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The role of inflammation in vascular disease is well recognized, involving dysregulation 
of both circulating immune cells as well as the cells of the vessel wall itself. Unrestrained 
vascular inflammation leads to pathological remodeling that eventually contributes to 
atherothrombotic disease and its associated sequelae (e.g., myocardial/cerebral infarc-
tion, embolism, and critical limb ischemia). Signaling events during vascular inflammation 
orchestrate widespread transcriptional programs that affect the functions of vascular and 
circulating inflammatory cells. The Krüppel-like factors (KLFs) are a family of transcription 
factors central in regulating vascular biology in states of homeostasis and disease. 
Given their abundance and diversity of function in cells associated with vascular inflam-
mation, understanding the transcriptional networks regulated by KLFs will further our 
understanding of the pathogenesis underlying several pervasive health concerns (e.g., 
atherosclerosis, stroke, etc.) and consequently inform the treatment of cardiovascular 
disease. Within this review, we will discuss the role of KLFs in coordinating protective 
and deleterious responses during vascular inflammation, while addressing the potential 
targeting of these critical transcription factors in future therapies.

Keywords: Krüppel-like factor, Krüppel-like transcription factors, vascular inflammation, atherosclerosis, 
endothelial cells, vascular smooth muscle cells, macrophages

iNTRODUCTiON

The role of inflammation in vascular disease is well recognized, involving dysregulation of both 
circulating immune cells as well as the cells of the vessel wall itself. Upon exposure to noxious stimuli 
(altered hemodynamics, circulating inflammatory factors, and oxygenation level), the vessel wall 
undergoes characteristic changes such as endothelial cell (EC) activation and vascular smooth muscle 
cell (VSMC) proliferation and migration, leading to the presentation of a “sticky” surface attractive 
to circulating monocytes and other immune cells. In certain contexts (e.g., acute thrombotic occlu-
sion), this inflammation results in beneficial vascular remodeling that maintains proper perfusion to 
ischemic organs. During chronic insults, such as in dyslipidemia, unrestrained vascular inflamma-
tion leads to pathological remodeling that eventually contributes to atherothrombotic disease and 
its associated sequelae (e.g., myocardial/cerebral infarction, embolism, and critical limb ischemia).

Signaling events during vascular inflammation orchestrate widespread transcriptional programs 
that affect the functions of ECs, VSMCs, and circulating inflammatory cells. Central to many of 
these programs is the nuclear factor (NF)-κB signaling cascade. Upon stimulation by inflammatory 
stimuli [cytokines, oxidized low-density lipoprotein (oxLDL), glucose], regulatory cytosolic protein 
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IκB is phosphorylated and targeted for ubiquitin–proteosome 
degradation. This liberates the normally sequestered cofactors 
p65 and p50 to translocate into the nucleus, where they mediate 
pro-inflammatory transcription [reviewed in Ref. (1)]. In addi-
tion, the coactivator p300 can complex with p65/p50 to stabilize 
the chromatin structure for effective transcription (2). Outside 
of NF-κB signaling, regulation of vascular inflammation can also 
occur through microRNAs (miRs). miRs are non-coding RNAs 
that regulate post-transcriptional gene expression by inhibiting 
mRNA translation. Within the scope of vascular inflammation, 
miRs can either enhance or diminish pathological inflammation, 
depending on the target genes [reviewed in Ref. (3)]. Multiple 
facets of vascular cell biology, including NF-κB and miR signal-
ing, are regulated by Krüppel-like factors (KLFs). Within this 
review, we will discuss the role of KLFs in coordinating protective 
and deleterious responses during vascular inflammation, while 
addressing the potential targeting of these critical transcription 
factors in future therapies.

KLFs BACKGROUND

Originally discovered as homologs to the Drosophila melanogaster 
gene, Krüppel (4), KLFs belong to a family of zinc-finger contain-
ing transcription factors with roles in cellular development, dif-
ferentiation, metabolism, and activation. There are 18 currently 
predicted mammalian KLFs expressed in various tissues and dur-
ing periods of development. KLFs share within their C-terminal 
regions three highly conserved zinc-fingers recognizing a 
5′-C(A/T)CCC-3′ consensus sequence often near target genes, 
though the sequence can occur in distant regions as well such as 
in enhancers. The amino-terminus functions in transactivation or 
repression and participates also in protein–protein interactions 
(5). For many KLFs, there is considerable overlap in gene targets 
within a single cell type. However, despite the homology of struc-
ture, binding sequences, and protein interaction targets, there are 
also substantial differences in downstream transcriptional effects 
between KLFs. Several excellent reviews are available discussing 
sequence homology, chromosomal location, and expression pat-
tern of the KLFs (5, 6). Given their abundance and diversity of 
function in cells associated with vascular inflammation, under-
standing the transcriptional networks regulated by KLFs will 
further our understanding of the pathogenesis underlying several 
pervasive health concerns (e.g., atherosclerosis, stroke, etc.) and 
consequently inform the treatment of cardiovascular disease.

eC KLFs

The vascular endothelium acts as an initial sensor and transducer 
of inflammatory stimuli such as disturbed blood flow, cytokines, 
oxLDL, and advanced glycation end products, often responding 
with activation of classical inflammatory cascades which have 
been elegantly dissected over the past few decades. While brief 
bouts of inflammation, particular during wound healing, are an 
appropriate physiologic response, endothelial dysfunction result-
ing in sustained, chronic inflammation is central to a diverse 
array of cardiovascular diseases. The transcriptional regulation 
of endothelial inflammation therefore remains of critical interest. 

An accumulating body of evidence now exists defining key roles 
for several KLF transcription factors in the control of vascular 
inflammation, which we review below (Figure 1).

Krüppel-Like Factor 2
Endothelial KLF2 has primarily anti-inflammatory, anti-
thrombotic, and anti-migratory functions. As a regulator of 
inflammation, KLF2 inhibits both the expression of inflammatory 
cytokines and the production of adhesion molecules that are criti-
cal for leukocyte recruitment and extravasation (7–10). Through 
its binding to the transcriptional coactivator p300/CBP, KLF2 is 
capable of preventing NF-κB/p300 interaction and subsequent 
activation of the vascular cell adhesion molecule-1 (VCAM-1) 
promoter (11) Furthermore, the KLF2-p300 interaction permits 
KLF2 binding to the endothelial nitric oxide synthase (eNOS) 
promoter to induce transcription of this vasoprotective enzyme 
(11). These early studies demonstrated KLF2’s ability to influence 
transcription through direct DNA-binding and or indirect cofac-
tor sequestration mechanisms. In addition to affecting the NF-κB 
pathway, studies have shown that KLF2’s anti-inflammatory effects 
are also produced through preventing the nuclear translocation 
of the inflammatory transcription factor ATF2 (9). In response to 
various stressors, JNK signaling leads to ATF2 nuclear transloca-
tion and successive inflammatory transcription. During shear 
stress, however, KLF2 induces cytoskeletal remodeling that even-
tually prevents JNK activation, and thus ATF2 translocation (12). 
Additionally, KLF2 provides protection against oxidative damage 
in ECs via the induction of hemeoxygenase-1 (13). Furthermore, 
ECs overexpressing KLF2 secrete atheroprotective miRs-143/145 
in microvesicles that reduce atherosclerosis by targeting genes 
critical for VSMC dedifferentiation (Mmp3, Elk1, Camk2d) (14).

