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Efficient clearance of apoptotic cells, termed efferocytosis, critically regulates normal 
homeostasis whereas defective uptake of apoptotic cells results in chronic and non- 
resolving inflammatory diseases, such as advanced atherosclerosis. Monocyte-derived 
macrophages recruited into developing atherosclerotic lesions initially display efficient 
efferocytosis and temper inflammatory responses, processes that restrict plaque pro-
gression. However, during the course of plaque development, macrophages undergo 
cellular reprogramming that reduces efferocytic capacity, which results in post-apoptotic 
necrosis of apoptotic cells and inflammation. Furthermore, defective efferocytosis in 
advanced atherosclerosis is a major driver of necrotic core formation, which can trigger 
plaque rupture and acute thrombotic cardiovascular events. In this review, we discuss 
the molecular and cellular mechanisms that regulate efferocytosis, how efferocytosis 
promotes the resolution of inflammation, and how defective efferocytosis leads to the 
formation of clinically dangerous atherosclerotic plaques.
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Efficient clearance of apoptotic cells, termed “efferocytosis,” is an ancient process that evolved to 
allow organ development, maintain homeostasis, prevent autoimmune disease, and resolve inflam-
matory insults (1). When efferocytosis functions efficiently, apoptotic cells are cleared before they 
become necrotic, anti-inflammatory cytokines and pro-resolving lipid mediators are secreted, 
and the release of immunogenic antigens is prevented. However, when efferocytosis becomes 
defective, uncleared apoptotic cells undergo post-apoptotic necrosis and release tissue-degrading 
enzymes, immunogenic epitopes, and pro-inflammatory mediators. Genetically modified mice 
show that impaired efferocytosis often develop autoimmune or chronic inflammatory diseases (2). 
Accordingly, there is substantial interest in understanding how efferocytosis becomes defective in 
chronic inflammatory diseases, such as atherosclerosis. This review will highlight the processes 
associated with efferocytosis and how these become dysregulated during atherosclerosis.

FiNDiNG AND BiNDiNG APOPTOTiC CeLLS

Despite the fact that the macrophage population in most organs and tissues are relatively low com-
pared with other non-immune cells, apoptotic cells are rarely detected in tissues where high levels of 
cellular turnover are known to occur, indicating that macrophages rapidly mobilize to areas of cell 
death to expeditiously remove apoptotic corpses (3). Macrophage migration toward apoptotic cells 
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FiGURe 1 | Mechanisms of efferocytosis. (A) Macrophages interact with 
phosphatidylserine (PtdSer) externalized on apoptotic cells either directly or 
indirectly, through bridging molecules. Many PtdSer receptors stimulate 
ELMO–DOCK180 interactions to activate Rac1 and polymerize actin around 
the phagosome. Simultaneously, macrophages trigger Drp1-mediated 
mitochondrial fission to drive calcium-dependent vesicular trafficking. Once 
internalized, autophagic machinery is used to conjugate lipids to LC3 bound 
to phagosomes, which drives phagolysosomal fusion and subsequent 
apoptotic cell degradation. (B) In pathological settings such as advanced 
atherosclerosis, one or more of these processes can become defective, 
leading to inefficient clearance of apoptotic cells and subsequent necrosis 
and inflammation. For example, in advanced atherosclerosis, apoptotic cells 
can inappropriately express the “don’t eat-me” signal CD47, or cell-surface 
receptors can get proteolytically cleaved, such as with MerTK.
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is guided by chemotactic factors secreted by dying cells either 
actively in an executioner caspase-dependent mechanism or pas-
sively released during self-demise. This class of mediators, known 
as “find-me” signals, includes the classic chemokine CX3CL1, 
the lipids sphingosine 1-phosphate and lysophosphatidylcholine, 
and the nucleotides ATP and UTP (4–7).

