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Wnt signaling is an important pathway in health and disease and a key regulator of stem 
cell maintenance, differentiation, and proliferation. During heart development, Wnt signaling 
controls specification, proliferation and differentiation of cardiovascular cells. In this regard, 
the role of activated Wnt signaling in cardiogenesis is well defined. However, the knowledge 
about signaling transmission has been challenged. Recently, the packaging of hydrophobic 
Wnt proteins on extracellular vesicles (EVs) has emerged as a mechanism to facilitate their 
extracellular spreading and their functioning as morphogens. EVs spread systemically and 
therefore can have pleiotropic effects on very different cell types. They are heavily studied 
in tumor biology where they affect tumor growth and vascularization and can serve as 
biomarkers in liquid biopsies. In this review we will highlight recent discoveries of factors 
involved in the release of Wnts on EVs and its potential implications in the communication 
between physiological and pathological heart cells.
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wnT Signaling PaTHwayS OveRview

Wnts are evolutionarily conserved, secreted glycosylated growth factors, which in humans are encoded 
by 19 different Wnt genes. There are more than 15 different Wnt receptors and co-receptors, including 
Frizzled (FZD1-10), LRP5 and 6, and ROR1/2 that are best described. Depending on their binding to 
receptors and downstream components, Wnt signaling has been classified into canonical (β-catenin-
dependent) or non-canonical (β-catenin-independent) pathways. The β-catenin-independent 
pathways include Planar Cell Polarity (PCP) and Wnt–Ca2+ pathway [reviewed in (1)].

The β-catenin-dependent pathway is activated by binding of Wnts with FZDs and LRP5/6, and 
subsequent GSK3β inhibition, leading to stabilization of cytoplasmic β-catenin. Upon accumulation, 
β-catenin enters the nucleus binds to TCF (T cell factor)/LEF (lymphoid enhancer-binding factor) 
transcription factors and regulates the transcription of target genes. Additionally, β-catenin-
independent Wnt pathways use different downstream signaling modules. The PCP signaling is 
activated via FZDs receptors with ROR1/2 and PTK7 as co-receptors, through a cascade of small 
GTPases RAC1, RHOA and JUN-N-terminal kinase (JNK) activation. This pathway leads to changes 
in cytoskeleton, cell polarity and activation of JNK-dependent transcription factors and their target 
genes [reviewed in (2)].

A second β-catenin-independent pathway is the Wnt–Ca2+pathway. Here, Wnts trigger FZD-
mediated activation of heterotrimeric G proteins. This activates phospholipase C (PLC), diacyl-glycerol 
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(DAG) and inositol-1,4,5-trisphosphate [Ins(1,4,5)P3] cascade 
triggering intracellular Ca2+-release and activation of effectors 
such as calmodulin-dependent kinase II (CAMKII), calcineurin 
and protein kinase C (PKC), which activate the transcriptional 
regulator nuclear factor associated with T cells (NFAT) (3).

In addition to Wnts, several inhibitors, such as Dickkopfs 
(DKK1-3), secreted Frizzled related proteins (SFRP1-5) and 
activators, such as R-Spondins (RSPO1-5) are similarly secreted 
and can regulate the amplitude and specificity of Wnt signaling at 
the extracellular level (4). Additionally, intracellular cytosolic and 
nuclear inhibitors fine-tune Wnt signaling.

wnT COMPOnenT MObilizaTiOn in 
exTRaCellulaR veSiCleS

Currently, increasing evidences show the importance of different 
Wnt signaling branches and their crosstalk among different 
cell types. Secreted Wnts are lipidated and this hydrophobic 
moiety hinders them to freely move in the extracellular space. 
Different experimental proofs showed how their biochemical 
properties would fit to the idea of “diffusible” morphogens (5). 
Lipoprotein particles (6, 7), filopodia-surfing (8, 9) and transport 
on extracellular vesicles (10) were shown to confer biological Wnt 
activity in different systems [reviewed (11)]. “Extracellular vesicles 
(EVs)” is a term used for different sub-populations of membrane 
particles secreted from a plethora of cells into the extracellular 
space. Based on size and subcellular origin, they are discriminated 
into exosomes (50–100 nm), microvesicles (100–500 nm) and 

apoptotic bodies (>1000 nm) (12). Distinct proteins as well as lipid 
markers allow characterization of different types of EVs (13). CD9 
or EMMPRIN are normally found in larger, plasma membrane-
derived EVs, while components of the endosomal sorting 
complexes required for transport (ESCRT) machinery, such as 
Tsg101 and Alix are markers for the endosome-derived exosomes 
(14, 15). EVs are purified by differential ultracentrifugation, gel 
filtration or immunoprecipitation, while their size and composition 
are investigated by nanoparticles tracking, electron microscopy, 
immunoblotting and mass spectrometry. Standards for their 
purification and analysis have been defined and can help to increase 
reproducibility of EV studies (16). Currently, cell type-specific 
markers for EVs are missing.

