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Atherosclerosis (AT) is a progressive chronic disease involving lipid accumulation, 
fibrosis, and inflammation in medium and large-sized arteries, and it is the main cause 
of cardiovascular disease (CVD). AT is caused by dyslipidemia and mediated by both 
innate and adaptive immune responses. Despite lipid-lowering drugs have shown 
to decrease the risk of cardiovascular events (CVEs), there is a significant burden of 
AT-related morbidity and mortality. Identification of subjects at increased risk for CVE 
as well as discovery of novel therapeutic targets for improved treatment strategies 
are still unmet clinical needs in CVD. Microvesicles (MVs), small extracellular plasma 
membrane particles shed by activated and apoptotic cells have been widely linked to 
the development of CVD. MVs from vascular and resident cells by facilitating exchange 
of biological information between neighboring cells serve as cellular effectors in the 
bloodstream and play a key role in all stages of disease progression. This article reviews 
the current knowledge on the role of MVs in AT and CVD. Attention is focused on novel 
aspects of MV-mediated regulatory mechanisms from endothelial dysfunction, vascular 
wall inflammation, oxidative stress, and apoptosis to coagulation and thrombosis in the 
progression and development of atherothrombosis. MV contribution to vascular remod-
eling is also discussed, with a particular emphasis on the effect of MVs on the crosstalk 
between endothelial cells and smooth muscle cells, and their role regulating the active 
process of AT-driven angiogenesis and neovascularization. This review also highlights 
the latest findings and main challenges on the potential prognostic, diagnostic, and 
therapeutic value of cell-derived MVs in CVD. In summary, MVs have emerged as new 
regulators of biological functions in atherothrombosis and might be instrumental in car-
diovascular precision medicine; however, significant efforts are still needed to translate 
into clinics the latest findings on MV regulation and function.

Keywords: angiogenesis, atherosclerosis, cardiovascular diseases, cell-derived microvesicles, endothelial 
dysfunction, inflammation, neovascularization, thrombosis
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FiguRe 1 | Microvesicle (MV) composition. Schematic representation of the molecular repertoire of the cell-derived MVs. MVs are loaded with distinct components 
of genetic material [nucleic acids, mRNAs, microRNAs (miRNAs)], lipids (phospholipids and bioactive mediators), and proteins (cytokines, chemokines, membrane 
receptors, adhesion molecules, enzymes, growth factors, and cytoskeleton-associated and regulatory proteins) to mediate intercellular communication processes.
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iNTRODuCTiON

Despite significant advances in prevention, diagnosis, and 
therapeutic intervention focused on strategies for preventing 
cardiovascular disease (CVD), coronary artery disease (CAD) 
remains the leading cause of mortality and morbidity worldwide. 
Since not every individual has the same risk of developing 
future cardiovascular events (CVEs), an important challenge in 
cardiovascular medicine is to accurately predict who will develop 
atherosclerosis (AT)-related complications, such as acute coro-
nary syndromes (ACS). Current tools to predict atherosclerotic 
vascular complications perform only poor to moderate. This 
emphasizes that there is an unmet need for novel biomarkers to 
stratify the risk of atherosclerotic complications in the intermedi-
ate and high-risk population on top of classical risk factors.

Atherosclerosis, the hallmark sign of CVD, is a silent hyper-
cholesterolemia-triggered chronic systemic inflammatory process  
of the artery wall that is characterized by deposition of lipids 
within the intima of elastic arteries. This leads to structural dam-
age and formation of fatty streaks with subsequent loss of elasticity, 
which can develop to fiber and atheromatous plaques, resulting 
in thrombus formation and narrowing of the luminal. Damage 
to arterial endothelial cells (ECs) is considered the earliest event 
in atherogenesis. Development of atherosclerotic plaques also 
includes the continuous crosstalk between EC, smooth muscle 

cells (SMCs), inflammatory cells, and inflammatory mediators 
(1) acting through mechanisms that have not yet been completely 
revealed.

Microvesicles (MVs), with a diameter ranging from 0.10 to 
1.00  µm, are small plasma membrane vesicle fragments, also 
known as microparticles (MPs), that are released by many cell 
types, such as platelets, leukocytes, ECs, erythrocytes, and SMCs, 
into different bodily fluids, including plasma, urine, saliva, milk, 
sweat, semen, and tears, as well as in conditioned media from 
cell culture experiments (2, 3) (Figure  1). Depending on the 
generation mechanism, there are distinct types of extracellular 
vesicles, including MVs, apoptotic bodies, and exosomes (4), being 
MVs the most heterogeneous and studied population so far. The 
present review particularly focuses on MVs, which are specifically 
formed by budding of the plasma membrane, a releasing process 
that is driven by calcium-dependent signaling, activity of several 
enzymes, cytoskeleton remodeling, and externalization of phos-
phatidylserine (PS). MVs are shed under basal conditions and their 
release increases with various stimuli and pathological settings. In 
contrast to MVs, apoptotic bodies are larger permeable membrane 
vesicles with a diameter >1  μm containing apoptotic nuclear 
material while exosomes constitute the smallest extracellular vesi-
cle type (ranging from 40 to 100 nm in diameter), highly enriched 
in lipids and tetraspanins, and actively shed from intracellular 
multivesicular bodies upon fusion with the cell membrane.
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Microvesicles are specifically composed of lipids, genetic 
material, such as mRNA, non-coding ribonucleic acids (RNAs) 
[microRNA (miRNA)], or even small amounts of DNA, and pro-
teins such as transcription factors, cytokines, and growth factors 
(Figure 1). Interestingly, the packaging of distinct biomolecules 
into MVs seems to occur in a non-randomly fashion. Thus, specific 
miRNAs were seen to be preferentially sorted into MVs. Blood 
cells and cultured monocytic THP1 cells actively and selectively 
secreted MV-loaded miRNAs into the circulation in response to 
various stimuli (5). Nevertheless, further efforts are needed toward 
a complete understanding of this regulated sorting mechanism. 
MVs have been characteristically recognized by the externaliza-
tion of PS on the outer membrane leaflet. However, this property 
has recently been a matter of debate. New evidence suggests that 
some MVs can express cell markers without annexin V binding 
(6, 7). Interestingly, MVs harbor on their surface transmembrane 
and receptor proteins from the parental cells from which they 
derived from. This property, important for specific cell–cell inter-
actions, is also used in MV identification and characterization by 
high-sensitivity flow cytometry. MVs can deliver their cargo to 
cells nearby or in remote locations, perpetuating the intercellular 
communication process. Since their content fluctuates depending 
on the pathological context, MVs have drawn the attention as a 
potential source of biomarkers for disease identification (8).