After having navigated tissues to arrive at apoptotic-rich 
areas, macrophages employ a panoply of receptors that bind 
either directly or indirectly, via bridging molecules, to “eat-me” 
signals displayed on the surface of apoptotic cells (Figure 1) (8). 
While several “eat-me” signals have been identified, including 
changes in glycosylation at the cell surface or exposure of cal-
reticulin or ICAM-1 epitopes, externalized phosphatidylserine 
(PtdSer) on apoptotic cells remains the most characterized 
(9, 10). Macrophages bind PtdSer directly through stabilin-1, 
stabilin-2, the GPCR brain angiogenesis inhibitor 1 (BAI1), or 

through the T-cell immunoglobulin and mucin domain family 
of receptors Tim-1, Tim-3, and Tim-4 (11–14). Alternatively, 
macrophages may utilize the Tyro3–Axl–Mer (TAM) family of 
tyrosine kinase receptors, integrins αVβ3 and αVβ5, or CD36 to 
bind PtdSer indirectly through bridging molecules that interact 
with PtdSer (3). Gas6 and Protein S bind to TAM receptors, 
whereas thrombospondin-1 or MFG–E8 link PtdSer to CD36 
or integrins αVβ3 and αVβ5, respectively. Some of the PtdSer-
relevant receptors have well-characterized signaling capabilities, 
e.g., MerTK, BAI1, and integrins, while others may function 
primarily as tethering and adhesion molecules, e.g., the Tim 
family of receptors and CD36.

Tethering and internalization are two separate but intimately 
linked events and operate first through interaction with weak 
and low avidity “eat-me” signals to ensure adhesion, followed 
by stereospecific interaction of externalized PtdSer to PtdSer 
receptors to drive cytoskeletal reorganization around the apop-
totic cell. While externalized PtdSer on apoptotic cells binds 
to receptors on macrophages to mediate tethering, this process 
alone is insufficient to trigger internalization (15). However, 
coupling of PtdSer/receptor interaction with other receptors 
trigger the switch from adhesion to internalization, a process 
referred to as “tether and tickle” (16). Live cells may also express 
PtdSer and yet are spared from efferocytosis, primarily because 
live cells present the “don’t eat-me” signals CD31 and CD47 on 
their cell surface, which actively suppresses efferocytosis. CD31 
is expressed on viable cells and cues repulsion or detachment 
when making homophilic interactions in trans with efferocytes 
(17). Interestingly, CD31 on macrophages may interact with 
apoptotic cells using the extracellular matrix protein fibronectin 
as a bridging molecule (18). When this occurs, integrin α5β1 
becomes activated and subsequently promotes phagocytosis of 
apoptotic cells (18). Therefore, selective CD31 interactions not 
only prevents accidental internalization of viable cells but may 
also actively promote efferocytosis (Figure 1B). The other major 
“don’t eat-me” signal, CD47, is expressed on live cells and inter-
acts with cell-surface signal-regulatory protein α on macrophages 
to inactivate myosin assembly and thereby prevent cytoskeletal 
rearrangement around the phagosome (19).

Internalization of apoptotic cells requires macrophages to 
dynamically reorganize their actin cytoskeleton to drive F-actin 
formation around apoptotic cells, forming a so-called phagocytic 
cup, which then promotes mechanical retraction of the phago-
some into the cell (Figure 1A) (20). Since the Rho-family of small 
GTPases, Rac1, Cdc42, and RhoA rearrange the cytoskeleton to 
mechanically drive migration of cells, it is not surprising that 
they are also involved in mechanically internalizing phagosomes 
containing apoptotic cells. Using Forster resonance energy 
transfer biosensors, it was discovered that these small GTPase 
family members work in a temporally regulated fashion in 
which Rac1 and Cdc42 are activated early to facilitate phagocytic 
cup formation through actin polymerization followed by Rho 
activation, which drives mechanical retraction and phagosome 
internalization (21). Constitutive activation of Rac1 may decrease 
phagocytosis, because Rac1 must be rapidly inactivated to permit 
engulfment (21). However, when RhoA effectors are inhibited, 
to tilt the Rac1/RhoA axis toward Rac1 activation, uncontrolled 
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phagocytosis occurs (22). A shared Rac1 activation pathway that 
is conserved among several of the apoptotic cell receptors involves 
association with the adaptor protein ELMO to the RacGEF 
DOCK180 (23). This ELMO/DOCK180 complex then activates 
Rac1 to initiate phagocytic cup formation, which then leads to 
apoptotic cell internalization (24). Accordingly, inhibition of 
ELMO/DOCK180 signaling prevents efferocytosis (13, 24).