Exosomes carrying Wnts were shown to play key roles under 
physiological conditions in different systems (17) (Table 1). The 
first evidence that Wnts might be released on membrane-bound 
structures came from studies of Drosophila Wnt, Wingless. In 
Drosophila, exosomes, containing the Wnt secretion factor Evi, 
transport Wnts across the Drosophila neural-muscular junctions 
(NMJ) and in the wing imaginal disc (10, 31, 32). Recently, a 
crosstalk was discovered in tooth development, activating Wnt/β-
catenin signaling in mesenchymal cells via exosomal miRNA from 
epithelial cells (33).

As EVs are detectable in the circulation, it was conceived that 
their activity spreads systemically. Indeed, under pathological 
conditions, their functionality has long-range activity influencing 
metastatic niches far away from their source [reviewed in (34)]. 
Further examples are: (1) Tethering of autocrine Wnt11 to fibroblast-
derived exosomes to influence the migratory phenotype of breast 

Table 1 |  Recent studies about mechanisms and effects of Wnt release in mammalian systems

Mechanism of wnt release genes Cell/Organism Pathways/Details References

Paracrine exosomal Wnts Wnt3a Diffuse large B-cell lymphoma Wnt/β-catenin signaling  (18)
Paracrine exosomal Wnts Wnt2b

Possibly also Wnt10a
Epidydemis/mouse Differentiation/maturation Wnt/STOP (19)

Paracrine exosomal Wnts Wnt4 Human umbilical cord MSC in rat skin 
burn model

Angiogenesis and cell proliferation via
Wnt/β-catenin signaling

(20–22)

Paracrine exosomal Wnts Wnt4 Hypoxic colorectal cancer cells 
(HCT116, HT29)/endothelial cells 
(HUVEC)

HIFα-dependent Wnt4 expression
Proliferation

(23)

Autocrine exosomal Wnts Wnt11 Human umbilical cord MSC in vitro Release stimulated by 3,3′-Diindolylmethane (24)
Polarized exosomal Wnts Apical/baso lateral Wnt3a,

Apical Wnt11
Dog Kidney cells, MDCK Basolateral Tsg101+

Apical CD63 + apical Wnt secreted in a 
lipidation-independent manner

(25)

Paracrine exosomal Wnts Wnt5b Colon and pancreatic cancer cells
Caco-2, Panc-1

Several Wnts found in the supernatant after 
exosomes purification, such as Wnt3a and 
Wnt5a from L-cells

(26)

Paracrine exosomal Wnts Wnt10b Fibroblasts and breast cancer cells Proliferation and migration (27)
Crosstalk of Extravesicular Wnt Wnt5a Macrophages and breast cancer cells 

(SkBr3)
Wnt5a expression and cell invasion (28)

Paracrine exosomes mobilize 
autocrine Wnts

Wnt11 Breast cancer cells (MDA-MB-231) Cancer cell migration (29)

Paracrine Exosome mobilize 
autocrine Wnts

Wnt10b Cortical neurons
Rat Optic nerve

Regeneration, mTOR (30)

Neutral sphingomyelinases 
dependent trafficking of Wnts onto 
different EVs

Wnt3a and Wnt5a Breast cancer cells (SkBr3) Block of exosomes secretion increases 
microvesicles release

(13)

Paracrine Exosomal activating Wnt 
canonical

Wnt/β-catenin Ischemia/reperfusion rat heart Enhances cardiomyocyte survival and 
decreased apoptosis

(20)
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cancer cells (29); (2) colorectal tumor cells signal to endothelial 
cells (EC) by HIFα-induced exosomal Wnt4 secretion, activating 
Wnt/β-catenin signaling to increase migration and proliferation of 
ECs (23). Although this work is focused on cancer cells, activation 
of HIFα upon hypoxia plays a role in cardiac stress (23) and might 
have similar effects on EC crosstalk in cardiovascular pathologies.