Flow cytometry has been the gold standard methodological 
choice for MV measurements. Recently, some new methods (9) 
such as atomic force microscopy have been developed. Today 
there is still a general need of establishing preanalytical steps for 
MV isolation and of validating novel techniques. Recent efforts 
(10–12) are addressed to standardize MV analytical procedures 
between instruments and laboratories (13).

Microvesicles promote the development and progression of 
AT, by inducing endothelial dysfunction (ED) and initial lesion 
formation, influencing cell communication, promoting inflam-
matory reactions and participation in lipid deposition, neovas-
cularization, calcification and unstable plaque progression, and 
injured plaque clotting and thrombosis after rupture. Here, we 
review the current and last data on the role of MVs in AT and 
CVD, highlighting their relevance for vascular remodeling and 
neovascularization. In addition, we discuss the emerging interest 
of MVs as prognostic and diagnostic biomarkers of disease and 
their potential use as therapeutic agents.

Mv-MeDiATeD ReguLATORY 
MeCHANiSMS iN THe DeveLOPMeNT 
AND PROgReSSiON OF AT

Several evidences support a direct functional role for circulat-
ing MVs in atherothrombosis. They span from the early stages 
related to the presence of classical cardiovascular risk factors 
(CVRF) (e.g., hyperlipidemia, diabetes, and hypertension) to 
acute cardiovascular and cerebrovascular events as result of 
their effect on intercellular communication processes transfer-
ring proteins, non-coding RNAs, and even mRNAs (14) to 
target cells. Specifically, MVs are able to (1) fuse with plasma 
membrane of target cells and transfer their cargo into the recipi-
ent cells, (2) interact with target cells via a receptor-mediated 

signaling mechanism, and (3) be internalized via endocytosis 
and fused with either endosomes to release their content into 
the cytosol or lysosomes to be degraded (2). To bridge the gap 
between atherosclerotic lesion initiation, plaque rupture, and 
CVEs, multifaceted MV-driven molecular mechanisms of AT 
progression linked to endothelial homeostasis, inflammation, 
and thrombosis will be discussed.

endothelial Dysfunction
Endothelial cells exert natural barrier functions in the vessel wall 
to prevent pathogen invasion and to maintain vascular integrity, 
through the balanced release of cell and molecular components 
acting at paracrine and autocrine level. Vascular ECs change 
their phenotype and function in response to mechanical injury 
and systemic factors, such as dyslipidemia, smoking, and other 
stimuli and/or risk factors.

Recent studies support a direct relationship between the 
levels of circulating endothelial-derived MVs (eMVs) and 
the degree of ED in patients with end-stage renal failure (15), 
congenital heart disease (16), CAD (17, 18), type 2 diabetes 
(T2D) (19), and obesity and hypertension (20). Indeed, MVs 
are able to interact with the vascular endothelium and promote 
cellular dysfunction (Figure 2). Thus, MVs from T2D patients 
have shown to attenuate eNOS expression in cultured EC (21). 
Furthermore, MVs of endothelial origin have shown to decrease 
nitric oxide (NO) production in vitro (22, 23) and under high 
glucose conditions through changes in oxidative stress (24) 
or inducing a temporal cross talk between mitochondria and 
endoplasmic reticulum (25). These effects have been obtained in  
ex vivo studies (23, 26) and with patient-derived MVs in patholo-
gies such as myocardial infarction (MI) (27), end-stage renal 
failure (15), metabolic syndrome (28), valvular heart disease 
and cardiac injury (29), and undergoing percutaneous coronary 
intervention (30). As a result, vascular tone and endothelial 
repair capacity are altered. Studies in vitro using rat aortic rings 
provided evidence that eMVs lead to impaired acetylcholine-
mediated vasorelaxation (22), and studies ex vivo with eMVs 
from ACS patients induced premature ED, senescence, and 
thrombogenicity through an angiotensin II-dependent redox 
activation of phosphoinositide 3-kinase/Akt and mitogen-
activated protein kinases pathways (31). In addition, when MVs 
obtained from plasma of subjects with metabolic syndrome, 
were injected intravenously in mice, a severe impairment of 
endothelium-triggered vasorelaxation with decreased NO- 
synthase expression was detected (28). Horn et  al. reported 
that MVs carry functionally active NO synthase that induce  
NO production within the MVs, a function downregulated in 
MVs from patients with ED (32). These results indicate that eMVs 
have a functional role in the control of vascular homeostasis.

The physiopathological conditions stimulating MVs forma-
tion have an impact on MV phenotype and functional activity. 
Interestingly, Mahmoud and colleagues reported that MVs from 
healthy individuals or shed under basal conditions had no effects 
on endothelial function, while in  vitro generated eMVs exert 
a protective role on endothelial function in a free-fatty acid-
induced model, via eNOS/Akt signaling and reduced oxidative 
stress (33). This recent study reflects on how MVs may behave  
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FiguRe 2 | Effects of microvesicles (MVs) on the early stages of atherosclerosis development. Cell-derived MVs are able to interact with the subendothelial matrix, 
induce endothelial dysfunction, stimulate proinflammatory response, enhance the adhesion and infiltration of leukocytes, as well as oxidative stress, apoptosis, and 
vascular remodeling, promoting the inflammation and injury of the vessel wall and the progression of atherosclerotic lesions. CXCL-2, C–X–C motif chemokine ligand 
2; eMV, endothelial cell-derived microvesicle; FVIIa, coagulation factor VIIa; ICAM, intercellular cell adhesion molecule; LMV, leukocyte-derived microvesicle; mMV, 
monocyte-derived microvesicle; MCP-1, monocyte chemotactic protein 1; NO, nitric oxide; PGI, prostacyclin; pMV, platelet-derived microvesicle; P-Sel, P-selectin; 
ROS, reactive oxygen species; SMC-MV, smooth muscle cell-derived microvesicle; VCAM, vascular cell adhesion molecule; TF, tissue factor; TFPI, tissue factor 
pathway inhibitor; TPA, tissue plasminogen activator; TNF, tumor necrosis factor.
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as different biological effectors in health and disease, highlight-
ing the relevance of the environment and pathological stimuli 
triggering MV release on their phenotype and biological activity.