While cytoskeletal remodeling is required for apoptotic cell 
internalization, the role of membrane trafficking in efferocytosis 
becomes astoundingly evident given that cells internalize ~50% 
of their entire surface, yet, plasma membrane surface area does 
not change as a result of phagocytosis (25). This finding sug-
gests that internal membranes are rapidly recruited to the cell 
surface to complete closure of the phagosome and to replenish 
cell membranes utilized during efferocytosis. This concept can 
be demonstrated in tetanus or botulinum B toxin-microinjected 
cells, which show defective exocytosis and reduced membrane 
delivery to incoming phagosomes (26). New work has shown 
that these critical vesicular trafficking events require effero-
cytes to undergo Drp1-dependent mitochondrial fission (27). 
Mitochondrial fission causes endoplasmic reticulum calcium to 
be released into the cytosol rather than into the mitochondria, 
and this increase in cytosolic calcium then drives vesicular traf-
ficking (27). Importantly, Drp1-deficient macrophages, which 
cannot undergo mitochondrial fission upon encountering apop-
totic cells, are unable to move vesicles to the site of apoptotic cell 
attachment, which significantly delays both initial apoptotic cell 
phagosome sealing and, more notably, compromises the ability of 
the efferocytes to take up a second apoptotic cell (27).

AC CORPSe DeGRADATiON

Once apoptotic cells have been internalized, certain autophagy-
related proteins are recruited to conjugate LC3-family proteins 
to lipids at the phagosome membrane, a process called LC3-
associated phagocytosis (LAP) (Figure 1A) (28). LAP promotes 
phagosome fusion to lysosomes to drive hydrolytic degradation 
of apoptotic cell constituents (28). Importantly, defects in LC3 
conjugation to phagosomal membranes delay or even prevent 
phagosome fusion with lysosomes, resulting in failure to acidify 
the phagosome and an inability to degrade apoptotic cells (29). 
After apoptotic cells are degraded in phagolysosomes, mac-
rophages become overloaded with macromolecular constituents 
and therefore have evolved elegant mechanisms to either use or 
efflux this cargo. For instance, the burden of cholesterol from 
degraded apoptotic cells activates members of the peroxisome 
proliferator-activated receptor (PPAR) and liver X receptor 
(LXR) families of nuclear receptors and drive ABCA1 and 
ABCG1 expression, which mediate cholesterol efflux from 
the cells (30). Furthermore, PPARγ and LXR agonists further 
enhance efferocytosis (31, 32). To handle the large amount of 
chromosomal DNA derived from degraded apoptotic cells, 
macrophage lysosomes contain DNase II that cleaves this 
phagocytosed DNA. Macrophages lacking DNase II accumulate 
undigested DNA fragments, and mice lacking DNase II exhibit 
polyarthritis, an autoimmune disease similar to rheumatoid 
arthritis in humans (33).