Thrombosis associated with atherosclerotic lesions contrib-
utes to many of the complications associated with atherosclerosis. 
Similar to its ability to repress endothelial inflammation, KLF2 
modulates anti-thrombotic transcription. KLF2 binds directly to 
the promoter of thombomodulin-1, thereby increasing transcrip-
tion of this potent anti-thrombotic and anti-inflammatory factor 
(8, 15, 16). Additionally, KLF2 inhibits the effects of thrombin-
mediated endothelial activation by preventing transcription of 
thrombin’s receptor, PAR-1 (17). In vivo, there is a clear asso-
ciation between KLF2 levels and vascular inflammatory disease. 
While complete knockout of KLF2 is embryonically lethal (18, 
19), mice with hemizygous deletion of KLF2 (KLF2±) are viable. 
KLF2± mice crossed with ApoE−/− mice are more susceptible to 
atherosclerotic disease compared with KLF2+/+ApoE−/− mice (20). 
Additionally, post-natal deletion of KLF2 leads to a thrombotic 
phenotype, while globally overexpressing KLF2 protects mice 
from thrombus formation in part through the decreased expres-
sion of endothelial thrombotic genes (21).

Vascular inflammation is also a major player in the patho-
genesis of diabetic vascular disease. Interestingly, hyperglycemia 
decreases endothelial KLF2 expression via FOXO1-dependent 
transcriptional silencing (22). Moreover, insulin induces KLF2 
expression in ECs and KLF2 expression is reduced in the glo-
merulus of diabetic rats (23). Endothelial KLF2 is also implicated 
in vascular inflammation seen in neurodegenerative diseases 
such as Alzheimer’s disease. Amyloid beta plaques, a hallmark 
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FiGURe 1 | Select effector functions of endothelial KLFs. Within ECs, there are both unique and shared gene targets and binding partners for various KLFs. In 
general, KLF2, 4, and 11 resist endothelial adhesive transcription by binding to, and inhibiting, multiple cofactors of nuclear factor-κB signaling. Additionally, KLF2 
and 4 promote transcription of the vasoprotective factor, eNOS, via cooperation with p300. This process is inhibited by recruitment of HDACs to the eNOS 
promoter. KLFs also affect endothelial function during vascular inflammation through unique transcriptional events that include modulation of miRs and stimulating 
protective cellular component recycling through autophagy. KLF, Krüppel-like factor; EC, endothelial cell; HDAC, histone deacetylase; VCAM-1, vascular cell 
adhesion molecule-1; eNOS, endothelial nitric oxide synthase; miR, microRNA; Sp1, specificity protein 1; PPARγ, peroxisome proliferator-activated receptor gamma.
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of Alzheimer’s, decrease KLF2 levels in cerebral ECs; and over-
expression of KLF2 protects against amyloid-induced oxidative 
stress (24). These studies further demonstrate the protective 
nature of KLF2 during states of vascular inflammation, expand-
ing the diversity of disease states that would potentially benefit 
from pharmacological targeting of KLF2.

Vessel hemodynamics strongly influence vascular inflam-
mation and KLF2 is exquisitely sensitive to the biomechanical 
forces exerted by laminar versus turbulent shear stress. Under 
conditions of laminar shear stress (LSS), KLF2 is robustly 
expressed in ECs in vitro and in vivo (7, 11). Indeed, as recently 
confirmed by Dekker et al. in humans, KLF2 expression is focally 
lowered in areas of low LSS such as the bifurcation of the aorta 
to the iliac and carotid arteries, and this may be downstream 
of a dual specificity mitogen-activated protein kinase kinase 
5(MEK5)/extracellular-signal-regulated kinase 5 (ERK5)/myo-
cyte enhancer factor 2 (MEF2) pathway (7, 25, 26). It has long 

been known that atherosclerotic lesions have a predilection to 
form at regions experiencing low LSS, such as bifurcations of the 
vasculature. Within these so-called “atheroprone” regions, ECs 
are more likely to become activated and increase production of 
pro-inflammatory mediators (27, 28).

The extent of KLF2 expression and activity is highly regulated 
in ECs. As previously mentioned, LSS induces KLF2 expression. 
The signaling cascade behind this induction has been extensively 
characterized: In response to LSS, MEK5 is activated, which then 
phosphorylates ERK5. ERK5 subsequently phosphorylates MEF2 
at the KLF2 promoter, leading to KLF2 gene transcription (7, 
29). Conversely, KLF2 transcription can be inhibited by tumor 
necrosis factor alpha (TNF-α) signaling via p65 and histone 
deacetylase (HDAC) 4/5 inhibition of MEF2 (26). p53 also uti-
lizes HDAC5-mediated KLF2 suppression to induce endothelial 
dysfunction (30). Interestingly, HDAC5 also regulates KLF2’s 
ability to induce transcription of eNOS, implicating HDACs as 

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


4

Sweet et al. KLF Regulation of Vascular Inflammation

Frontiers in Cardiovascular Medicine | www.frontiersin.org February 2018 | Volume 5 | Article 6

regulators of KLF2 function at multiple points (31, 32). Post-
transcriptionally, endothelial KLF2 is targeted by microRNA-92a 
(miR-92a). Low-shear stress and oxidized LDL, factors both 
associated with atherogenesis, induce miR-92a expression (33, 
34). miR-92a is then capable of binding to the 3′-UTR of KLF2, 
leading to its degradation (33, 35). In fact, targeting miR-92a 
in vivo using an antagomir leads to protection from atherosclero-
sis, providing a method to indirectly target KLF2 (33). Additional 
post-transcriptional regulation of KLF2 occurs through PI3K-
dependent mRNA stabilization in response to LSS (36).

Krüppel-like factor 2 serves as a prototypical vasoprotective 
factor as it (1) is induced by EC activating stimuli, (2) resists 
harmful pro-inflammatory and pro-thrombotic gene transcrip-
tion, and (3) is associated with protection against vascular inflam-
matory disease.

Krüppel-Like Factor 4
Krüppel-like factor 4 shares many transcriptional targets and pro-
tective functions with KLF2 in ECs. Like KLF2, KLF4 is induced 
during LSS (37, 38). Moreover, KLF4 expression is repressed 
under turbulent flow as a result of DNA methyltransferase-
mediated methylation within the KLF4 promoter (39). The same 
mechanism also silences endothelial KLF3 under turbulent flow, 
an anti-inflammatory KLF that is less well characterized in ECs 
(40). Downstream transcriptional effects of KLF4 are similar 
to those seen in KLF2. For instance, a KLF4–p65 interaction 
inhibits VCAM-1 induction, reducing leukocyte homing (38, 
41). KLF4 also regulates expression of eNOS. In multiple studies, 
overexpression or knockdown of EC KLF4 leads to increased 
or decreased eNOS production, respectively (38, 42, 43). KLF4 
overexpression also increases transcription of anti-thrombotic 
factor thrombomodulin as well via a physical association with 
its cofactor, p. 300 (38). A novel and fascinating role of endothe-
lial KLF4 was recently discovered in the context of endothelial 
inflammation and cholesterol flux. KLF4 induces the expression 
of cholesterol-25-hydroxylase (Ch25h) and liver X receptor (LXR) 
in ECs, which contribute to reverse cholesterol transport out of 
the vascular wall and inhibition of endothelial inflammasome 
activation, both protective against atherosclerosis (44).