Injured endothelium beyond promoting the recruitment 
of activated platelets to repair damaged ECs, also facilitates 
adherence of platelet-derived MVs (pMVs) to the vascular wall 
(Figure  2), inducing in turn the permeability and apoptosis 
of ECs, the latter by MV transfer of caspase-3 and Rho-kinase 
enzymes according to the in  vitro findings reported by Edrissi 
et  al. (34). More specifically, these authors have proved that 
plasma-derived MVs from rats submitted to chronic cerebral 
ischemia contain factors involved in the activation of the tumor 
necrosis factor (TNF)-α pathway that delivered to ECs regulate 
endothelial permeability in vitro.

vascular wall Atheroinflammation
The role of MVs on the propagation of endothelial proinflam-
matory response was initially reported in in vitro studies show-
ing that blood-derived MVs (obtained from either plasma and/
or cell cultures, and also induced by high-shear stress) raise the 
release of cytokines and cell adhesion molecules in ECs (35, 36) 
and in leukocytes (37). In addition, circulating MVs obtained 

from healthy volunteers after infusion of a chemotactic peptide 
induced cytokine and chemokine release in in vitro EC cultures 
(38). Similar findings have been reported using MVs from both 
animal models and patients (39, 40). Thus, MVs obtained from 
a high-fat diet-fed obese murine model of insulin resistance 
and T2D induced the expression of vascular cell adhesion 
molecule-1 and reactive oxygen species (ROS) production in 
rat cardiac ECs (41). Furthermore, MVs have also shown to 
increase the monocyte expression of cell surface antigens such as 
CD11a/CD18 and CD11b/CD18 αM/β2 (37) and the endothelial 
expression of intercellular cell adhesion molecule-1 (ICAM-1) 
(42, 43). Increasing evidences suggest that regulation of protein 
expression by MVs is dependent on their miRNA-cargo. Thus, 
MV-mediated regulation of ICAM-1 expression in ECs is 
dependent on their content in miRNA-222 and its transfer to 
the target cells (44). MV-associated inflammatory cascade pro-
motes the binding of monocytes to the endothelium and their 
infiltration into the atherosclerotic plaque (Figure 2) (24, 37, 
45–47). Indeed, in  vitro studies demonstrated that monocyte 
and leukocyte activation and adhesion is regulated by eMVs 
transferring miRNA-10 to the monocyte and thereby targeting 
nuclear factor-κB inflammatory pathway (48) and by MVs that 

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


FiguRe 3 | Key prothrombotic mechanisms exerted by microvesicles (MVs) at sites of vascular injury. MVs’ adhesion to the endothelial layer enhances platelet 
adhesion and thrombus formation and contributes to TF release at the injured atherosclerotic plaque. IL-33, interleukin-33; LMV, leukocyte-derived microvesicle; 
mMV, monocyte-derived microvesicle; pMV, platelet-derived microvesicle; PSGL-1, P-selectin glycoprotein ligand-1; SMC-MV, smooth muscle cell-derived 
microvesicle; TF, tissue factor; vWF, von Willebrand factor.
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carry arachidonic acid as well as oxidize phospholipids (45). 
Another smart study showed that pMVs transfer proathero-
genic C–C motif chemokine 5 [regulated on activation, normal 
T  cell expressed and secreted (RANTES)] to either activated 
ECs or murine atherosclerotic carotid arteries enabling mono-
cyte adherence (46). Thus, MVs might contribute to the early 
atherosclerotic lesions development by promoting leukocyte 
adhesion to the endothelium.

Oxidative Stress, Apoptosis, and vascular 
Remodeling
The seminal study of Forlow et al. showed that pMVs expressing 
P-selectin (P-Sel) promoted monocyte infiltration by facilitating 
leukocyte–leukocyte interactions under detrimental flow condi-
tions (Figure 2) (49). Besides, lipid-containing MVs derived from 
various cell types promote foam cell formation and programmed 
cell death by inducing lipid and cholesterol accumulation in 
macrophages through a toll-like receptor induced mechanism 

in vitro and in a human skin model (50). TNF-α-induced eMVs 
contributed to apoptosis and inflammation of ECs in vitro (51). 
Delivery of the proapoptotic enzymes caspase-1 and caspase-3 to 
target cells by eMVs, pMVs, monocyte-derived MVs (mMVs), 
T-lymphocyte-derived MVs (ℓMVs), and erythrocyte-derived 
MVs trigger macrophage cell apoptosis in vitro (52–56), which 
in turn causes more MV release, amplifying the process and 
facilitating progression of the atherosclerotic lesion. Thus, human 
atherosclerotic lesions contain MVs (57, 58) being those of 
monocyte and macrophage origin the most abundant. Apoptosis 
cell-derived MVs amplify the initiation and maintenance of 
inflammation in human monocytes together with interferon γ 
(59) in contrast to a recent study pointing out that MVs released 
from apoptotic cells provoke less inflammatory response than 
MVs from viable cells in monocytes, relating this effect with the 
specific miRNAs pattern found in these MVs (60). Furthermore, 
atherogenic low-density lipoprotein (LDL) modified by aggrega-
tion induce the release MVs enriched in tissue factor (TF) from 
SMCs (61) (Figures 2 and 3). pMVs increased SMC proliferation 
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(62) by a mechanism independent of platelet-derived growth 
factor (PDGF) (63) whereas mMVs induced SMC death by 
caspase-1 (56).

High-risk plaques have a large lipid content covered by a thin 
fibrous cap penetrated by proinflammatory cells and a diffuse 
pattern of calcification (64, 65). The level of calcification has 
associated either with plaque burden (66) and lesion destabili-
zation (67) or with less prone to rupture plaques (68). It seems 
plausible that the effect of calcification on atherosclerotic lesions 
evolves from a destabilizing effect in early lesions to a potential 
stabilizing effect of larger calcium burden in more advanced 
plaques (69). MVs from ECs, VSMCs, and macrophages seem 
to be recruited at the site of atherosclerotic plaque calcification 
and have been associated with the calcification process (70–73). 
Regarding MV-associated modulation of fibrous cap weakening, 
several cell-derived MVs can influence the progressive deple-
tion of VSMCs and extracellular matrix degradation through 
metalloprotease interaction. Specifically, the involved molecular 
effectors are matrix metalloproteinase 9 (MMP-9), a disintegrin 
and metalloprotease-10 (ADAM-10) and -17 (ADAM-17) in 
neutrophil-derived MVs [(74, 75), respectively], MMP-9, matrix 
metalloproteinase-2 (MMP-2), and MMP-10 in eMVs [(76–78), 
respectively], and the metalloprotease TNF-α converting enzyme 
(TACE/ADAM-17) of human atherosclerotic plaques-derived 
MVs (79). A relevant finding is that the shedding of matrix MVs 
from arterial intimal SMCs was found higher in athero-prone 
areas of the human aorta than in athero-resistant areas at the 
preatherosclerotic disease stage with quantitative electron micro-
scopic analyses (80). Shear stress-induced eMVs-containing 
miRNA-143 and miRNA-145 prevented VSMC dedifferentiation 
(81). Likewise, circulating MVs bearing miRNA-223 could 
penetrate the vascular wall and inhibit VSMC proliferation and 
migration, resulting in a decreased plaque size (82).

Coagulation and Thrombosis
The potential role of MVs in atherothrombosis is supported by 
a large number of studies. Procoagulant MVs are located within 
human advance vulnerable plaques (83). Upon atherosclerotic 
plaque erosion or rupture, the high-risk vulnerable plaque 
exposes their vascular contents to the blood flow, the coagula-
tion cascade is activated and, concomitantly, there is recruitment 
and activation of circulating platelets that may lead to thrombus 
formation. Thrombosis may compromise arterial blood flow 
supply leading to the presentation of oxygen deficiency and the 
presence of MI.