ATHeROSCLeROSiS

Although the last several decades have seen significant medi-
cal advances in the diagnosis and treatment of cardiovascular 
disease, atherosclerosis remains the major cause of morbidity 
and mortality worldwide (34). Atherosclerosis begins when 
circulating apolipoprotein B-containing lipoproteins accumulate 
in focal areas in the subendothelium matrix of medium-sized and 
large arteries (35). These subendothelial lipoproteins, particularly 
after oxidation, generate an inflammatory stimulus that drives 
leukocyte influx into the vessel wall (36–39). Primary among 
these infiltrating cells are monocyte-derived macrophages, which 
internalize cholesterol-rich lipoproteins and give rise to foam 
cells. Foam cells secrete extracellular matrix that further promotes 
lipoprotein retention as well as pro-inflammatory cytokines that 
augment the recruitment of additional monocytes, T cells, and 
neutrophils. In the face of persistent inflammatory stimuli and 
other cytotoxic factors, many lesional cells become apoptotic. 
Early on, apoptotic cells are efficiently cleared by neighboring 
macrophages in an attempt to limit overall lesion cellularity (40). 
However, efferocytosis can fail as plaques progress, leading to the 
accumulation of secondarily necrotic cells and the formation of 
a highly inflammatory “necrotic core” (41–43). Large necrotic 
cores are a hallmark of advanced atherosclerotic disease and have 
been associated with the types of atherosclerotic plaque that give 
rise to heart attack and stroke (44, 45). Therefore, the efficient 
clearance of dead and dying cells plays a key role in preventing 
the development of clinically significant atherosclerotic plaques.

MeCHANiSMS OF iMPAiReD 
eFFeROCYTOSiS iN ATHeROSCLeROSiS

Why does efferocytosis fail in advanced atherosclerosis? Because 
efferocytosis is a high-capacity process, it is unlikely that 
overwhelming lesional apoptosis is the primary cause. Rather, 
efferocytosis itself becomes defective and/or lesional apoptotic 
cells become poor substrates for efferocytosis. As an example of 
the latter, CD47 expression is significantly increased in human 
atherosclerotic plaque cells, presumably via a TNFα-dependent 
mechanism, and for the reasons explained earlier (19), these cells 
are poorly internalized by lesional efferocytes (46) (Figure 1B). 
In keeping with this concept, administration of CD47-blocking 
antibodies to atheroprone mice led to improved lesional effero-
cytosis and smaller necrotic cores. Other findings suggest that 
dead cells in lesions express lower amounts of the “eat-me” signal 
calreticulin (47). For example, Apoe−/− mice lacking Cdkn2b 
show decreased levels of calreticulin, and apoptotic bodies from 
these animals show resistance to being engulfed (47). When fed 
a Western diet, these mice have an increased overall lesion size as 
well as increased necrotic core size (47) (Table 1). Interestingly, 
human carriers of the cardiovascular risk allele at the chromo-
some 9p21 GWAS locus were found to have lower intraplaque 
expression of calreticulin, suggesting that defective efferocytosis 
may contribute to cardiovascular disease in these patients (48).

Efferocytosis may also be compromised by competition for 
apoptotic cell binding. As atherosclerosis progresses, lesions 
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TABLe 1 | Efferocytosis pathway molecules shown to have a causative role in atherosclerosis.

Molecule Function Animal model effect on aortic lesion area effect on necrotic core size Other findings Reference

MerTK Receptor ↑ ACs
↓ In situ efferocytosis

MerTKKD Apoe−/− mice
No change ↑ ↑ Lesional macrophages

↓ In situ efferocytosis
↑ Collagen cap thickness
↑ T regulatory cells  
↑ Specialized pro-resolving mediators

(49)
MerTK−/− marrow → Ldlr−/− mice ↑ ↑ (50)
MerTKCR Ldlr−/− mice

No change ↓ (51)

Lipoprotein 
receptor-related 
protein 1 (LRP1)

Receptor Macrophage 
LRP1−/− marrow → Ldlr−/− mice
Macrophage LRP1−/− Apoe−/− mice

↑ ↑ ↑ ACs
↓ In situ efferocytosis
↑ Lesional macrophages
↑ MMP9 levels

(52, 53)

↑ ↑ ↑ ACs
↓ In situ efferocytosis
↑ Lesional macrophages

(54)

