lack of standardization of pre-analytical 
variables (127, 140)

Highly hydrophobic drugs and 
hydrophilic drugs can be packaged 
(152, 154)

No clear nomenclature leading to variable 
qualitative and quantitative analysis (1, 155)

Good delivery vehicle for drugs 
based on the ability to cross blood–
brain barrier (153, 156)

No recommended isolation protocol for 
clinical grade production and quality control 
of EV-based therapeutics (68, 142)

Easy to adapt/optimize content 
and surface receptors for site-
specific delivery (147, 154, 156)

Comprised of heterogeneous components 
depending on the isolation, handling, and 
agonist(s) used (67, 69, 128–130)

More stable upon freezing and 
thawing compared with cells, 
biocompatible, and non-cytotoxic 
(142, 156)

The need to establish techniques and 
methodologies to rigorously quantify and 
characterized the molecular and physical 
aspects of EVs (142)
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Indeed, further studies are required, with establish common 
protocols and clear MVs nomenclature, to fully elucidate the role 
of PMVs in ACS.

Thrombotic Disorders
Thrombotic complications are often observed in patients with 
cardiovascular diseases. Augmented shedding of PMVs is 
deleterious and may contribute to thrombosis. For instance, in 
patients with immune thrombocytopenia, there are high levels 
of PMVs despite low platelet counts, which have been linked to 
a paradoxical increased risk of thrombotic events (116, 117). 
Increased PMVs are also detected in other thrombotic diseases 
such as acute pulmonary embolism and deep vein thrombosis 
(DVT) (118–121). Likewise, PMVs have been detected to be 
elevated in the context of thrombophilic states such antithrom-
bin deficiency, protein C deficiency, and the Factor V Leiden 
mutation—all predispositions to venous thrombosis (122, 123). 
Increased levels of PMVs are observed to be associated with a 
heightened risk of venous thromboembolism, and PMVs have 
been proposed as a biomarker to help diagnose patients with 
DVT (119, 121). Similar to ACS, variation in plasma levels of 
PMVs are observed in thrombotic disorders (122, 124–126). 
Inconsistencies in processing blood samples such as handling, 
storage and methodology used in isolating PMVs may cause 
artifactual generation of PMVs and represent one of the underly-
ing reasons for the discrepancies observed in the level of PMVs. 
Therefore, further studies are needed to fully unravel the role of 
PMVs in thrombotic diseases.

CURReNT CHALLeNGeS iN ev 
ReSeARCH

Despite the remarkable progress in the field of EVs, clinical 
translation of EVs as a diagnostic or prognostic marker of 
pathological states remains a challenge (127). To fully unravel 
the potential of EVs in the diagnosis and therapy of cardiovas-
cular diseases, it is imperative to understand the biological roles 
of PMVs in vivo. One of the drawbacks in the field of EVs is that 
most of the experiments demonstrating the physiological effects 
of EVs on target cells, such as endothelial cells, have been done 
in  vitro in culture. The key weakness of this approach is that 
endothelial cells under in  vivo conditions are under constant 
steady-state exposure to EVs. It is not clear how the response 
of cells in the in vitro, which is typically EV-free, to the sudden 
exposure of EVs is related to the in vivo setting. Furthermore, 
due to the lack of common practice in sample preparation and 
analysis, EV counts and phenotypes may vary dramatically 
between laboratories, making data analyses and clinical transla-
tion difficult. Indeed, several studies have highlighted the effects 
of pre-analytical variables on EV measurements. These include 
the type of anticoagulant used in collecting blood samples, 
centrifugation protocol, the storage of samples and staining pro-
tocols used for surface membrane antigens for determining the 
cellular origin of EVs (128–131). In regard to PMVs, preventing 
platelet activation and ensuring complete removal of platelets 
during processing of samples are crucial as this may result in 

inaccurate findings. It is also essential to be mindful of the stor-
age and thawing conditions of samples as this leads to changes 
in the number of PMVs and Annexin V binding (128–130).  
In addition to this variability, sample handling, isolation proto-
col, different antigens used to determine cellular origin, inclu-
sion criteria for patients, and their clinical characteristics may 
account for the qualitative and quantitative variations observed  
in the literature regarding the characterization of EVs.

The technological advancements have facilitated new meth-
ods to improve the purification and detection of EVs from 
biological fluids (1, 127, 132–135). These include the following: 
sensitive single particle detection devices (tunable resistive pulse 
sensing; nanoparticle tracking analysis; and dynamic light scat-
tering), flow cytometry (conventional; imaging; and impedance 
based), proteomics, and atomic force microscopy (1, 127, 130, 
134, 136–138). However, a combination of multiple methods is 
still necessary to assess both physical and biological properties 
of EVs (1, 135). In light of the current limitation of EV studies, 
the International Society of Extracellular Vesicles endeavors to 
provide guidelines, harmonizing nomenclatures and practices in 
an effort to improve reproducibility of EV experiments and to 
eliminate ambiguity in the field of EVs (139–141). Furthermore, 
this society has already published several position papers in  
the Journal of Extracellular Vesicles (139–142) and provides 
public online databases that catalog EV-associated compo-
nents, thereby assisting researchers to optimize their practices 
(EV-TRACK, ExoCarta, Vesiclepedia, and EVpedia).

THeRAPeUTiC POTeNTiAL OF PMvs

Given the role of PMVs in cardiovascular diseases, this raises 
the question as to whether MVs can be exploited for therapeutic 
benefit. Indeed, pharmacological studies that alter the levels 
of PMVs in the circulation have shown encouraging results 
(143–146). Also, the physical and biochemical properties of 
PMVs are advantages that can be utilized for the purpose of 
developing a therapy for cardiovascular diseases (Table 2). For 
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FiGURe 2 | Platelet-derived microvesicles (PMVs) as regulators of hemostasis and contributors to cardiovascular diseases. The physical characteristics of the cell 
membrane and biological cargo define the biological role of PMVs. PMVs bind natural anticoagulants thereby preventing coagulation. PMVs can also inhibit cytokine 
production leading to a reduction of vascular inflammation. In addition, PMVs can enhance the vasogenerative capacity of cells, thus highlighting their role in wound 
healing. While PMVs play a major role in regulating hemostasis, excessive numbers of PMVs can also contribute to cardiovascular diseases. The presence of 
phosphatidylserine and tissue factor in PMVs can induce procoagulant enzyme–cofactor complexes that favor thrombosis. PMVs can also induce cytokine 
production, bind protein C-reactive protein (pCRP), and convert it to monomer of C-reactive protein (mCRP), thereby promoting inflammatory responses. The 
activation of smooth muscle cells, endothelial cells, and leukocytes by PMVs as well as growth factors encapsulated within PMVs can stimulate angiogenesis. 
Therefore, PMVs may stimulate or dampen coagulation, inflammation, and angiogenesis and may thereby contribute to cardiovascular diseases.
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