First described as platelet dust (84), MVs are procoagulant 
biological effectors due to the surface content of negatively 
charged PS, which confers them high binding capacity for 
coagulating factors, being prominently higher in MVs than cell 
surface membrane in the case of platelets (85). The presence of 
other molecules and receptors including TF (83), factor VIII 
and Va (86), P-selectin glycoprotein ligand-1 (PSGL-1) (87), 
glycoprotein IIb/IIIa (88), and protein disulfide isomerase 
(PDI) (89) on MV surface might further enhance clot formation 
and thrombosis. TF can be functionally transferred via MVs to 
monocytes and other cells (90, 91). Protease-activated recep-
tor 2 activation favors the shedding of TF-rich MVs through a  

process involving filamin A. Specifically, the interaction of TF 
with filamin A translocate cell surface TF to cholesterol-rich lipid 
rafts, promoting its activity and release into MVs (92). Indeed, 
procoagulant TF-rich MVs are increased by hyperinsulinemia 
(93) and found increased in patients with T2D (94). Recently, it 
has been shown that proinflammatory cytokine IL-33 induces 
differential TF expression and activity in intermediate mono-
cyte subset as well as the release of procoagulant MVs rich in 
TF (95), emphasizing the interplay between inflammation and 
thrombosis (Figure 3).

Several key studies have addressed how MVs affect the clot-
ting process (Figure  3). Upon endothelial injury, pMVs can 
bind to subcellular matrix to enhance clotting (96). Noteworthy, 
we reported that circulating and platelet-derived MVs exert 
direct effects on atherothrombosis by promoting platelet and 
fibrin deposition on atherosclerotic arterial wall (97). We per-
formed a proof-of-concept study by perfusing blood with and 
without exogenously added pMVs to injured atherosclerotic 
vessel wall and demonstrated that elevated levels of pMVs 
were able to enhance platelet and fibrin adhesion under condi-
tions of high-shear stress (97, 98). Indeed, a decreased level of 
pMVs bearing surface epitopes of adhesion and activation was 
found in blood perfusing prothrombotic surfaces, and also in 
ST-segment elevation myocardial infarction (STEMI) patients 
(99), supporting the high tendency to adhere of pMVs (49). 
High-shear stress-induced pMVs induce enhanced expression 
of cell adhesion molecules in ECs and monocytes (36) and 
regulate monocytes involvement in AT and inflammation (37). 
Interestingly, MVs from healthy subjects support low-grade 
thrombin generation (100) and are able to activate a stress 
signaling pathway in ECs leading to increased procoagulant 
activity (35); and PDI-bearing pMVs promote platelet hyper-
aggregability and insulin degradation in patients with T2D 
(89). Furthermore, interactions between platelet P-selection 
with PSGL-1 of leukocyte-derived MVs (LMVs) are required 
to concentrate TF activity at the thrombus edge to promote 
thrombus formation (87). MVs carrying functional TF might 
enable the growth of unregulated thrombus generation and 
fibrin formation and thrombus propagation ultimately leading 
to thrombotic complications (101).

POTeNTiAL PROgNOSTiC, DiAgNOSTiC, 
AND THeRAPeuTiC vALue OF CeLL-
DeRiveD Mvs iN AT

CV diseases reflect a continuum of mechanisms underlying the 
gradually progressing AT. In addition to the pathogenic effects 
of MVs in AT and thrombosis, circulating levels of MVs (cMVs) 
of different cellular origin are increased in CVDs and reflect 
the severity of the different stages of the pathophysiology (102), 
thus cMVs might serve as potential diagnosis and prognosis 
biomarkers, which would be valuable tools for cardiovascular risk 
prediction as well as for evaluating the pharmacological response 
to therapeutic interventions.

Circulating microvesicles exist in the blood of normal healthy 
individuals released upon activation and in some cases apoptosis 
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TABLe 1 | Microvesicle-associated prognostic and diagnostic value in 
cardiovascular risk stratification and CVDs.

CvRF and atherothrombotic 
diseases

Reference

CVRF Smoking (114–116, 117)

DM Insulin resistance (118)
DM (119–123)
Type 2 DM (124–127)
DM with microvascular complications 
(128)

Obesity In children (129)
In adults (114, 130, 131)
Caloric restriction/bariatric  
surgery (132)

Hypertension (18, 133–135)

Dyslipidemia Dyslipidemia (112, 113, 126, 136)

Metabolic syndrome Clustering of CVRF (28, 137–139)
Cardiometabolic risk (140)

Uremia (141)

Atherosclerosis 
(AT)

FRS (140, 142)

ED (15, 115)

Calcification (143)

PAD (105, 144)

Subclinical AT (19, 112, 113, 145)

Stable CAD (17, 146–148)

CVD ACS (142, 146, 149–154)
STEMI (155, 156)

Cerebrovascular 
disease

Ischemic stroke (157–162)
Cerebral vasospasm (163)
Lacunar infarcts (157)
Carotid AT (164)

ACS, acute coronary syndromes; CAD, coronary artery disease; CVD, cardiovascular 
disease; CVRF, cardiovascular risk factors; DM, diabetes mellitus; ED, endothelial 
dysfunction; FRS, Framingham Risk Score; PAD, peripheral artery disease; STEMI,  
ST-segment elevation myocardial infarction.
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of vascular cells. Indeed, MV levels show gender-specific differ-
ences (103, 104) and changes are observed with age (105), during 
pregnancy (106), after exercise (107–109) and after a high-fat 
meal (110). It is important to recognize that differences may arise 
depending on age, gender, body mass index, lipid, hormone lev-
els, smoking status and other confounding variables in apparently 
healthy subjects when evaluating cMVs for pathogenic potential 
(111). Another relevant issue to bear in mind when studying 
cMVs is their clearance mechanism, which might influence the 
levels of cMVs and could also be impaired by CVRF.

Cardiovascular Risk Factors
The number and phenotype of cMVs has been associated to major 
CVRF, such as smoking, diabetes mellitus, obesity, hypertension, 
dyslipidemia, and metabolic syndrome (Table 1). Within hyper-
lipidemia, it has been shown that in patients with heterozygous 
familial hypercholesterolemia (FH), pMVs carrying TF identify 
subclinical atherosclerotic plaque burden (112), and ℓMPs are 
able to discriminate between lipid-rich and fibrous atherosclerotic 

plaques in the same patients (113), thus reflecting that chronic 
exposure to high levels of LDL activates the vascular compart-
ment by distinct mechanisms. Therefore, CVRF correlate with 
increased numbers of MVs indicating that MVs might be active 
in triggering thrombosis and further contributing to an increased 
risk of CVEs.