SR-B1 Receptor SR-B1−/− ApoE−/− marrow → 
Apoe−/− mice
SR-B1−/− marrow → Ldlr−/− mice

↑ ↑ ↑ ACs
↓ In situ efferocytosis
↓ Lesional macrophages
↓ Collagen lesion area and cap thickness
↑ ACs
↓ In situ efferocytosis
↓ Lesional macrophages
↓ Collagen lesion area and cap thickness

(55)

Tim-1/Tim-4 Receptor Ldlr−/− treated with Tim-1 or Tim-4 
blocking antibodies

↑ Not tested ↑ ACs
↓ In situ efferocytosis
↑ Lesional T cells

(56)

Mineralo-corticoid 
receptor

Non-efferocytosis 
nuclear receptor

Myeloid 
MRKO−/− marrow → Ldlr−/− mice

↓ ↓ ↓ ACs
↑ In situ efferocytosis
↓ Lesional macrophages
↓ Foam cell formation
↑ Collagen lesion area

(57)

MFG-E8 Bridging molecule MFG-E8−/− marrow → Ldlr−/− mice ↑ ↑ ↑ ACs
↑ Collagen cap thickness

(58)

C1q Bridging molecule C1q−/− Ldlr−/− ↑ Not tested ↑ ACs
↑ Lesional macrophages
In vitro: incubating macrophage cell line with 
C1q enhances C19-mediated efferocytosis

(59)

(60)

Transglutaminase 
2 (TG2)

Bridging molecule TG2−/− marrow → Ldlr−/− mice ↑ ↑ ↑ Lesional macrophages
In vitro: TG2−/− macrophages have 
decreased efferocytosis

(61)

Gas6 Bridging molecule Gas6−/− Apoe−/− mice No change ↓ ↑ Collagen content (62)

CX3CL1 Find-me signal CX3CL1−/− Apoe−/− mice
CX3CL1−/− Ldlr−/− mice

Inconsistent change at aortic root, ↓ at 
brachiocephalic artery

↓ At aortic root and brachiocephalic artery

Not tested

Not tested

↓ Lesional macrophages

↓ Lesional macrophages

(63)
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continue to accumulate lipids and ROS, leading to increased 
levels of oxidized phospholipids. These lipids can bind to effero-
cytosis receptors and may compete for apoptotic cell recognition 
(68). Similarly, autoantibodies against oxLDL and other oxidized 
phospholipids are able to bind to and potentially mask “eat-me” 
ligands on the surface of dying cells in the lesions (69, 70). 
Further, oxLDL increases the expression of and signaling through 
toll-like receptor 4 (TLR4), leading to increased secretion of the 
pro-atherogenic cytokines TNFα and IL-1β while reducing the 
anti-inflammatory cytokines TGFβ and IL-10 (71). This pro-
inflammatory environment impairs efferocytosis by reducing the 
expression of various key efferocytosis molecules, as discussed 
below, and promotes increased lipid uptake at the expense of 
phagocytosis (72).

Finally, accumulating experimental evidence has demon-
strated that the expression and function of efferocytosis receptors 
and their bridging molecules are deficient in advanced athero-
sclerosis. One such example is MerTK and its associated bridging 
molecule, Gas6. MerTK is expressed by macrophages in both 
murine and human plaques (50, 51). As lesions progress, MerTK 
levels on the macrophage surface decline, and this decrease is 
associated with cleavage of the receptor by the metalloproteinase 
ADAM17 (Figure  1B). Multiple athero-relevant inflammatory 
stimuli have been shown to promote ADAM17 activity and 
MerTK cleavage (73–75). Indeed, levels of the soluble fragment 
of the receptor (solMer) accumulate within the aortas of mice and 
in human carotid plaques (51). In vitro, solMer has been shown to 
inhibit efferocytosis by competing with Gas6, suggesting that this 
may amplify the deleterious effects on efferocytosis (73). Using 
a genetically engineered mouse in which the cleavage domain 
of MerTK has been rendered resistant, Cai and colleagues dem-
onstrated that cleavage of the MerTK receptor is a causal factor 
in the development of necrotic cores in atherosclerotic lesions 
(51). Consistent with this protective role for MerTK activity 
in atherosclerosis, loss of MerTK, either by genetic deletion or 
through models in which MerTK has been replaced by a version 
with an inactive kinase domain, results in increased lesion size 
and larger necrotic cores (49, 50) (Table 1). Interestingly, deletion 
of the related TAM family member, Axl, in bone marrow cells of 
Ldlr−/− mice did not affect lesional efferocytosis or plaque necrosis 
in advanced atherosclerosis (76).