In addition to its role in maintaining an anti-adhesive and 
anti-thrombotic endothelium, KLF4 also modulates intrinsic EC 
health. Autophagy is a conserved process by which cells recycle 
damaged organelles and misfolded proteins. Disrupted autophagy 
has been associated with multiple age-related phenotypes such as 
metabolic dysfunction, neurodegeneration, and cardiovascular 
disease [reviewed in Ref. (45)]. A recent study identified a role for 
endothelial KLF4 in regulating autophagic genes (46). Endothelial 
overexpression of Klf4 protected vessels from vascular aging, 
an effect that is likely largely due to enhanced autophagy (46). 
Interestingly, this study also demonstrated an inverse correlation 
between the age of vessels and KLF4 expression in humans.

The essential role of endothelial KLF4 in vascular health has 
been demonstrated in multiple in  vivo models. Endothelial-
specific knockout of Klf4 using a VE-Cadherin driven Cre-Lox 
system results in significantly enhanced atherosclerotic lesions 
when backcrossed onto the Apoe−/− mouse line (38). Additionally, 
EC-Klf4 KO exhibited increased thrombotic capacity. Conversely, 

endothelial-driven overexpression of Klf4 is protective against 
atherosclerosis. Conversely, endothelial-driven overexpression 
of Klf4 is protective against atherosclerosis and thrombosis 
(38). Outside of atherothrombotic disease, vascular inflamma-
tion can also negatively affect renal arteries during instances 
of ischemia. Endothelial KLF4 is vasoprotective in this context 
as demonstrated in a model of hematopoietic deletion of Klf4 
during ischemia–reperfusion injury (47). Mice lacking KLF4 
demonstrated exacerbated renal injury as a result of increased 
adhesion molecule expression on ECs with consequent immune 
cell invasion (47). This mechanism was also at play in a model 
of carotid artery injury. Interestingly, loss of endothelial KLF4 
resulted in enhanced proliferation of both EC and neointimal 
VSMCs, as mediated by increased immune cell presence (41). In 
another disease model of pathological vascular remodeling, KLF4 
levels are decreased in the lungs of patients with pulmonary artery 
hypertension (PAH) (42). Loss of endothelial KLF4 is associated 
with increased hypertension and pulmonary artery vasculariza-
tion, in part through enhanced expression of endothelin-1 (ET-1) 
and decreased eNOS expression (42).

Like KLF2, KLF4 is post-transcriptionally regulated by miRs. 
Specifically, both KLF2 and KLF4 are inhibited by the “atheromiR,” 
miR-92a (33, 35). Additionally, however, KLF4 is negatively 
regulated by miR-103 (48). In mice with endothelial-specific 
deletion of miR processing machinery, Dicer, there is a decrease 
in miR-103-mediated KLF4 suppression; this increase in KLF4 
subsequently restrains NF-κB-driven CXCL1 and macrophage 
infiltration in atherosclerotic lesions (48).

Endothelial KLF2 and KLF4 have remarkably similar func-
tions; they respond to many of the same stimuli, share gene tar-
gets and have a high degree of similarity in amino acid sequence. 
Early studies on endothelial KLF4 function noted overlapping 
functions between the two phylogenetically close factors (37, 
49). Indeed, loss of one allele of Klf2 leads to a compensatory 
increase in Klf4, while a single allele of either Klf2 or Klf4 is suf-
ficient to rescue lethality in a double Klf2/Klf4 knockout mouse, 
suggesting genetic redundancy of functions central to endothelial 
function and identity (20, 50). Indeed, the double Klf2/Klf4 
knockout mouse demonstrates loss of endothelial integrity and 
hemostatic dysfunction, as well as the loss of an endothelial-like 
transcriptome.

Krüppel-Like Factors 5 and 6
Unlike KLF2 and 4, endothelial KLF5 and 6 are associated with 
vascular inflammation and remodeling that is largely deleteri-
ous. While KLF5 is largely considered to be a major effector of 
VSMC function (see below), there is evidence that it mediates 
endothelial chemotactic function. Specifically, knockdown of 
endothelial KLF5 in  vitro reduces TNF-α-induced expression 
of key monocyte chemoattractant protein, MCP-1 (51). While 
the in vivo implications of this phenomenon are unclear, there 
is ample evidence implicating MCP-1 in many forms of vascular 
inflammation including atherogenesis, diabetic vascular disease, 
and vascular occlusion (52–54).

Largely implicated in cancer biology, KLF6 also has 
documented roles in ECs. KLF6 is an early response factor to 
vascular injury that induces transcription and processing of the 
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pro-angiogenic factor endoglin, a member of the TGF-β receptor 
superfamily member (55). Mechanistically, KLF6 interacts with 
related transcription factor specificity protein 1 (Sp1) to bind to the 
endoglin promoter (56). While endoglin’s role in angiogenesis has 
been extensively characterized, it is also implicated in leukocyte 
trafficking during vascular inflammation (57). Endothelial KLF6, 
therefore, may promote immune cell infiltration during vascular 
injury. In addition to regulating endoglin, KLF6 also induces 
expression of activin receptor-like kinase 1 (ALK1), another 
member of the TGF-β receptor family (58). KLF6–Sp1 interac-
tions mediate Alk1 transcription during endothelial denudation, 
and KLF6 heterozygotes exhibit reduced neointimal formation 
in response to vascular injury, a mechanism that is proposed to 
be through reduced ALK1 levels (58). While additional studies 
regarding endothelial KLF5 and 6 need to be completed, both 
factors seem to promote vascular inflammation and remodeling 
in response to injury.

Krüppel-Like Factor 11
Krüppel-like factor 11 is also highly expressed in ECs and is 
involved in regulating vascular inflammation. While Klf2 expres-
sion is ultimately inhibited by TNF-α, KLF11 is induced as a result 
of inflammation, and similar to interactions seen with endothelial 
KLF4, KLF11 binds to p65 to inhibit transcription of NF-κB 
target genes such as VCAM-1 and E-selectin resulting in less 
leukocyte adhesion to ECs during vascular inflammation (59). 
This allows KLF11 to serve as an inflammatory-responsive factor 
to reduce excessive endothelial activation. In fact, loss of KLF11 
in a model of cerebral ischemia results in enhanced inflamma-
tion and worse outcome (60). Endothelial KLF11 is regulated, in 
part, by the peroxisome proliferator-activated receptor (PPAR) 
family of nuclear receptor proteins, which includes three mam-
malian isoforms: α, β, and γ. Administration of a PPARγ agoinst 
leads to increased KLF11 expression in cerebral vascular ECs 
(61). Interestingly, KLF11 also serves as a coregulator of PPARγ 
target genes via physical interaction of the two proteins at PPAR 
responsive elements (61). This interaction results in repression 
of pro-apoptotic miR-15a, increasing EC survival and confer-
ring protection against cerebrovascular ischemia. These two 
studies demonstrate a role of endothelial KLF11 in regulating 
vascular inflammation during ischemic events. In addition to 
being responsive to PPARγ, Klf11 transcription is also induced 
by PPARα (62). Administration of PPARα agonist causes KLF11 
induction and its subsequent binding and inhibition of the ET-1 
promoter. This phenomenon further bolsters KLF11’s role as a 
vasoprotective factor through its ability to inhibit endothelial 
inflammation and vasoconstriction.