Atherosclerosis
Several studies have shown an association between cMVs and 
the Framingham Risk Score (used to predict CVD risk), ED, 
coronary calcification, peripheral artery disease, and subclinical 
AT (Table 1). Our group has recently reported that subjects at 
high cardiovascular risk who were about to develop a major CVE 
have increased levels of blood CD3+/CD45+ cMV (165). This is 
in agreement with our previous findings demonstrating that FH 
patients with subclinical lipid-rich atherosclerotic plaques have 
significantly higher levels blood-derived circulating ℓMVs than 
those with fibrous plaques (113). Besides, levels of circulating 
MVs have been found increased in patients with stable CAD, 
being MVs of endothelial origin (CD144+, CD31+/Annexin V+) 
and bearing miRNA-199a and miRNA-126 the most associated  
to major adverse CVEs (17, 146–148).

Acute Coronary Syndromes
Cell-derived cMV levels are profoundly increased in patients 
with ACS (Table  1). In a study in patients with STEMI, our 
group has demonstrated increased levels of pan-LMPs (CD45+), 
including lymphocytes (CD3+) and monocytes (CD14+) within 
the first hours of the ACS onset, with partial reductions after 
72 h, likely because the inflammatory burst occurred at STEMI 
onset (155). These data are strongly supported by the fact that 
platelet- and monocyte-derived cMVs also associate with AMI 
severity (156) and CVD mortality (166), reflecting the sustained 
underlying endothelial injury and leukocyte and platelet activa-
tion in CVD progression after a CVE.

Cerebrovascular Disease
Circulating microvesicles have been associated with ischemic 
stroke, cerebral vasospasm, lacunar infarcts and multi-infarct 
dementia, and carotid AT (Table  1). Besides, a recent case-
control pilot study suggests that circulating MVs derived from 
monocytes of M2 phenotype, but not those of M1-phenotype are 
significantly increased in patients with intracerebral hemorrhage 
within 12 h of symptom onset (167).

AT-DRiveN ANgiOgeNeSiS AND 
NeOvASCuLARiZATiON: Mvs AS 
THeRAPeuTiC veCTORS

Angiogenesis is an active fine-tuning process of vessel sprout-
ing and growth that depends on a precise interplay between 
stimulatory and inhibitory signals of ECs, SMCs, and pericytes 
(168). Notably, recent evidence outlines the importance of  
EC metabolism for angiogenesis in the context of atherogenesis 
and AT progression (169). Thus, angiogenic processes have severe 
consequences on vascular remodeling and plaque stability within 
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TABLe 2 | Proangiogenic potential of distinct cell-derived MVs.

Type of Mvs Source Function Mechanism Reference

Platelet-derived 
MVs

Patients with atherosclerosis ↑ Neovascularization of CAC Mediated by RANTES (178)

Healthy donors ↑ Angiogenesis in vitro and in vivo Dependent on VEGF (172)

Healthy donors ↑ Proliferation, angiogenesis and neurogenesis Differentiation and proliferation of stem cells 
mediated by MV growth factors (FGF2, VEGF, 
and PDGF)

(179)

Healthy rats Protective effect against cerebral ischemic–
reperfusion injury

Mediating remote ischemic preconditioning (180)

Healthy donors ↑ Tube formation Via the pertussis toxin-sensitive G protein and 
the PI3K pathway

(181)

Healthy donors ↑ Capillary tube formation and reendothelialization By sensitization of CXCR4 and growth factors (182)

Endothelial cell 
(EC)-derived MVs

Mice ischemic hindlimb muscle ↑ Postischemic neovascularization – (183)

Human umbilical vein ECs ↑ Angiogenesis (with low levels of eMVs) Through β1-integrin and MMP-2 and -9 (76)

Human ECs ↑ Formation of capillary-like structures By MV-harboring Sonic Hedgehog (174)

Human coronary artery ECs ↑ Vascular endothelial repair Induced by miR-126-containing MVs (24)

Human microvascular EC ↑ In vitro tube formation MV-induced plasmin generation (184)

Human umbilical vein ECs ↑ Angiogenesis By upregulating MMP expression (185)

Carotid plaque-
derived MVs

Endarterectomy specimens ↑ In vivo the tube formation In a CD40 ligand-dependent manner (186)

T-lymphocyte-
derived MVs

Human lymphoid cells ↑ Neoangiogenesis By NO synthesis pathway (175)

Myofibroblasts-
derived MVs

Skin wound myofibroblasts ↑ Capillary formation – (187)

EPC-derived MVs EPCs from healthy donors ↑ Angiogenesis in vitro and in vivo Through eNOS and PI3K/Akt pathway (188)

MSC-derived MVs MSC from bone marrow Promote angiogenesis – (189)

MSC from bone marrow ↑ Postischemic angioneurogenesis – (190)

MSC from umbilical cord ↑ Angiogenesis in vitro and in vivo – (191)

MSC from umbilical cord ↑ Angiogenesis in vitro and in vivo By ↑ VEGF in a HIF-1α independent manner (192)

CAC, circulating angiogenic cells; CXCR4, C–X–C chemokine receptor type 4; EPC, endothelial progenitor cell; eNOS, endothelial NO synthase; FGF, fibroblast growth factor; 
HIF, hypoxia-inducible factor; MSC, mesenchymal stem cell; MMP, matrix metalloproteinase; MV, microvesicle; NO, nitric oxide; PDGF, platelet-derived growth factor; PI3K, 
phosphatidylinositol-3-kinase; RANTES, regulated on activation, normal T cell expressed and secreted; VEGF, vascular endothelial growth factor; MV, microvesicle; MMP-2, matrix 
metalloproteinase-2.
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vulnerable atherosclerotic plaques (plaque rupture and intra-
plaque hemorrhage). The generation of new delicate and frail 
vessels within the growing atherosclerotic lesion contributes to 
increase the vulnerability of the plaque to rupture. Intriguingly, it 
is not fully understood whether an atherosclerotic plaque in the 
arterial tree will rupture and trigger thrombotic cascade or will 
stabilize. The highest accumulation of neovessels was found in 
ACS-related human coronary plaques (170). Paracrine intercel-
lular communication exerted by MVs might play a role in the 
adaptive response of ischemic tissue to hypoxic stress caused 
by CVD (171). Interestingly, MVs have been postulated as both 
pro- and antiangiogenic factors (172–177) (Table 2). Indeed, low 
levels of eMVs-containing β1-integrin and the enzymatically 
active MMP-2 and MMP-9 showed to promote angiogenesis 
whereas high levels abolished the angiogenic effects (76). The 
effect of MVs on angiogenesis is also highly dependent on the 
quantity, the parental cell type and cell surface content.