Low-density lipoprotein receptor-related protein 1 (LRP1) 
is a receptor that is activated by calreticulin on the surface of 
apoptotic cells (77). The macrophage receptor LRP1 can also be 
downregulated in response to TLR4 signaling and inactivated by 
ADAM17-mediated proteolytic cleavage (78, 79). Several studies 
have demonstrated that the loss of Lrp1 in macrophages or in 
bone marrow cells leads to increased lesion area and necrotic core 
size in an Apoe−/− mice (52–54) (Table 1). A particular bridging 
molecule that is reduced in atherosclerotic lesions is milk fat 
globule-epidermal growth factor 8 (MFG-E8), which functions 
to tether apoptotic cells to efferocytes by interacting with αVβ3 
integrins and the transglutaminase 2 (TG2) co-receptor on 
phagocytes (80, 81). MFG-E8 is expressed in atherosclerotic 
plaques, but its expression declines in advanced plaque, poten-
tially owing to downregulation by inflammatory stimuli (82). 
In an Ldlr−/− mouse model lacking Mfge8 in bone marrow cells, 
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myocardial infarction in selected populations (92–96). Patients 
with coronary artery disease have lower plasma SPMs than do 
healthy patients (97), and one SPM, aspirin-triggered lipoxin 
A4, was found to be significantly associated with peripheral 
and coronary atherosclerosis in humans even after correction 
for age, sex, and C-reactive protein levels (98). A recent paper 
showed that stable regions of human atherosclerotic plaque 
have a higher SPM:leukotriene ratio when compared with more 
advanced, vulnerable regions having larger necrotic cores and 
thinner collagen caps (99). Similarly, early murine lesions from 
Western diet-fed Ldlr−/− mice had a higher SPM:leukotriene 
ratio when compared with advanced lesions (90, 99). In several 
mouse models of atherosclerosis, treatment of mice with vari-
ous pro-resolving ligands including annexin 1, Ac2-26, IL-10, 
resolvin D1 (RvD1), resolvin D2, or maresin 1 decreased lesional 
necrosis, suggesting improvements in efferocytosis by lesional 
phagocytes (90, 99, 100–102).