iMPliCaTiOn anD CaveaTS OF THe wnT 
Signaling anD evS in THe HeaRT

Heart function is based on a well-controlled communication system 
between different cell types. Although, EVs are well appreciated in 
the process of tumor and infection biology, research on cardiac 
EVs is increasing. So far no direct evidences for secretion of Wnt 
components on EVs from heart cells exist. Thus, we will integrate 
evidences from other fields, which may help to advances the 
knowledge on EVs/Wnt-mediated mechanisms in heart tissue.

in Heart Development and Tissue 
Regeneration
Wnt signaling is crucial for embryonic development and tissue 
regeneration (3, 35). Specifically in cardiogenesis, activation of the 
Wnt/β-catenin signaling induces mesodermal formation, cardiac 
progenitor cell specification and maintenance, but inhibits further 
differentiation towards cardiomyocytes (36). Ectopic inactivation 
of the Wnt/β-catenin signaling in a tissue other than cardiac 
mesoderm, such as endoderm, is sufficient to trigger differentiation 
towards cardiac cells, indicating the central role of Wnt in cardiac 
cell formation (37). Several Wnt ligands are expressed in the early 
heart including Wnt2, Wnt2b, Wnt11, and Wnt8a, indicating 
the participation of canonical and non-canonical branches (38). 
Indeed, initial activation of Wnt/β-catenin signaling is followed by 
an activation of the Wnt/β-catenin-independent pathway, which 
represses the canonical signaling and regulates cell processes (39). 
Moreover, Wnt5a and Wnt11 promote cardiac differentiation in 
embryonic and adult stem cells through non-canonical pathways 
and may be necessary to balance β-catenin-dependent proliferation 
in the outflow tract (38, 40, 41). Hence, Wnt signaling is a network 
of inter-linked branches engaging different cell populations into 
intercellular crosstalk. Further details of the role of Wnt signals 
during cardiogenesis are extensively described elsewhere (36).

Notably, heart regeneration mechanisms vary among species. In 
contrast to the limited injury-induced regeneration in early stages 
of life in adult mammal hearts, lower vertebrate like amphibian 
and teleost fish have sufficient regenerative capacity upon injury 
mainly by dedifferentiation of cardiomyocytes (35). In mouse, 
Wnt signaling exerts a similar role on adult cardiac progenitor cell 
(CPC) homoeostasis as observed during embryogenesis. Wnt/β-
catenin activation impairs cardiomyocytes lineage differentiation 
and enhances endothelial cell (ECs) expansion, whereas its 
inactivation increases cardiomyocytes and reduced EC lineages 
(42–44). Accordingly, intra-myocardial injection of Wnt3a post-
ischemia reduces CPC differentiation into cardiomyocytes (45). 
However, the role of Wnt signaling and most importantly the 
intercellular crosstalk in endogenous regeneration remains unclear. 

Interestingly, in the regenerative zebrafish hearts Wnt/β-catenin 
pathway is reactivated upon injury (35). In a recent study, one-
day postnatal murine cardiomyocytes, with high regenerative 
potential, showed enriched Wnt signaling gene networks after 
ischemic injury (46). Since Wnt signaling becomes inactivated 
in the postnatal heart during later stages, it was speculated that 
reactivation of the signaling will confer regenerative capacity to 
the adult heart, however with impaired cardiac performance. This 
may imply an initial protective mechanism of the stressed heart 
to preserve cardiomyocytes function, which eventually fails upon 
sustained activation of the pathway (Figure 1), probably due to a 
low developmentally permissive transcriptional state of the adult 
cardiomyocytes (46).

The Stressed Heart: Specific wnt 
Component Regulation
Lack of robust regenerative response, upon stress/injury in the adult 
mammalian heart, results in adaptive tissue remodeling to sustain 
cardiac output. This finally leads to heart failure development 
characterized by a switch towards fetal metabolism and re-expression/
elevation of developmental genes (60), including genes of the Wnt 
signaling pathway (13). Therefore, Wnt/β-catenin signaling has been 
considered a potentially therapeutic target for heart disease  (35, 
61–64). In the healthy adult heart, Wnt signaling is quiescent but 
becomes reactivated in different cell types in the ischemic and 
hypertrophic heart (Figure 1) (62–65). Specifically, Wnt/β-catenin 
activation is found in epicardium, fibroblasts, ECs, smooth muscle 
cells and CPCs (35) and in cardiomyocytes of the human failing heart 
(47). Conversely, Wnt inhibition appears to protect the heart from 
pathological ventricular remodeling (61, 63, 66, 67).