vSMC KLFs

Vascular smooth muscle cells, along with collagen and elastin, 
form the medial layer of blood vessels and regulate vasomotor 
tone to maintain proper hemodynamic pressure throughout 
the vascular system. In the absence of noxious stimuli, VSMCs 
express numerous mature markers including smooth muscle 
α-actin, SM22α, and smoothelin (63). When challenged by growth 
factors, inflammation, or injury, VSMCs undergo phenotypic 

switching: cells dedifferentiate, losing mature VSMC markers 
and regaining the ability to proliferate, migrate, and synthesize 
extracellular matrix proteins. This can lead to pathological vessel 
remodeling, ultimately resulting in obstruction of proper blood 
flow. Multiple KLFs modulate VSMC phenotype switching in the 
face of vascular injury and inflammation (Figure 2).

Krüppel-Like Factor 4
Vascular smooth muscle cell KLF4 maintains cells in a dormant 
state by binding to and recruiting the potent anti-proliferative 
protein p53 to the p21WAF1/Cip1 (Cdkn1a) promoter/enhancer, con-
sequently increasing transcription of Cdkn1a, a cell cycle inhibitor 
(64, 65). Further, viral overexpression of KLF4 in both VSMC and 
balloon-injured rat carotid arteries leads to increased expression 
of a panel of anti-proliferative genes such as p57 and GADD45β 
(66). In vivo implications of KLF4’s anti-proliferative effects are 
seen in a carotid artery ligation model using conditional KLF4 
knockout: KLF4 KO mice demonstrate enhanced neointimal 
formation as a result of dysregulated VSMC proliferation (64).

Given VSMC KLF4’s role in suppressing proliferation, KLF4 
also plays a somewhat counterintuitive role in promoting dedif-
ferentiation of VSMCs. KLF4 coordinates multiple molecular 
events to repress markers of VSMC maturity in the context of 
pathological vessel remodeling. KLF4 binds directly to the TGF-β 
control element (TCE) to inhibit transcription of smooth muscle 
α-actin and SM22α (64, 67). Moreover, KLF4 recruits inhibitors 
of mature VSMC marker transcription such as ELK-1 and HDACs 
to TCEs (68). Recent evidence indicates that VSMC dedifferentia-
tion during vascular injury not only decreases markers of mature 
VSMCs, but also causes VSMCs to express markers associated 
with macrophages, myofibroblasts, and mesenchymal stem cells. 
Utilizing elegant lineage tracing experiments, Shankman et  al. 
showed that KLF4 is necessary for VSMCs to gain genetic char-
acteristics of other cell types within atherosclerotic lesions (69). 
Evidence for this transition from VSMC to a “macrophage-like” 
cell type was recapitulated in vitro using cholesterol loaded Klf4-
sufficient VSMCs, an effect that was lost in Klf4 mutant cells (69). 
These studies demonstrate KLF4’s importance in VSMC phe-
notype switching during pathological remodeling. Modulating 
KLF4 expression may provide an important therapeutic avenue 
to adjust VSMC phenotype and disease progression.

Mature, uninjured VSMCs express very low levels of KLF4 both 
in vitro and in vivo (67, 70); however, KLF4 expression is signifi-
cantly increased in injured VSMCs, contributing to subsequent 
dedifferentiation. Oxidized phospholipids, which are associated 
with atherosclerotic burden, induce both KLF4 mRNA transcrip-
tion and KLF4 nuclear translocation in VSMCs (71). Additionally, 
carotid artery ligation-induced vascular injury leads to a swift 
increase in VSMC KLF4 expression that is associated with repres-
sion of smooth muscle α-actin (64). Mechanistically, this occurs 
through the reduction of miR-143/145, which normally inhibit 
KLF4 expression to promote VSMC maturation (72). Cigarette 
smoke is another well-characterized stimulant of vascular inflam-
mation. Cigarette smoke extract has been shown to induce Klf4 
transcription, enhance KLF4 binding at the promoters of VSMC 
differentiation genes, and increase KLF4-driven epigenetic 
changes that are associated with transcriptional repression (73).
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FiGURe 2 | Select effector functions of vascular smooth muscle KLFs. KLFs differentially affect VSMC differentiation, proliferation, and inflammation through a 
multitude of mechanisms. KLF5 and 15 exhibit reciprocal regulation of nuclear factor-κB signaling within VSMCs by binding to cofactors p50 and p300, respectively. 
KLF5 also promotes proliferation and dedifferentiation by modulating important driver of VSMC dedifferentiation, platelet-derived growth factor-A (PDGF-A), and 
differentially regulating miR transcription. While KLF4 also promotes dedifferentiation, it resists VSMC proliferation through the transcription of CDKN1A. KLF, 
Krüppel-like factor; VSMC, vascular smooth muscle cell; HDAC, histone deacetylase; miR, microRNA; TNF-α, tumor necrosis factor alpha; IL-1β, interleukin-1 beta; 
RXR, retinoid X receptor; RAR, retinoid acid receptor; Cdkn1a, cyclin-dependent kinase inhibitor 1a.
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Krüppel-Like Factor 5
Krüppel-like factor 5 modulates processes that engender patho-
logical remodeling of the vasculature: like KLF4, KLF5 promotes 
VSMC dedifferentiation; however, dissimilarly, KLF5 also 
promotes cellular proliferation. KLF5’s importance in phenotype 
switching in the face of vascular injury has been shown both 
in  vitro and in  vivo. Overexpression of KLF5 leads to reduced 
expression of VSMC maturity markers myocardin and smooth 
muscle α-actin while the converse occurs with KLF5 knockdown 
(74). Concordantly, in vivo experiments show that in wild-type 
mice, vascular injury causes a decrease in smooth muscle α-actin 
and smooth muscle myosin heavy chain (MHC), whereas this 
effect is not seen in mice heterozygous for KLF5 (75).

Krüppel-like factor 5’s exerts its pro-inflammatory effects 
through two main mechanisms: complex formation with unli-
ganded retinoid acid receptor (RAR)/retinoid X receptor (RXR) 
and recruitment of NF-κB subunit p50. KLF5-RAR/RXR com-
plex binds to the promoter of platelet-derived growth factor-A 
(PDGF-A), a potent inducer of VSMC proliferation and dediffer-
entiation (75, 76). Administration of a synthetic retinoid abolishes 
KLF5-RAR/RXR interaction, resulting in decreased KLF5 tran-
scriptional activity; whereas, administration of an RAR antagonist 
stabilizes KLF5 transcriptional effects (75, 77). Furthermore, this 
mechanism has been shown in vivo to govern VSMC proliferation 
in times of injury. Both pharmacological KLF5 inhibition via the 
administration of an RAR agonist and genetic loss of one Klf5 

allele diminishes neointimal formation and vascular remodeling 
in models of AngII infusion or femoral artery cuff injury, indicat-
ing a critical role of KLF5 in VSMC proliferation in response to 
injury (77). In addition to KLF5-RAR/RXR complex formation, 
KLF5 recruits p50 to influence VSMC phenotype toward prolif-
eration and dedifferentiation, as well as augment VSMC inflam-
matory transcription (78, 79). In VSMCs from diabetic patients, 
increased KLF5 and inducible nitric oxide synthase expression 
leads to augmented nitrated-KLF5, which possesses a heightened 
ability to interact with p50 and subsequently enhance TNF-α and 
interleukin-1 beta (IL-1β) expression (79). Interestingly, estradiol 
competes with KLF5 for p50 binding and can inhibit KLF5-p50-
mediated transcription of inflammatory genes (79).