Efferocytosis plays a major mechanistic role in the resolu-
tion of inflammation. First, expeditious clearance of dead cells 
prevents their secondary necrosis. Second, the act of effero-
cytosis itself triggers several different anti-inflammatory and 
pro-resolving signaling pathways. Engagement and activation 
of the TAM family of efferocytosis receptors, including MerTK 
and Axl, induces the expression of suppressor of cytokine 
signaling-1 and 3 (SOCS-1 and 3), leading to the inhibition of 
signaling pathways triggered by cytokines and toll-like receptor 
ligands (103, 104). Efferocytosis has also been shown to actively 
increase the secretion of anti-inflammatory cytokines, including 
TGF-β and IL-10, and decreased secretion of pro-inflammatory 
cytokines, such as TNF-α, IL-1β, and IL-8 (105, 106). Further, 
uptake of apoptotic cells enhances the synthesis of SPMs, while 
concomitantly reducing the production of pro-inflammatory 
leukotrienes (107, 108). Recently, a specific mechanistic link 
between the efferocytosis receptor MerTK and SPM production 
was revealed (108). In response to engagement of the MerTK 
receptor, the key biosynthetic enzyme 5-LOX translocates 
from the nucleus to the cytoplasm, where it drives the produc-
tion of the pro-resolving mediator lipoxin A4. When MerTK 
is inactivated either genetically or proteolytically, 5-LOX is 
restricted to the nuclear membrane, where it instead favors 
the production of the pro-inflammatory leukotriene B4 (108). 
Mice whose myeloid cells express a cleavage-resistant variant 
of MerTK (MerTKCR mice) have higher rates of efferocytosis 
than their wild type counterparts, and macrophages from these 
mice demonstrate enhanced production of LXA4 and RvD1. In 
addition, when Ldlr−/− mice are transplanted with bone marrow 
from MerTKCR mice and fed an atherogenic diet for 16 weeks, 
the aortas contained an increased SPM:leukotriene ratio (51). 
The process of resolution in atherosclerosis can also enhance 
efferocytosis. A recent study showed that administration of 
RvD1 to Western diet-fed Ldlr−/− mice significantly increased 
the SPM:leukotriene ratio, while also decreasing plaque necrosis 
and enhancing lesional efferocytosis (99). These studies suggest 
a positive feedback cycle between resolution and efferocytosis, 
which, if interrupted, can lead to an amplification loop of 
inflammation and necrosis that promotes advanced atheroscle-
rotic plaque progression.

larger plaque area and necrotic cores were observed (58). In 
addition, Ldlr−/− mice lacking TG2 in bone marrow also show 
increased plaque area and necrotic core size (81). Another bridg-
ing molecule, complement component 1q (C1q), has also been 
shown to be important in atherosclerosis. In vitro, macrophages 
can produce large amounts of C1q, which promotes both cell 
survival and efferocytosis (60). Loss of C1q from Ldlr−/− mice led 
to larger lesion area and an increase in apoptotic cells, consistent 
with defective apoptotic cell clearance (59). As another possible 
mechanism for defective efferocytosis, the pro-inflammatory 
molecule high-mobility group box 1 (HMGB1) is increased in 
human and murine atherosclerosis (83, 84), and the secreted 
form has been shown to interact with integrin αVβ3 and PtdSer 
to block efferocytosis (85, 86). Apoe−/− mice administered an anti-
HMGB1 antibody developed smaller atherosclerotic plaques, 
although necrotic core size was not reported (84). Silencing of 
HMGB1 in peritoneal macrophages in  vitro leads to increased 
efferocytosis, and partially rescues the efferocytosis defect 
observed in SR-B1−/− macrophages (55).

Recently, microRNAs have been found to have a novel role 
in the regulation of efferocytosis. Das and colleagues found that 
macrophages undergoing efferocytosis increase their expression 
of miR-21 in a TLR4-dependent manner in vitro (67). Further, 
when treated with an miR-21 mimetic in vitro, the rate of effe-
rocytosis by bone marrow-derived macrophages increased (67). 
Transplantation of miR21−/− marrow into Ldlr−/− mice increased 
plaque area and necrotic core size. One study reported that loss of 
miR-21 in macrophages decreases MerTK expression, providing 
a mechanism for the increased necrotic core size in these mice 
(66). Additional work is necessary to determine the mechanism 
by which miR-21 regulates MerTK expression. Another miR, 
miR-33, is also known to regulate the outcome of atherosclerosis. 
Murine primary macrophages treated with anti-miR-33 enhanced 
efferocytosis in  vitro and treatment of Ldlr−/− mice with anti-
miR-33 decreased necrotic cores compared with the anti-miR 
control (87). Together, these results suggest that specific miRs 
play important roles in regulating efferocytosis in atherosclerosis.