Microvesicles from apoptotic ECs (24, 188), endothelial 
progenitor cells (EPCs) (188), platelets (172, 181, 182, 193, 
194), skin wound myofibroblasts (187), and ischemic muscle 
(183) stimulate endothelial proliferation, survival, migration, 
repair, and tube formation in vitro by activating pro-angiogenic 

signaling cascades, such as ERK and PI3K/Akt pathways, or 
through upregulation of MMP-2 and MMP-9 expression in ECs 
(185) (Table 2). Leroyer et al. (186) elegantly demonstrated that 
carotid plaque MVs stimulate both endothelial proliferation and 
in vivo angiogenesis in a CD40 ligand-dependent manner, which 
could be modulated by the fibrinolytic activity of eMVs and 
LMVs (184). Indeed, eMVs play an important role in plasmin 
formation, which can influence in  vitro the tube formation of 
EPCs in a dose-dependent manner (184).

Other cell-specific MVs have also shown proangiogenic 
potential (Table 2). pMVs from atherosclerotic patients increased 
the neovascularization capacity of circulating angiogenic cells 
through a RANTES-mediated mechanism (178). pMVs not 
only were shown to stimulate vascular endothelial growth fac-
tor (VEGF)-dependent revascularization after chronic cardiac 
ischemia (172) but also stem cell repair mechanisms after brain 
ischemia in rats by increasing angiogenesis and neurogenesis 
at the infarct zone (179). In addition, the remote conditioning 
protective effect of pMVs was further proved against cerebral 
ischemic reperfusion injury (180). Increased levels of MVs 
from ischemic muscle showed to promote postischemic neo-
vascularization in mouse after hindlimb ischemia (HLI) (183). 
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T-lymphocyte-derived ℓMVs enriched with the morphogen sonic 
hedgehog increased neoangiogenesis and restored endothelial 
function after injection in mice by stimulating the NO synthesis 
pathway (175, 195). Endothelial colony-forming cell-derived 
MVs were demonstrated to be pro-angiogenic both in  vitro 
and in  vivo through eNOS and the PI3K/AKT pathway (188). 
Moreover, MVs from bone marrow-derived mesenchymal stem 
cells (MSCs) showed proangiogenic activities in a rat MI model 
contributing to cardiac repair (189) and improved postischemic 
neuroangiogenesis in a stroke model (190) while MSC–derived 
MVs from umbilical cord enhanced tube-like structure devel-
opment and further rescued blood flow in a rat model of HLI 
(191). Indeed, umbilical cord MSC-derived MVs were shown to 
enhance angiogenesis in a rat model of kidney ischemia (192), 
suggesting that MSC-derived MVs might exert cardioprotective 
effects.

In contrast to the findings reported above, placental MVs 
have been implicated in antiangiogenic processes contributing 
to impaired perfusion of placenta in patients with preeclampsia 
(196). In line with these studies, high levels of eMVs inhibited 
angiogenesis in the cultured segments of hearts by hampering 
endothelial nitric oxide synthase (eNOS) regulation (176). 
Oxidative stress is also involved in the antiangiogenic effect 
of MVs. Lymphocyte-MVs inhibited angiogenesis regulating 
negatively VEGF pathway (197) whereas eMVs inhibited in vitro 
angiogenesis by impairing acetylcholine-induced endothelial 
vasorelaxation and NO production in rat aortic rings (22, 173). 
Recently, eMVs were reported to inhibit capillary-like branch 
structure formation by microvascular ECs (mECs) in vitro and 
in vivo triggered by ROS via the expression of CD36 on the target 
EC (198).

Interestingly, the stimulating environment influencing the 
generation of MVs is able to switch their angiogenic phenotype. 
Treatment of MSCs with PDGF generated proangiogenic MVs 
(199), showing that the cargoes of MVs greatly impact on their 
effects. In agreement, cavin-2 that is released in eMVs and 
required for eMV biogenesis acts as a regulator of angiogenesis 
by producing NO and controlling the stability and activity of 
eNOS (200). Moreover, we found that C-reactive protein (CRP) 
is pro-angiogenic (201) and interestingly CRP is carried by circu-
lating MVs in ischemic patients (202). eMVs from patients with 
chronic thromboembolic pulmonary hypertension increased EC 
endoglin concentration and stimulated endothelial angiogenesis 
showing a protective mechanism for ED and vascular occlusion 
(203). Of note, exercise intensity increases the levels of circulat-
ing pMVs with proangiogenic potential, which stimulate EC 
proliferation, migration, and tubule formation (204). Besides, 
antihypertensive drugs have shown to regulate both eMV genera-
tion and angiogenesis (205). Therefore, MVs might be considered 
as dual-purpose mediators of cell–cell communication in health 
and disease, greatly depending on the surrounding environment 
in which they are formed, their content and the pathophysiologi-
cal context where they exert their functions.

Similarly, MVs from preconditioned adipose-derived stem 
cells (ASC) showed proangiogenic potential through the release 
of miR-31 targeting factor-inhibiting HIF-1 and enhancing 
ASC therapeutic efficacy (206). Indeed, miRNA delivery is a key 

mechanism involved in the effects of MV-driven angiogenesis 
such as EPC-MVs promoting neovascularization and impair-
ing muscle damage after HLI (207) or inducing the survival of 
human islet transplants (208). Thus, eMVs released upon inter-
leukin-3 activation transferred miRNA-126-3p and pSTAT5 
into ECs thereby promoting angiogenesis (209). In this regard, 
MVs containing miRNA-126 stimulate reendothelialization 
after vascular injury (24) and administration of vesicles con-
taining miR-126 decreased atherosclerotic plaque formation 
and favored plaque stability in mice (210). Besides, transfer of 
miRNA-150 to ECs by mMVs also promoted angiogenesis both 
in vitro and in vivo (117).

Tissue factor, the primary cellular initiator of blood coagu-
lation, is also involved in angiogenic processes (211–213). 
Pro angiogenic signaling through TF-dependent MV-mediated 
activation of PAR-2 has been reported in hypoxic ECs (214). 
Besides, TF+-MVs were shown to bind to β1-integrin in the 
surface of ECs to induce proliferation through ERK1/2 (215). 
In the same line, we have demonstrated that TF-containing 
eMVs from microvascular ECs (meMVs) interacted via paracrine 
signaling with other mECs and triggered angiogenesis ex vivo 
and postischemic collateral vessel growth in  vivo (216). The 
meMVs proangiogenic potential was shown to be regulated by 
β1-integrin–EC interactions inducing Rac1–ERK1/2–ETS sign-
aling and CCL2 production (Figure 4). Taken together, MVs can 
overwhelm the effects of arterial occlusion and tissue ischemia by 
stimulating postischemic neovascularization together with tissue 
reperfusion. Beyond being a promising therapeutic strategy for 
treating ischemic diseases (217), angiogenesis has also a role in 
the context of tumor progression and cancer, in which distinct 
types of MVs by means of cell-cell communication have also a 
regulatory function (14, 218–228). It is important to join efforts 
toward the ultimate goal of reaching therapeutical applications of 
MVs into the clinical arena.