Krüppel-like factor 5 has been found to be upregulated in 
both human lung biopsies and isolated human pulmonary 
artery smooth muscle cells from patients with PAH, a vascular 
remodeling disease process (80). Using a hypoxic PAH model, 
Li et al. demonstrated that KLF5 serves as an upstream regulator 
of hypoxia inducible factor 1-alpha activity (81). Loss of KLF5 
abrogated hypoxia-induced vascular remodeling partly through 
upregulating proliferation factors (e.g., cyclin B1 and D1) and 
downregulating apoptosis factors (e.g., bax, bcl-2, cleaved cas-
pase-3, and cleaved caspase-9) (80, 81). A similar effect is seen 
in cardiomyocytes in response to ischemia/reperfusion injury, 
further emphasizing a conserved role of KLF5 in promoting 
proliferation and cell survival (82).

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


7

Sweet et al. KLF Regulation of Vascular Inflammation

Frontiers in Cardiovascular Medicine | www.frontiersin.org February 2018 | Volume 5 | Article 6

Similar to other KLFs, VSMC KLF5 both regulates and is regu-
lated by the transcription of miRs. miR-145 is highly expressed 
in differentiated VSMCs and is important in maintaining cel-
lular differentiation: expression of miR-145 is associated with 
upregulation of smooth muscle α-actin, calponin, and smooth 
muscle-MHC and reciprocal downregulation of KLF5 (72, 
74, 83). In injured vessels such as those seen in atherosclerotic 
lesions, however, expression of miR-145 is downregulated within 
VSMCs (74, 84). In the absence of vascular injury, miR-145 
directly targets the 3′-UTR of KLF5 to inhibit it. Following 
injury, PDGF inhibits miR-145 expression, thus attenuating 
KLF5 degradation and consequently suppressing transcription of 
differentiation markers (see above) and myocardin, a modulator 
of differentiation genes (74). In addition to being regulated by 
miRs, KLF5 also controls the expression of the pro-inflammatory 
miR-155. When VSMCs are exposed to oxLDL, KLF5 is induced, 
resulting in decreased anti-inflammatory miRs-143/145 and 
increased miR-155 (85). Interestingly, KLF5-mediated miR-155 
production leads to secreted miR-155 in exosomes that are 
capable of destroying endothelial tight junctions and enhancing 
atherosclerotic progression (85).

Krüppel-Like Factor 15
Krüppel-like factor 15 serves largely as a protective factor in 
many aspects of cardiovascular biology including inhibiting 
cardiomyocyte hypertrophy, regulating cardiac lipid metabolism, 
and establishing circadian control of ventricular rhythm (86–88).

Vascular smooth muscle cell KLF15 primarily acts as a protec-
tive factor against vascular inflammation and disease by resisting 
VSMC proliferation and inflammation. Similar to other KLFs, 
VSMC KLF15 interacts with the histone acetylase, p300. Direct 
binding to p300 prevents acetylation of NF-κB member p65, thus 
limiting transcription of NF-κB target genes and inflammation. 
Both rat aortic VSMCs exposed to oxidized phospholipids and 
human atherosclerotic tissue demonstrate markedly decreased 
KLF15 expression, suggesting that KLF15 plays an important 
role in atherogenesis (89). Orthotopic carotid artery transplanta-
tion from Klf15−/− mice into Apoe−/− mice results in significantly 
enhanced intimal hyperplasia and inflammatory cell infiltrate. 
Additionally, these VSMCs express higher levels of inflammatory 
proteins such as VCAM-1, MCP-1, and MMP3. These results have 
been recapitulated in smooth muscle-specific deletion of Klf15 on 
the Apoe−/− background. When rat aortic smooth muscle cells are 
exposed to PDGF-BB, a stimulator of VSMC proliferation and 
migration, Klf15 mRNA expression is reduced (90). Interestingly, 
in KLF15-deficient VSMCs, Pdgf transcription is enhanced, dem-
onstrating a feed-forward loop that permits VSMC proliferation 
and inflammation by decreasing KLF15 levels (89). In humans 
and mice, KLF15 deficiency is associated with cardiomyopathy 
and aortic aneurysm (91). Additionally, humans with ruptured 
intracranial aneurysms exhibit diminished KLF15 expression 
while expressing elevated levels of inflammatory genes (92).

MONOCYTe/MACROPHAGe KLFs

In addition to cells of the vessels themselves, circulating immune 
cells and their infiltration into the vascular wall are paramount to 

the initiation and propagation of vascular inflammation. There 
is ample research implicating both innate and adaptive immune 
cells in the progression of atherosclerosis [reviewed in Ref. (93, 
94), respectively]. Comparable with their role in vascular cells, 
KLFs have divergent functions in myeloid cell-derived inflam-
mation, capable of either repressing or promoting inflammatory 
processes (Figure 3).

Krüppel-Like Factor 2
Originally studied in the context of acute inflammation and 
bacterial sepsis, KLF2 is a central regulator of monocyte inflam-
matory activation (95, 96). KLF2 resists inflammation within 
macrophages via recruitment of NF-κB cofactors away from the 
promoters of inflammatory genes. Among these factors bound 
by KLF2 are p300 and p300/CBP-associated factor (PCAF) (95, 
97, 98). Given the inflammatory potential of KLF2 knockout 
macrophages, one would predict that loss of myeloid KLF2 would 
be associated with increased vascular inflammation and athero-
sclerosis. This is, indeed, the case as mice with myeloid-specific 
KLF2 deletion on the Apoe−/− background exhibit increased 
atherosclerosis with increased vascular oxidative stress (99). This 
is the result of increased adhesive potential of KLF2 knockout 
neutrophils and macrophages. Interestingly, a similar effect is 
seen with dendritic cell (DC)-specific KLF2 knockout. Loss of 
KLF2 in DCs aggravates atherosclerosis as a result of enhanced 
T-cell activation and heightened inflammatory cytokine produc-
tion (100). Together, these studies demonstrate a central role of 
KLF2 in maintaining quiescence in circulating myeloid cells; a 
role it serves in ECs as well.

Krüppel-like factor 2 is itself controlled by atherogenic 
stimuli. When anti-inflammatory macrophages are challenged 
with oxLDL, they shift to a pro-inflammatory state via the 
downregulation of KLF2 (101). There is also a link between low-
immune cell KLF2 levels with increased risk of cardiovascular 
disease in humans. Monocytes from patients with atherosclerosis 
exhibit less Klf2 expression than healthy controls, indicating that 
the inflammatory state associated with low-KLF2 translates to 
atherosclerotic disease (98).