eFFeROCYTOSiS AND iNFLAMMATiON 
ReSOLUTiON

To successfully terminate an inflammatory process, the active 
process of inflammation resolution is required (88). This process 
is mediated by various endogenous molecules, including bioac-
tive lipids such as lipoxins, resolvins, protectins, and maresins, 
which are often referred to as specialized pro-resolving media-
tors (SPMs); proteins such as annexin A1 and interleukin-10; 
and gasses such as hydrogen sulfide (88). When the resolution 
program fails inflammation persists, and this mechanism is now 
understood to be an underlying factor in the pathogenesis of 
many chronic inflammatory diseases, including atherosclerosis 
(89). Emerging evidence has defined an important role for 
resolution and SPMs in both murine and human atherosclerotic 
disease (89–91). Gene variants encoding proteins and enzymes 
necessary for SPM biosynthesis, including 5-lipoxygenase 
(5-LOX), have been associated with atherosclerosis, stroke, and 
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SUMMARY AND CONCLUSiON

Defective clearance of apoptotic cells in atherosclerotic lesions 
drives post-apoptotic necrosis of lesional cells and inflammation 
triggered by the release of cellular debris from these necrotic 
cells (2). Moreover, active cell signaling programs of inflamma-
tion suppression and inflammation resolution in efferocytes are 
often lost when apoptotic cells are not properly cleared (89). As a 
result, defective efferocytosis can transform stable, asymptomatic 
atherosclerotic lesions into necrotic, inflammatory, and non-
resolving plaques that are prone to rupture (41). Although we 
do not know for certain why efferocytosis fails in advanced ath-
erosclerosis, studies thus far suggest complementary mechanisms 
that involve both poor recognition of lesional apoptotic cells, e.g., 
due to inappropriate expression of CD47, coupled with defects in 
the efferocytes themselves; e.g., due to proteolytically cleavage of 
MerTK (46, 51, 108).

How might this knowledge suggest new types of therapies 
to prevent atherothrombotic vascular disease? Therapies that 
lower LDL in the blood are the mainstay of therapy to prevent 
atherosclerotic disease, and there is reason to posit that this 
type of therapy can indirectly prevent processes in plaques, 
such as inflammation and oxidative stress, that may ultimately 
contribute to defective efferocytosis. However, to the extent 
that many subjects at risk are not able to lower their LDL to 
a level low enough to completely suppress atherosclerotic dis-
ease, there is a place for complementary therapies (109). For 
example, recent success of the CANTOS trial demonstrated 
that lowering inflammation, through administering an anti-
IL-1β antibody, successfully reduced recurrent cardiovascular 
events independently of lipid lowering (110). One type of new 
approach that may successfully target defective efferocytosis 
is antibodies that block CD47. However, anti-CD47 antibod-
ies also causes anemia owing to inappropriate clearance of 
red blood cells (46, 111, 112). Another type of approach is to 

enhance the function of efferocytes themselves by prevent-
ing proteolysis of efferocytosis receptors, e.g., by blocking 
ADAM17-mediated cleavage of MerTK, or by enhancing the 
ability of efferocytes to clear multiple apoptotic cells, e.g., by 
boosting the mitochondrial fission-calcium mechanism that 
enables macrophages to efficiently ingest secondarily encoun-
tered apoptotic cells (27, 51, 108). Yet another approach would 
be tilting the SPM:leukotriene ratio to favor SPM production, 
such as through the administration of RVD1, which has been 
shown to enhance macrophage–apoptotic cell interactions and 
to increase lesional efferocytosis (51, 99). Finally, glucocorti-
coids generate anti-inflammatory molecules and are therefore 
routinely used for managing inflammatory diseases. One such 
glucocorticoid product, annexin A1, enhances efferocytosis, 
resolves inflammation, and delays atherosclerosis in mice 
(113–115). Indeed, the combination enhancing efferocytosis 
while at the same time restoring resolution mediators in lesions 
may offer the most promising therapeutic strategy to combat 
atherosclerotic cardiovascular disease.
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