PHARMACOLOgiCAL AND NON-
PHARMACOLOgiCAL iNTeRveNTiON

A deep understanding of the role of MVs in AT might be funda-
mental for both CVD risk factor control and therapeutic treatment 
(130). Non-pharmacological interventions lie in overcoming 
CVRF by lifestyle modifications, such as exercise and diet. In 
primary prevention, a recent clinical trial showed the benefit of 
the adherence to the Mediterranean diet in patients at high car-
diovascular risk in relation to the incidence of severe CVEs (229). 
Within the same population, our group has recently demonstrated 
that decreased levels of cMVs derived from ECs, leukocytes 
and activated platelets could signal for a reduced rate of major 
CVEs in high-risk patients under state-of-the-art treatment and 
receiving a controlled MedDiet supplemented with nuts (230). 
Dietary modulation of MV release is a relatively new field of study 
based mainly on short-term studies; further large-scale studies 
will help to better understand the complex relationship between  
diet and CVD.

Several drugs have shown to influence cMVs levels (231, 232), 
their cargoes (233) and even their function (Table 3). For instance, 
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FiguRe 4 | Microvesicle (MV)-mediated neovascularization. TF-positive microvascular endothelial-derived MVs (TF+-meMVs) were shown to interact with endothelial 
cell surface β1-integrin to induce a Rac1–ERK1/2–ETS signaling cascade that leads to CCL2 production and angiogenesis (216). Representative 
immunofluorescence images demonstrate that TF+-meMVs enhance collateral capillary formation and angiogenesis in vivo after ischemic hindlimbs femoral 
arteriectomy with antibody against α-actin (green) and nuclear staining (blue). HLI, hindlimb ischemia; meMV, microvascular endothelial-derived microvesicle; TF, 
tissue factor.
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berberine improved endothelial function by reducing CD31+/
CD42− eMVs and thereby levels of oxidative stress in humans 
(234, 235) and the adhesion of monocytes to ECs was partially 
prevented by eMVs after lipid-lowering and antihypertensive 
treatments (236). Since MV biogenesis and release is not fully 
understood, distinct therapeutic options are under investigation. 
Reduced levels of pMVs are associated with the use of distinct 
anti-platelet drugs such as GPIIb/IIIa inhibitors (237, 238), 
clopidogrel (239, 240), ticlopidine (121, 122), and acetylsalicylic 
acid (ASA) (241). In patients under antithrombotic therapy, P-Sel 
and TF-containing pMVs remain high 6 months after treatment 
initiation (242), likely due to the fact that low doses of ASA might 
not be potent enough to prevent the release of pMVs into the 
microcirculation (243). Our group has reported that ASA intake 
in patients with diabetes in primary prevention has no effect on 
pMVs (244). Similarly, antihypertensive drugs like angiotensin II 
receptor antagonists (245) and calcium channel blockers (246), 
antioxidants (247), peroxisome proliferator-activator receptor 
activators (248, 249), hydroxyurea in sickle cell disease (250), 
and eculizumab in paroxysmal nocturnal hemoglobinuria (251) 
have also shown influence on MV shedding. Up to now the effect 
of statins, the cornerstone drugs for lipid-lowering treatment 
(LLT) in CVD prevention, has been highly debated. While some 
authors demonstrated that statins may enhance the shedding of 
MVs (252, 253) many studies have found that statin treatment 
promote MV inhibition (88, 135, 254–256). Thus, pravastatin and 
simvastatin decreased pMVs in hypertensive (257) and type-2 
diabetic (88, 120) patients. Similarly, atorvastatin diminished 
the formation of thrombin and the expression of P-Sel, TF, and 
GPIIIa on pMVs in patients with peripheral artery disease (233) 
and with dyslipidemia and type-1 diabetes (258). Indeed, in a 
study focused on the effects of LLT on levels of cMV in athero-

sclerotic patients in primary prevention, we have reported that the  
plasma of LLT-treated patients presented lower quantity of MVs 
and lower content of cell surface activation markers than the plasma 
from untreated patients with the same blood cholesterol levels 
(255), indicating a direct benefit of LLT with statins in reducing 
cell membrane shedding, which may have effects in the beneficial 
protection against AT characteristic of statins by inhibiting MV 
generation and the triggering of MV-dependent mechanisms. 
These data are in agreement to results pointing out the broader use 
of statins decreasing inflammation and suppressing MV release, 
an effect that is not shown neither with ezetimibe alone (259) nor 
with ezetimibe combined with statins (260). Furthermore, several 
inhibitors of MV shedding such as ROCK inhibitors or calpain, 
among others, are currently under study. Nevertheless, whether 
the clinical benefit of these pharmacological strategies is directly 
related to MV decrease deserves further research.

Therapeutic Potential
In addition to pharmacological modulation, the advantageous 
characteristics of cell-derived MVs, which are a naturally produced 
therapeutic agents with potential to be used as delivery drugs 
to specific cell types (261), open up their potential therapeutic 
application, especially in cardiac cell therapy. Preclinical studies 
demonstrated that treatment with the vesicular fraction of the 
conditioned media of hypoxic MSCs decreased infarct size and 
improved cardiac function by decreasing oxidative stress, enhanc-
ing myocardial viability, and preventing damage to the heart after 
MI in mouse and pig models (262–264). The mechanism of action 
might involve the transfer of specific RNAs through embryonic 
stem cell MVs (265). MSC-derived MVs were able to face the 
detrimental effects of ischemia and reperfusion (I/R) injury in the 
kidney (266). Similarly, MVs derived from myocardial ischemia 
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TABLe 3 | Main studies evaluating the effects of pharmacological therapies on circulating microvesicles.