Krüppel-Like Factor 4
Just as KLF2 and KLF4 have overlapping functions in ECs, this is 
also the case in monocytes/macrophages. While KLF2 regulates 
inflammatory activation of monocytes, KLF4 regulates mac-
rophage polarization from the pro-inflammatory (“M1”) state 
to the anti-inflammatory (“M2”) state (102). Like KLF2, KLF4 
recruits p300 and PCAF away from the promoter of inflamma-
tory genes, resisting the M1 polarization state. Complementarily, 
KLF4 promotes the M2 state by cooperating with critical M2 
transcription factor STAT6 to induce transcription of traditional 
M2 genes through induction of MCP-1-induced protein (102, 
103). While STAT6 is largely responsible for anti-inflammatory 
polarization in macrophages, CREB is another transcription 
factor that limits resists inflammation (104). In addition to 
interacting with STAT6 to modulate anti-inflammatory tran-
scription, KLF4 also interacts with CREB to increase transcrip-
tion at the apoE promoter in macrophages, ultimately resulting 
in atheroprotection (105–107). Myeloid KLF4, therefore, resists 
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inflammation and is largely a protective factor against vascular 
inflammation. Moreover, loss of myeloid KLF4 is associated 
with augmented atherosclerosis, and macrophages deficient in 
KLF4 display increase inflammation in response to oxidized 
phospholipids (108). While KLF4-mediated Ch25h and LXR 
expression drives reverse cholesterol transport in ECs and mac-
rophages, there is also evidence implicating Ch25h and LXR in 
KLF4-mediated M2 polarization (44). It is evident that KLF4 
regulation of macrophage polarization and its role in prevent-
ing vascular inflammation is exceedingly complex and likely 
involves multiple downstream regulators.

Krüppel-Like Factors 5 and 6
The increased inflammatory drive associated with endothelial 
KLF5 and 6 is paralleled by that of macrophage KLF5 and 6. 

Overexpression of KLF5 increases the ability of macrophages to 
migrate and proliferate (109). This contributes to worsened inti-
mal hyperplasia following carotid ligation in KLF5 overexpress-
ing mice. This is in contrast to the protective effect afforded by 
myeloid-specific KLF5 deletion. Interestingly, pro-inflammatory 
stimuli stabilize KLF5 protein via various post-translational 
modifications. TNF-α increases KLF5 sumoylation and decreases 
ubiquitination to stabilize the protein and prevent degradation 
(109, 110). KLF5’s responsiveness to inflammatory stimuli, along 
with its ability to propagate macrophage-mediated inflammation, 
contributes to its deleterious role in vascular inflammation.

Krüppel-like factor 6 expression is also responsive to pro-
inflammatory stimuli. KLF6 increases when macrophages 
are stimulated with M1-driving stimuli and decreases with 
M2-driving stimuli (111). Additionally, KLF6 impacts both M1 
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and M2 gene transcription. KLF6 is required for optimal bind-
ing of p65 binding to its promoters, and importantly, through 
its interaction with p65, KLF6 promotes transcription of NF-κB 
targets (112). Additionally, KLF6 suppresses B  cell lymphoma 
6 expression, which leads to increased pro-inflammatory gene 
expression and increased macrophage motility (113). Conversely, 
KLF6 binds to PPARγ and prevents it from inducing M2 gene 
transcription (111). It is evident that KLF6 is a dynamic regulator 
of macrophage polarization.

Krüppel-Like Factor 14
Within the past 5 years, KLF14 has been extensively studied in 
its role in lipid and cholesterol metabolism. Given that aberrant 
nutrient handling, obesity, and type 2 diabetes are risk factors for 
atherosclerosis, it is unsurprising that multiple genetic variants 
involving the KLF14 gene have been implicated in the develop-
ment of atherosclerotic disease. While the genetic associations of 
KLF14 variants on metabolic disease have been extensively studied 
(114), the role of KLF14 in macrophages is less well characterized. 
Recent work by Wei and colleagues has begun to parse out details 
on how KLF14 contributes to atherogenesis. They found that 
Apoe−/− mice aortas had elevated levels of Klf14 on either high-fat 
diet or standard chow (115). This increase in Klf14 expression 
was associated with elevated pro-inflammatory cytokines in 
circulation: Klf14 adenoviral knockdown ameliorated this effect. 
Importantly, overexpression of Klf14 in a macrophage cell line led 
to increased inflammatory cytokine production as well as total 
cholesterol and cholesteryl ester content, a classic signature of 
atherogenic foam cells (116). Mechanistically, KLF14-mediated 
inflammation seems to be dependent on p38 MAPK and ERK1/2 
signaling leading to increased cytokine release (115). Together, 
this work provides evidence that KLF14 may play a causal role 
in modulating inflammation associated with atherosclerosis, 
further implicating it in metabolic disease.

KLFs iN OTHeR CiRCULATiNG iMMUNe 
CeLLS

In addition to regulating differentiation, activation, and polariza-
tion of monocytes, KLFs also shape lymphocyte and DC func-
tion. While there is a paucity of studies investigating KLF-driven 
lymphocyte processes in vascular inflammation, there is extensive 
evidence demonstrating the importance of KLFs in lymphocyte 
biology that can be extrapolated to the context of vascular disease 
(Figure 4).

Krüppel-Like Factor 2
Like in monocytes, KLF2 expression maintains T cells in a qui-
escent state. KLF2 is expressed in naïve, effector, and memory 
T cells (117, 118) and its loss causes single-positive, resting T cells 
to spontaneously activate and apoptose in the spleen and lymph 
nodes (18, 19). In CD8+ T  lymphocytes, KLF2 levels decrease 
upon stimulation of T-cell receptors and its expression is rees-
tablished after treatment with IL-2 or IL-7 (118). In contrast, 
CD4+ T lymphocytes demonstrate a transient increase in KLF2 
expression upon stimulation that is associated with increased IL-2 

production (119). KLF2 is essential in the expression of T-cell 
migration factors such as S1P1, cluster of differentiation 62 ligand 
(L-selectin) (CD62L), and β7 integrin (Itgb7), allowing T cells to 
traffic to sites of vascular inflammation or draining lymph nodes 
(120, 121). Furthermore, statin-induced KLF2 expression in 
effector T cells reduces inflammation in a myocarditis model, an 
effect that is likely related to diminished interferon-γ production 
(122).

In addition to the proatherogenic functions of effector T cells, 
regulatory T cells (Tregs) play an important role in suppressing 
vascular inflammation (123). In the presence of oxLDL, Tregs 
restore endothelial KLF2 to protect the vasculature from inflam-
mation (124). Within Tregs, forkhead box P3 (FoxP3), a lineage-
specific transcription factor, is under direct control of KLF2 
(125). Loss of KLF2 prior to FoxP3 induction results in impaired 
Tregs differentiation, while loss of KLF2 after FoxP3 induction 
does not affect this process. Pabbisetty et al. also demonstrated 
that stabilization of KLF2 protein through statin administration 
or by genetic deficiency of E3 ubiquitin ligase SMURF1 results in 
enhanced Treg production.