Recent studies indicate that the exosomal content is highly regulated 
in the heart by various stress conditions and that cardiomyocytes 
and cardiac fibroblasts release exosomes in in vitro studies (56, 68, 
69). Moreover, Wnt ligands, FZDs and SFRPs are elevated after 
ischemic heart injury (48). These observations allow speculating 
that Wnts traveling on exosomes upon cardiac remodeling may be 
part of the maladaptive response. After myocardial infarction (MI), 
cardiac fibroblasts respond to Wnt1 in an autocrine fashion to induce 
proliferation and fibrogenic genes expression (48). Wnt1, Wnt3a, and 
Wnt5a regulate proliferation and migration of ECs. Moreover, after 
MI, β-catenin accumulates in ECs of the rat heart, which suggests 
activation of canonical Wnt signaling (48). Accordingly, antagonizing 
Wnt3a/Wnt5a binding to its receptors FZDs prevents heart failure 
upon ischemia  (61). Wnt3a and Wnt5a were already found in 
exosomes  (10, 26, 28). Interestingly, cell-autonomous regulation 
of Wnt signaling by enhancing β-catenin export on exosomes and 
reducing its cellular pool was described in tumor cells  (70). An 
exciting idea will be to stimulate exosomal export of β-catenin, thereby 
reducing signaling activity in heart remodeling and preventing heart 
failure development.

Upon MI, macrophages are a source of non-canonical Wnts. 
Genetic ablation of Wnt signaling in mice results in macrophages 
with anti-inflammatory, reparative, and angiogenic properties 
and improved left ventricular function and remodeling after MI, 
possibly by the elimination of non-canonical signaling (51). In the 
failing myocardium, Wnt5a was most prominently upregulated 
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FiguRe 1 | (a) Wnt activity in cardiac tissue and secreted Wnt components described in heart cells. Wnt activity is necessary for heart development and becomes 
very low in the adult heart. Upon stress, Wnt signaling components are upregulated in different heart cells. Transcriptional dependent-canonical Wnt signaling is 
known to be activated in CPCs, epicardial-derived cells (EPDCs), fibroblasts (FBs), cardiomyocytes (CMs), endothelial (EC) and smooth muscle cells (35, 47, 48). 
Non-canonical Wnt components are mainly upregulated in Macrophages (MΦ) and FBs. Wnt1 secretion from EPDCs and FB promotes FB expansion and fibrosis 
(48); Wnt5a secretion from FB promotes CM-hypertrophy and fibrosis (49, 50); Wnt5a secretion from macrophages (MΦ) induces inflammation and insulin resistance 
leading to cardiovascular complications (49, 51). Secreted frizzled-related protein 5 (Sfrp5) by healthy adipocytes inhibits Wnt5a function from MΦ. The presence of 
unhealthy adipocytes with reduced Sfrp5 secretion increased Wnt5a activity (52, 53). Wnt10b from healthy adipocytes balances adipocytes growth (54). CMs-
secreted Wnt Inhibitory Factor 1 (WIF1) reduces Wnt5a activity and may affect CPCs proliferation (55). Secreted Wnt1, Wnt3a, Wnt5a as well as activation of 
Wnt/β-catenin induced by CPCs stimulate angiogenesis (48). (b) Potential EVs-mediated signaling crosstalk in heart cells. Exosomes derived from cardiomyocytes 
(CMs) showed ability to reprogram fibroblasts (FBs) in vitro (56, 57). MiR-233 upregulates Wnt5a expression and miR-223 can be found in exosomes (58), thus 
Wnt5a regulation in cardiac failure may involve exosomal trafficking. Exosomes derived from adipocyte-derived mesenchymal stem cells (MSCs) was shown to 
activate Wnt/β-catenin signaling pathway, which may affect CM survival and constrains adipogenesis (20). Exosomes derived from umbilical cord MSCs showed a 
pro-angiogenic effect by delivering Wnt4 and activating Wnt/β-catenin signaling in endothelial cells (ECs) (21). Exosomes secreted from human induced pluripotent 
cells (iPSCs) showed protective effects on ischemic myocardium (59).
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in cardiac fibroblasts and elevated circulating Wnt5a levels 
were associated with adverse outcomes in patients with dilated 
cardiomyopathies (49). In mouse and human cardiac fibroblasts, 
recombinant Wnt5a upregulated the release of Interleukine 
(IL)-6 and Tissue Inhibitor Of Metalloproteinases 1 (TIMP-
1). This might promote myocardial inflammation and fibrosis 
contributing to heart failure progression (50). Moreover, Wnt5a is 
known to stimulate hypertrophy in cultured cardiomyocytes (49). 
Increasing evidence suggests that miR-223 upregulates Wnt5a 
expression (50) and miR-223 can be found in exosomes (58), 
hence Wnt5a regulation in cardiac failure may involve exosomal  
trafficking.