Type of drug Therapy dose Subjects (N) Mv change Reference

Anti-platelet

GPIIb/IIIa inhibitors Abciximab: 250 µg/kg bolus + 12 h 
0.125 µg/kg/min
Eptifibatide: 180 µg/kg bolus + 18 h 
2 µg/kg/min

50 ST-segment elevation patients  
undergoing percutaneous coronary 
intervention

↓ GPIV+-pMVs
↓ CD11a+-LMVs

(238)

Clopidogrel 4 weeks, 75 mg/day 26 patients with stable coronary artery  
disease (CAD)

= CD51+-eMVs
↓ CD42+/CD31+-pMV

(240)

Probucol and ticlopidine 6 months
Probucol: 500 mg/day
Ticlopidine: 200 mg/day

23 normolipidemic controls and 53 
hyperlipidemic patients

↓ CD62P+-pMVs
↓ CD63+-pMVs
↓ Annexin V+-MVs
↓ CD14+-mMVs

(121)

Ticlopidine 1 month, 200 mg/day 21 type-2 diabetic patients ↓ CD62P+-pMVs
↓ CD14+-mMVs

(122)

Acetylsalicylic acid 8 weeks, 100 mg/day 15 patients with CAD ↓ eMVs
↓ pMVs

(241)

6 months, bolus of 500 mg and 
75 mg/day

51 patients with acute coronary syndromes ↑ CD62P+-pMVs
↑ CD142+-pMVs

(242)

10 days, 100 mg/day 43 patients with diabetes = pMVs (244)

Cilostazol 1 month, 150 mg/day 30 controls and 43 non-insulin dependent 
diabetes mellitus

↓ CD62P+-pMVs
↓ CD63+-pMVs
↓ Annexin V+-MVs

(231)

Antihypertensive

Angiotensin II receptor antagonists Eprosartan: 2 months, 600 mg/day 31 hypertensive and 31 normotensive  
patients

↓ CD42b+-pMVs (245)

Losartan and simvastatin 24 weeks
Losartan: 50 mg/day
Simvastatin: 10 mg/day

41 hypertensive patients with hyperlipidemia 
and/or type-2 diabetes

↓ KMP9+-pMVs
↓ CD51+-eMVs

(135)

Anti-diabetic

Miglitol 1 month, 150 mg/day 72 non-diabetic patients (37 with  
hypertension, 35 with hyperlipidemia) and 38 
diabetic patients

↓ CD42a/b+-pMVs (232)

Berberine 1 month, 1.2 g/day 14 vs. 11 healthy subjects ↓ CD31+/CD42− eMVs (234)

1 month, 1.2 g/day 12 vs. 11 healthy subjects ↓ CD31+/CD42− eMVs (235)

Lipid lowering

Statins Pravastatin: 8 weeks, 40 mg/day 50 patients with type-2 diabetes ↓ CD61+-pMVs (88)

Atorvastatin: 8 weeks, 80 mg/day 19 patients with peripheral arterial occlusive 
disease and hypercholesterolemia

↓ CD62P+-pMVs
↓ CD142+-pMVs
↓ CD41+-pMVs

(233)

Atorvastatin: 80 mg/day 19 patients with peripheral arterial occlusive 
disease

↓ CD62P+-pMVs
↓ CD142+-pMVs
↑ CD144+-eMVs

(253)

Simvastatin: 80 mg/day; pravastatin: 
40 mg/day; lovastatin: 80 mg/day; 
fluvastatin: 80 mg/day; atorvastatin: 
80 mg/day; rosuvastatin: 20–40  
mg/day

37 hypercholesterolaemic patients and 37 
normocholesterolaemic controls

↓ CD41+/61+-pMVs
↓ CD146+/31+-eMVs
↓ CD45+-LMVs
↓ CD14+-mMVs
↓ CD142+-MVs

(255)

Simvastatin: 6 months, 20 mg/day 21 hyperlipidemic patients ↓ CD61+-pMVs (256)

Simvastatin: 24 weeks, 10 mg/day 41 hypertensive patients ↓ KMP9+-pMVs (257)

Atorvastatin: 2 months, 20 mg/day 20 patients with type 1 diabetes and 
dyslipidemia

↓ pMVs (258)

(Continued)
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Type of drug Therapy dose Subjects (N) Mv change Reference

Ezetimibe 10 mg/day 63 patients with coronary heart disease = MVs (259)

Ezetimibe with statins Atorvastatin 80 mg/day vs. 
atorvastatin 20 mg/day plus ezetimibe 
10 mg/day

75 high-risk subjects ↓ pMV with high-dose 
statin monotherapy

(260)

MV, microvesicle; eMVs, endothelial-derived microvesicles; LMVs, leukocyte-derived microvesicles; mMVs, monocyte-derived microvesicles; MVs, microvesicles; pMVs, platelet-
derived microvesicles.
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could protect hearts from I/R injury in rats through calcium  
regulatory proteins to alleviate intrinsic myocardial mitochon-
drial and endoplasmic reticulum apoptotic pathways (267). 
Interestingly, the effect of cardiosphere-derived cells (CDC) on 
the therapeutic regeneration of the infarcted myocardium shown 
in a clinical trial (268) seems to be mediated by CDC-derived 
extracellular vesicles (269). ECs have also been shown to be 
atheroprotective by transferring miRNAs via MVs to SMCs (81). 
Specifically, MVs transported functional miR-143/145 into SMCs 
after activation by shear stress and they reduced atherosclerotic 
lesion formation in the aorta. Furthermore, a promising thera-
peutic application of MVs is the use of synthetic MVs mimicking 
the natural ones. MV delivery could be clinically useful in several 
conditions such as MI and inflammatory pathologies. Indeed, a 
recent work reported that infusion of artificially produced MVs 
can improve inflammation and ameliorate symptoms in different 
mouse models of MI, multiple sclerosis, and kidney injury (270). 
Therapeutic innovation of MVs is still in its infancy, and its appli-
cability is hampered by many shortcomings, such as the in vivo 
biodistribution of MVs that depends on their cellular origin, their 
half-life and the route of administration (271). Further under-
standing of the biological mechanisms, efficiency and feasibility 
of these MV-based therapies is warranted.

CONCLuSiON AND FuTuRe 
PeRSPeCTiveS

Microvesicles actively contribute to AT progression and compli-
cation due to their implicit role in cell-to-cell communication. 
cMVs not only play a direct biological role in AT and neoangio-
genensis but also might be susceptible targets for pharmacological 
modulation and emerge as potential prognostic and diagnostic 
biomarkers of atherothrombotic CVD. However, limitations 
and technological constraints have precluded the complete 
understanding of mechanisms of MV formation and pathophysi-
ological relevance. Most functional effects of MVs have been 
evidenced in in vitro studies with a predetermined MV concen-
tration that is not always comparable to the pathophysiological 
situation while their exact role in the clinical setting is dismissed. 
Despite cMVs emerge as promising biomarker candidates, clini-
cal studies in larger cohorts are required to clearly delineate their 

role as diagnostic and prognostic markers of disease. Until now, 
the lack of standardization in preanalytical phase guidelines, the 
difficult implementation as routine in the clinical laboratory as 
well as the high cost of cMV measurements have curbed their 
full clinical characterization. However, recent and advanced sen-
sitive technologies together with consensus within the scientific 
community will undoubtedly shed light on the cMV potential as 
biomarkers. Besides, exploring the cMV specific targeting to a 
selective tissue, how they are produced in vivo and their specific 
genomic, transcriptomic, metabolomic and proteomic content is 
essential to design efficient therapeutically strategies involving 
MVs. In the next coming years, we will witness advances and 
breakthroughs in the area of MVs that will translate into their 
use in diagnostic and therapeutic innovation.
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