Within B lymphocytes, KLF2 appears to be important in 
determining cellular identity. Higher KLF2 expression is associ-
ated with B1 B cells in the periphery versus follicular or marginal 
zone B cells. Concordantly, inactivation of KLF2 in B cells leads 
to a decrease in B1 B cells with a concurrent increase in marginal 
zone B cells (126, 127). Similar to T cells, loss of KLF2 in B cells 
is also associated with less CD62L and Itgb7 expression, resulting 
in impaired B-cell trafficking (126, 128). Finally, KLF2 also plays a 
role in regulating the DC response during vascular inflammation. 
As is seen with monocytes and neutrophils (99), loss of KLF2 
in DCs increases inflammatory cytokine production, DC tissue 
infiltration, and T-cell activation in atherogenic Ldlr−/− mice 
(100). Together, these studies further demonstrate that KLF2 
largely opposes inflammatory activation in circulating immune 
cells.

Krüppel-Like Factor 3
Within B cells, KLF2 and KLF3 have opposing effects and com-
pete for the same gene targets. While KLF2 is associated with 
a B1 B-cell differentiation pattern (with lower levels associated 
with follicular and marginal zone cells), KLF3 expression favors 
marginal zone B-cell development (129). Additionally, KLF2 
and KLF3 compete for occupancy of the Itgb7 promoter: while 
KLF2 promotes expression of Itgb7 and, thus, migration, KLF3 
leads to downregulation of Itgb7 and impaired homing ability 
of lymphocytes (130). Interestingly, KLF2 and 3 differentially 
regulate KLF3 expression itself. KLF3 negatively regulates its own 
expression through direct binding to the KLF3 promoter (130). 
Conversely, loss of KLF2 in B cells results in decreased expression 
of KLF3 (i.e., KLF2 increases KLF3 expression) (128). The inter-
play between these two factors is critical for B-cell differentiation 
and function.

Krüppel-Like Factor 4
Given its well-defined role in maintaining self-renewing capabili-
ties of stem cells, it is unsurprising that loss of KLF4 expression 
is necessary for proper T-cell development. Remarkably, KLF4 is 
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the only Yamanaka factor that is downregulated throughout each 
step of T-cell differentiation (131). This attenuation is required for 
the transition from double negative (DN)2 to DN3 as evidenced 
by diminished T-cell differentiation at this stage during forced 
KLF4 overexpression (131). While loss of KLF4 is critical to T-cell 
differentiation, DN T-cell population proliferation is maintained 
through KLF4 activity: KLF4 binds to and inhibits the promoter 
of cyclin-dependent kinase inhibitor 1b/p27Kip1, releasing inhibi-
tion of CDK-mediated proliferation (132). Interestingly, this is 
contrary to how KLF4 interacts with p27Kip1 in VSMCs [(66); see 
below], demonstrating cell-type specific functions of KLF4 in 
regulating proliferation. Within B cells, KLF4 is lowly expressed 
in the most immature stages but is increased throughout B-cell 
maturation (133). Upon activation, however, mature B  cells 
decrease KLF4 levels. Additionally, KLF4 appears to be important 
in promoting B-cell proliferation through the activation of cyclin 

D2 (133). KLF4’s role in DC biology closely mirrors that seen 
in monocyte/macrophages. IRF4-expressing DCs are important 
in promoting type 2 helper T-cell (Th2) response, and KLF4 is 
required for this interaction (134). Additionally, loss of KLF4 
in pre-DCs leads to fewer IRF4-expressing DCs. Together, the 
DC and monocyte data suggests that KLF4 strongly favors the 
“anti-inflammatory” polarization of immune cells and its expres-
sion may be a potential target to reduce deleterious vascular 
inflammation.

Krüppel-Like Factor 10
Krüppel-like factor 10 plays an important role in establishing 
Treg identity through FoxP3 expression while also directly pro-
moting Treg function through TGFβ1 production. Indeed, forced 
overexpression of KLF10 in CD4+ CD25− (non-Treg) T  cells 
induces both Foxp3 and Tgfb1 expression while downregulating 
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markers of Th1 and Th2 cells (Tbet and Gata3, respectively) 
(135). Conversely, loss of KLF10 in CD4+ CD25− cells enhances 
Th1 and Th2 differentiation. In response to Treg stimulating 
factor TGFβ1, KLF10 transactivates both FoxP3 and TGFβ1 
promoters, representing a positive feedback loop of Treg func-
tion (135). Important in vascular inflammation, the addition of 
KLF10 knockout CD4+ CD25− T cells promoted atherosclerosis 
in ApoE−/−/scid/scid mice via increased leukocyte accumulation 
and inflammatory cytokine production (135). Recent studies 
have provided mechanistic insight on how KLF10 regulates 
FoxP3 transcription. Within Tregs, KLF10 recruits PCAF to the 
FoxP3 promoter, leading to acetylation and subsequent activation 
of the FoxP3 promoter (136). Remarkably, KLF10 also associates 
with the corepressor Sin3-HDAC to repress FoxP3 transcrip-
tion. A study by Xiong et al. demonstrated that PCAF disrupts 
KLF10/Sin3 interactions to allow PCAF-mediated FoxP3 acety-
lation through its interaction with KLF10 (137). The authors of 
this study posit that KLF10 interacts with Sin3-HDAC in the 
dominant state while post-translational modifications in KLF10 
downstream of lymphocyte signaling is required to favor PCAF/
KLF10 interactions. Along these lines, KLF10 interaction with 
the FoxP3 promoter appear to be dependent on Itch-mediated 
ubiquitination of KLF10 in a degradation-independent manner 
(138). While this study did not investigate how ubiquitination of 
KLF10 affects PCAF or Sin3 interactions, ubiquitination of KLF10 
promoted FoxP3 expression suggesting that this mechanism may 
contribute to KLF10’s interaction with PCAF.

Krüppel-Like Factor 13
Krüppel-like factor 13 also demonstrates complex interactions 
with acetyl transferases/deacetylases to regulate activation of 
T cells. RANTES (or chemokine ligand 5) is a classically expressed 
gene late in T-cell activation whose blockade is associated with 
diminished atherosclerosis (139). KLF13 promotes RANTES 
expression through the recruitment of a “enhancesome” that 
consists of various kinases and acetyltransferases. Specifically, 
Nemo-like kinase is recruited to phosphorylate the H3 histone 
on the RANTES promoter. Following this, PCAF and CBP/p300 
are recruited to acetylate H3 and allow for ATP-dependent chro-
matin remodeling and RNA Polymerase II binding (140, 141). In 
addition to promoting RANTES expression in T cells, KLF13 also 
promotes apoptosis by binding to the promoter of anti-apoptotic 
factor BCL-XL and reducing its expression (142). The authors of 
this study suggest that KLF13-mediated repression of BCL-XL 
occurs through the recruitment of Sin3-HDAC to the promoter, 
as is seen in the context of other genes inhibited by KLF13 (143).

PHARMACOLOGiCAL MODULATiON  
OF KLFs

Current therapies for atherosclerosis largely target mechanisms 
known to activate vascular inflammatory cascades such as 
dyslipidemia (statins), disturbed flow (anti-hypertensives), and 
activated circulating inflammatory cells (aspirin). Given the 
importance of these stimuli in the pathogenesis of atherosclerosis 
and thrombosis, understanding molecular mediators of vascular 

inflammation is imperative in developing novel agents against 
cardiovascular disease.