Upon MI, Secreted frizzled-related protein 5 (Sfrp5) functions 
as an extracellular inhibitor of non-canonical Wnt signaling (52) 
that antagonizes the pro-inflammatory activity of Wnt5a. Sfrp5 is 
highly expressed by healthy adipocytes, thus may act as a paracrine 
cardio-protective adipokine. Obese people with “unhealthy 
adipocytes” with reduced expression of Sfrp5 and high Wnt5a have 
an associated insulin resistance with a high risk of cardiovascular 
complications (53). Moreover, Wnt5a overexpression in myeloid 
cells augments adipose tissue inflammation; promotes pro-
inflammatory cytokines by macrophages and impairs glucose 
homeostasis (54). Accordingly, Wnt5a ablation in obese mice 
ameliorates insulin resistance. Thus, Wnt5a crucially mediates 
cellular crosstalk to finally affect glucose metabolism and 
cardiac homeostasis. Additionally, Wnt5a induced hypertrophic 
NFAT activation in cardiomyocytes in vitro (49). Another Wnt, 
Wnt10b constrains mouse white adipose tissue expansion by 
inhibiting pre-adipocyte differentiation, modifying adipokine 
secretion and immune-modulatory roles of fat tissue (54). 
Of note, adipose tissue is an important source of circulating 
exosomal miRNAs in mice and humans and may regulate whole-
body metabolism  (71). Exosomes derived from adipocyte-
derived mesenchymal stem cells (ADMSCs-ex) significantly 
ameliorated ischemia/reperfusion-induced myocardial 
necrosis and apoptosis in rat heart (20). The mechanisms 
underlying the cardioprotective effects of ADMSCs-ex may 
be associated with activation of Wnt/β-catenin signaling, a 
critical regulator of survival and apoptosis of cardiomyocytes  
(Figure 1B).

Hypoxic cardiomyocytes upregulate Wnt Inhibitory Factor 1 
(WIF1) (72), which interferes with non-canonical Wnt signaling 
in monocytes and macrophages and reduces pro-inflammatory 
activation upon ischemia. In patients with hypoxia-associated 
disorders such as MI, stroke and pre-eclampsia, an increase of 
circulating EVs indicates a role of EVs as biomarkers in these 
pathophysiological states  (55). EVs could be regarded as radar 
signals that confer a population overall fitness and unify their 
individual regulatory patterns.

Taken together, Wnt signaling activation is key in pathological 
heart remodeling and EV-mediated signaling may participate in 
this activation. The contribution of EV-mediated Wnt signaling to 
block tissue regeneration needs further investigation in order to 
engineer EV-modifications allowing the recovery of developmental 
plasticity.

ev-Signaling in CaRDiOvaSCulaR 
CellS

Proper cardiac function relies on communication of cardiomyocytes 
with other cell types including smooth muscle cells, EC, 
fibroblasts and immune cells (73). These cells function together 
by interacting physically or via secreted factors, including lipids, 
peptide, nucleotides and miRNAs. The adult myocardium secretes 
exosomes to mediate cell-cell communication (74). Upon cardiac 
stress, fibroblast-secreted exosomes enriched in miR-21*, which is 
normally degraded, is taken up by cardiomyocytes to induce cell 
hypertrophy (69). Moreover, during MI, distinct exosome-contents 
from border zone and healthy heart cells suggest an adaptive 
response to injury defined by exosome secretion  (75). Primary 
cardiomyocytes were capable of secreting EVs with the ability to 
reprogram fibroblasts in vitro (56, 57). Thus, cardiomyocytes are 
able to transfer signals to direct neighboring cell fate (Figure 1B). 
Exosomes are not only potential circulating biomarkers (76) 
but they are also considered for their potential therapeutic 
anti-fibrotic and angiogenetic effects as antioxidants protecting  
cardiomyocytes (77).