While accomplishing specificity in targeting KLFs will likely 
be difficult, multiple compounds act upstream of KLFs, thereby 
modulating their expression and function (Figure  5). Below, 
we summarize a few modulators of KLF biology, with special 
emphasis on those that affect multiple different KLFs important 
in vascular inflammation.

Krüppel-Like Factor 2
Numerous pharmacological agents induce KLF2. Notably, the 
prominent lipid-lowering statins are potent inducers of KLF2 
expression in ECs and circulating immune cells via MEF2 
(144–146). Studies in mouse have demonstrated a potential 
role for statin-induced KLF2 expression in protecting against 
diabetic vascular reactivity and inflammation, as well as myo-
carditis (122, 147). These studies indicate the widespread anti-
inflammatory properties of statins through the modulation of 
KLF2. In addition to statins, phenol compounds such as tannic 
acid and resveratrol, are capable of inducing endothelial KLF2 
and preventing inflammation (148, 149). Acting via sirtuin 1 
and MEK5/MEF2-dependent mechanisms, resveratrol induces 
the expression of KLF2-dependent atheroprotective genes (149). 
While the benefits of chronic resveratrol therapy in humans are 
still under investigation, it has been attributed with increasing 
lifespan and the prevention of multiple age-related diseases in 
small mammals [(150, 151)]. Additional work needs to be done, 
however, to determine the relative contribution of KLF modula-
tion in resveratrol’s protective qualities.

Therapeutic proteasome inhibitor Bortezomib has also been 
demonstrated to induce KLF2 in multiple cell types (21). Normally 
prescribed to combat multiple myeloma, Bortezomib treatment 
at non-myelosuppresive doses is actually thromboprotective, in 
part, through KLF2 induction (21).

Krüppel-Like Factor 4
As with KLF2, KLF4 expression is induced by statin use. Utilizing 
a MEK5/ERK5 axis, statin-induced KLF4 expression leads to 
increased transcription of genes associated with anti-thrombosis, 
vasodilation, and hemostasis while increasing apoptosis resistance 
and decreasing inflammatory potential in ECs (43). Additionally, 
in a model of renal ischemia–reperfusion injury, statins protected 
against injury in a KLF4-dependent manner (47). Given their 
widespread use in patients at risk for cardiovascular disease, 
statins represent a tool to further understand the importance of 
KLFs in regulating vascular inflammation in humans.

Vascular smooth muscle cell KLF4 is also induced by multiple 
pharmacological agents including rapamycin and cyclosporine A 
(CSA). Rapamycin is a known inhibitor of cell proliferation via 
induction of p27kip1 (152) and has long been used in drug-eluting 
stents to prevent restenosis via VSMC proliferation (153). Within 
VSMCs, rapamycin inhibits mammalian target of rapamycin 
(mTOR), which subsequently increases KLF4 production (66). 
Interestingly, overexpression of KLF4 results in increased p27kip1 
production and inhibition of VSMC proliferation. These results 
suggest that rapamycin and VSMC KLF4 enhance each other’s 
activities in the regulation of VSMC proliferation. CSA is an 
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immunosuppressant used in inhibiting lymphocyte proliferation 
that upregulates VSMC KLF4 production, resulting in anti-
proliferative and phenotype switching effects (154).

Krüppel-Like Factor 5
Contrary to its inductive effect on endothelial KLF2, resveratrol 
has been shown to decrease TGF-β-mediated KLF5 transcrip-
tion (155). Through its inhibition of the Akt-mTOR pathway, 
resveratrol is capable of blocking KLF5-driven VSMC dediffer-
entiation, thereby preventing intimal hyperplasia. Additionally, 
targeting this TGF-β/phospho-Akt/phospho-mTOR/KLF5 axis 
with Akt inhibitor LY249004 or mTOR inhibitor rapamycin 
also decreases KLF5 levels. As previously mentioned, retinoid 
agonists and antagonists can also diminish and augment KLF5 
activity, respectively, by targeting processes downstream of 
KLF5-mediated transcription. A recent study demonstrated that 
the PPARγ agonist, rosiglitazone, is capable of reducing VSMC 
proliferation by suppressing KLF5 expression (156). While PPAR 
agonists have differential effects on KLF expression (see KLF11 
below), their importance in modulating KLF activity cannot be 
understated as they represent critical modulators of vascular 
inflammation. Interestingly, there is also evidence that the tradi-
tional Chinese medicine Tongxinluo inhibits macrophage KLF5 
transcription and blocks PI3K/Akt signaling to prevent KLF5 
sumoylation (109).

Krüppel-Like Factor 10
Given its importance in Treg homeostasis, targeting KLF10 is a 
potential therapeutic option to combat vascular inflammation. 
Interestingly, a screen investigating small molecule inhibitors of 
KLF10 identified multiple compounds that are able to prevent 
conversion of CD4+ CD25− T cells to CD4+ CD25+ Tregs (157). 
While this was done in the context of reducing Treg effects in 
immunosuppression seen in cancer, it is feasible that a similar 
screen can be utilize to identify small molecule activators of 
KLF10 to be used in inflammatory conditions.

Krüppel-Like Factor 11
Krüppel-like factor 11 is under the transcriptional control of 
PPAR nuclear receptors and its expression and activity can 
be indirectly targeted through the use of PPAR agonists. The 
PPARα ligand fenofibrate stimulates KLF11 transcription 
and, therefore, inhibits ET-1 production (62). In addition, 
fenofibrate has demonstrable beneficial effects in preventing 
diabetic microvascular complications (158). Taken together, 
KLF11 targeting may serve as a potential mechanism of vascular 
protection during PPARα agonist use. Pioglitazone, a PPARγ 
agonist, has cytoprotective properties in cerebrovascular ECs 
in  vitro and in  vivo (61). In the absence of KLF11, however, 
these effects are lost, indicating a dependency of pioglitazone 
on KLF11.

http://www.frontiersin.org/Cardiovascular_Medicine
http://www.frontiersin.org
http://www.frontiersin.org/Cardiovascular_Medicine/archive


13

Sweet et al. KLF Regulation of Vascular Inflammation

Frontiers in Cardiovascular Medicine | www.frontiersin.org February 2018 | Volume 5 | Article 6

CONCLUDiNG ReMARKS

Vascular inflammation is central to the pathogenesis of a wide 
array of debilitating conditions, especially those most prominent 
in Western society. Inflammatory responses in the vessel wall and 
circulating cells are governed, in part, through the action of select 
transcriptional regulators with a body of evidence pointing to the 
KLFs as having such a role. As critical regulators of the vascular 
inflammatory response in multiple tissue types, future investiga-
tions of the KLFs utilizing whole transcriptome approaches will 
provide valuable information regarding the breadth of KLF influ-
ence as well as potential interactions among them; these promise 
to be complex, as the shared consensus sequence 5′-C(A/T)
CCC-3′ is prevalent throughout the genome. Additionally, the 
KLFs may represent attractive targets for therapeutic interven-
tion; this will require further exploration, as the targeting of 
zinc-finger transcription factors remains non-trivial. Ultimately, 

mechanistic and therapeutic insights in KLF biology will advance 
our understanding of the complex signaling networks at play dur-
ing vascular inflammation.
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