exosome-Mediated Signaling in 
endogenous Progenitors
Current data indicate a role for Wnt signaling in the homeostasis 
of CPCs in the adult heart. However, cardiac functionality may 
not be directly affected by changing the balance of this small 
pool but by secreted products (78). In line with this, stem cell 
injections in the adult heart were suggested to mediate a paracrine 
regeneration through secreted signals (72) and CPCs are a source 
of exosomes (79). Under hypoxia conditions, these cells secrete 
“pro-regenerative” exosomes inducing proliferation of ECs (73). 
Cardiomyocyte progenitor and mesenchymal stem cell-exosomes 
have powerful pro-angiogenic effects (80) (Figure 1B). Given, the 
above-discussed action of Wnt activation on stimulating ECs fate, 
it is tempting to speculate that those “endothelial-pro-regenerative” 
exosomes may signal through the Wnt pathway.

Since exosomes are carriers of both protective and pathological 
signals, a better understanding of their content and effect on 
recipient cell will help to define therapeutic utilities of EVs. And will 
broaden our understanding of how cells and organs communicate 
among each other (73).

Regenerative Potential of evs
Tissue repair requires not only the presence of cells capable 
to restore damage tissue, but more importantly, requires a 
microenvironment promoting tissue regeneration. A recent 
study showed that fibroblast-derived exosomes relocalize 
Wnt10b into lipid rafts, activating mTOR and promoting axonal 
regeneration in an inhibitory environment after optic nerve 
injury (30). It seems that Wnts on different EVs have similar 
signaling capacities and that loading with specific content is more 
relevant for their functionality than the EVs used to mobilize 
(28). This is in agreement with biotechnological approaches 
where liposomal packaging of Wnts confers a longer stability 
and high signaling capacity in regeneration models (81, 82). 
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This microenvironment can be created by exosomes with defined 
contents, ideally delivering signals affecting cell recruitment, 
differentiation and immunomodulation. Given the important 
role of exosomes in tissue regeneration in pre-clinical models, 
further studies addressing the EVs-mediated signaling are of 
high interest. Elucidating these mechanisms will offer a great 
platform for EVs engineering for personalized medicine.

Human pluripotent stem cells (hPSCs) and induced 
pluripotent cells (iPSCs) have been widely used in translational 
medicine for their enormous therapeutic potential in tissue 
repair and regeneration. Isolated exosomes secreted from 
iPSCs showed protective effects on ischemic myocardium by 
transferring the endogenous molecules to salvage the injured 
neighboring cells (59). In this regard, iPSCs-derived exosomes 
could be used for clinical application as autologous bioactive, 
cardio-protective exosomes to treat heart diseases and become 
a clinical tool for personalized medicine (75). Exosomes 
derived from umbilical cord mesenchymal stem cells showed a 
pro-angiogenic effect by delivering Wnt4 and activating Wnt/
β-catenin signaling in ECs (21). Since activation of Wnt/β-
catenin signaling is also pro-angiogenic in the adult heart, it 
is tempting to speculate that endogenous CPCs may also use 
EVs for pro-angiogenic signaling. Activation of canonical Wnt 
signaling was also reported in osteoblast-derived exosomes 
carrying miRNA to promote osteogenic differentiation. Thus, 
not only Wnt components may be carried onto EVs but also 
miRNA regulating Wnt signaling may be involved in cell-cell  
communication.

Cell therapies can directly support regenerative processes by 
forming new functional tissues or supporting tissue generation 
via paracrine mechanisms. Dissecting the precise role of Wnt 
signaling in cardiac tissue regeneration and the potential use of 
synthetic EVs may help tailor therapeutic approaches aiming to 
restore tissue functionality in a non-regenerative environment 
such as the heart. Moreover, human PSCs provide an excellent 
tool to address EV-mediated signaling in the context of early 
cardiogenesis. Developing protocols for exosomes isolation in 
their in vivo environment will allow cell-type and cargo-specific 

EVs and will enormously advance the field of EV-mediated  
signaling.

COnCluSiOn

Modulation of Wnt signaling is crucial for tissue homeostasis in 
the developing and postnatal heart. However, the role of Wnt/β-
catenin-dependent and -independent pathways in the intercellular 
crosstalk of heart cells is not fully understood. Activating or 
inactivating branches of the Wnt-network in specific target cells 
may be attractive to modulate pathological processes in the 
cardiovascular system or to enhance regenerative capacities of 
stem cell therapies. Many of these mechanisms might be mediated 
by EVs. Hence, understanding Wnt signal transduction via EVs 
between cell populations and tissues will advance our strategies 
for therapeutic modulation of these pathways.
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